
Collective Multi-type Entity Alignment Between Knowledge
Graphs

Qi Zhu
1∗
, Hao Wei

2
, Bunyamin Sisman

2
, Da Zheng

2
, Christos Faloutsos

3
,

Xin Luna Dong
2
, Jiawei Han

1

1
University of Illinois at Urbana-Champaign

2
Amazon.com, Inc.

3
Carnegie Mellon University

1
{qiz3, hanj}@illinois.edu

2
{wehao,bunyamis,dzzhen,lunadong}@amazon.com

3
christos@cs.cmu.edu

ABSTRACT
Knowledge graph (e.g. Freebase, YAGO) is a multi-relational graph

representing rich factual information among entities of various

types. Entity alignment is the key step towards knowledge graph

integration from multiple sources. It aims to identify entities across

different knowledge graphs that refer to the same real world entity.

However, current entity alignment systems overlook the sparsity

of different knowledge graphs and can not align multi-type enti-

ties by one single model. In this paper, we present a Collective
Graph neural network forMulti-type entityAlignment, called CG-
MuAlign. Different from previous work, CG-MuAlign jointly aligns

multiple types of entities, collectively leverages the neighborhood

information and generalizes to unlabeled entity types. Specifically,

we propose novel collective aggregation function tailored for this

task, that (1) relieves the incompleteness of knowledge graphs via

both cross-graph and self attentions, (2) scales up efficiently with

mini-batch training paradigm and effective neighborhood sampling

strategy. We conduct experiments on real world knowledge graphs

with millions of entities and observe the superior performance

beyond existing methods. In addition, the running time of our ap-

proach is much less than the current state-of-the-art deep learning

methods.

ACM Reference Format:
Qi Zhu, HaoWei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna

Dong, Jiawei Han. 2020. Collective Multi-type Entity Alignment Between

Knowledge Graphs. In Proceedings of The Web Conference 2020 (WWW
’20), April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3366423.3380289

1 INTRODUCTION
Knowledge Graphs (KGs) contain large volumn of relation tuples

in the form of ⟨subject, relation, object⟩, such as ⟨Aditya Raj, write,
Don’t stop Dreaming⟩ in Figure 1. These relation tuples have a

variety of downstream applications including Question Answer-

ing [19], Search, and Recommendation [42]. With the booming

* Work performed while at Amazon.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380289

Aditya Raj Aditya Raj
Kapoor

Don’t stop
Dreaming

write

Gawaahi
edit

Shamaal:
The

Sandstorm

wr
ite

IMDB Freebase

Sambar
Salsa

comedy
genregenre

drama

gen
re

write

Anant
Balani

w
rit
e

Vasanti
Balani

Ashish
Redij

pro
du
ce edit

Don’t stop
Dreaming

w
rite

produce

Sambar
Salsa

wr
ite

pro
du
ce

Vasanti
Balani

edit

Ashish
Redij

pro
duc
e

Komedi-
drama

genr
e

Figure 1: An example of Entity Alignment on person called “Aditya
Raj” across IMDB and Freebase. Different edge types indicates dif-
ferent relations(e.g. “direct” and “write”). We use different color and
shape indicates node types and different arrow types indicates dif-
ferent relations.

of structured and semi-structured online data, numerous knowl-

edge graphs are extracted on the same domain [25]. Different KGs,

though subject to the incompleteness in varying degrees, usually

contain complementary information. Entity alignment (EA) aims

to identify entities across different knowledge graphs that refer

to the same real world entity. This problem also known as entity
matching/resolution [12, 14, 16, 27] that matches records in the

multi-relational databases.

In a knowledge graph, there are different entity types (e.g., movie,

actor, characters) and relation types (e.g., direct by, act by, release
date, etc.). Given the nature of entity types, the alignment strategy

for different entity types could be different. For example, we observe

much more characters than films, that share the same name in

the IMDB-Freebase dataset. One obvious solution is to develop

different models for different entity types; however, the solution

falls short for two reasons. First, collecting annotations and training

hundreds or even more models for different entity types can be very

complex and expensive. Second, an entity may belong to multiple

overlapping types (e.g. a person can be both a movie director and a

novel writer), making it hard to decide which model to apply for

each entity. Thus, a multi-type entity alignment algorithm becomes

critical for effective knowledge integration [11].

https://doi.org/10.1145/3366423.3380289

However, previous entity alignment methods [4, 7, 8, 37, 45, 46,
51] su�er from the following challenges presented in the multi-type
entity alignment problem.

Transductive ! Inductive. Previous methods [7, 8, 37, 51] adopt
knowledge graph embeddings to jointly perform the KG completion
and entity alignment tasks, thus may not be tuned perfectly for
alignment purpose. In particular, they focus only on related enti-
ties,i.e.transductive setting, ignoring the potentially rich attribute
information such as the name and the released date. In addition,
whennewentities are added into the graphs, these methods require
complete retraining to predict alignment for new entities.

Labeled Type ! Unlabeled Type. Traditional methods[27, 39]
can often perform well for entity types with rich training data,
but often fail for the types where training data are sparse or even
lacking. Intuitively, the rich connections between di�erent types
of entities shall help boost performance for the types with small
training data, but the connections are not yet e�ectively leveraged
on a large scale.

Inspired by the recent success of Graph Neural Networks (GNN)
on various tasks such as node classi�cation [21], link prediction [5,
48] and graph classi�cation [23], we propose to apply GNN to
generate structure-aware representations for each entity, and align
entities by comparing their representations. The GNN mechanism
allows us to incorporate neighborhood information recursively and
make inductive predictions onunseenentities, thus addressing both
of the afore-mentioned challenges. Unfortunately, as we show in
our experiments (Section. 4.4), a vanilla application of GNN failed
terribly, obtaining only 0.33 F1 score (27% precision and 43% recall)
for alignment. The key reason is that the GNN models will generate
similar embeddings for the same entity from two di�erent KGs
only if both KGs contain fairly complete information about the
entity. In reality, most KGs are sparse in di�erent ways, making the
embeddings often very di�erent. For example, for the same movie,
IMDB may contain editor, director and actor information, while
Freebase contains only director and producer information.

This paper presents a novel GNN model that makes collective de-
cisions [2, 36] (i.e.related entities alignment are determined jointly)
on entity alignment for multple di�erent types. The key of our
solution is a carefully designed attention mechanism that e�ec-
tively leverages shared neighborhoods as positive evidence without
ignoring strong negative evidence. First, to be robust on incomplete
knowledge graphs, we design the cross-graph attention that allows
focusing more on the similar neighborhoods across two graphs. To
illustrate the intuition, consider our motivating example in Figure 1.
�Aditya Raj� participates in four movies in IMDB, whereas �Aditya
Raj Kapoor� writes/produces two movies in Freebase; a vanilla ver-
sion of GNN will generate di�erent representations for them. Our
cross-graph attention gives higher weight to shared neighbors such
as �Sambar Salsa�, and thus generate similar representations for
the two nodes. Second, to be sensitive towards strong negative
evidence, we employ relation-aware self-attention on edges that
prevents blindly aligning nodes with similar neighborhoods. For
example, two movies in the same series are likely to share directors,
writers, and some actors; our edge-level attention allows us to pick
up key di�erences in release year and length to distinguish them.
Indeed, our experiments show that the two attention mechanisms
collectively improve linkage quality by 10% F1 score in average.

Table 1: Comparison of methods for entity alignment. Inductive :
Making use of node features and generalize to new nodes. Predi-
cate: Modeling semantics of di�erent relations. Collective: Collect-
ing evidence from neighborhood. Multi-type : Handling multiple en-
tity types in one model. Scalable: Scaling up to millions of nodes.

CG-MuAlign MuGNN [4] GCN-Align [45] DeepMatcher [27]

Inductive 4 4 4
Predicate 4 4 4
Collective 4
Multi-type 4 4 4
Scalable 4 4

We note that although collectively linking entities is not a new
idea [2, 12, 31, 34], our method is the �rst scalable solution that
does not require any manually de�ned rules (like [31]) or logic
(like [34]) for evidence propagation. Similarly, although GNN has
been widely adopted for iteratively capturing the neighborhood
information, our model, to the best of our knowledge, is the �rst
that allows collective decisions in a GNN. Besides, we develop a
scalable GNN framework to support large-scale entity alignment
in the experiments. In Table. 1, we compare our method with most
recent entity alignment algorithm from �ve di�erent perspectives.
In particular, we made the following contributions.

� We propose a GNN-based knowledge graph entity alignment
framework calledCG-MuAlign, that collectively align entities
of di�erent types. We carefully design the attention mecha-
nisms that can both e�ectively accumulate positive evidence
from the neighborhood, and remain sensitive to strong nega-
tive evidence to distinguish similar but di�erent entities.

� We scale up our model to large-scale knowledge graphs by
avoiding expensive computation in each layer of the deep
neural network and by relation-aware neighborhood sampling.

� Through extensive experiments on two di�erent datasets, we
show that our methods obtain high quality linkage (80.5% F1
and 60% recall when precision is 95%) on knowledge graphs
with size of two and half millions of nodes. In particular, with
the help of labeled �lm data, we show thatCG-MuAligntrained
on 2,000 person pairs can reach comparable performance with
model trained on� 24,000 person pairs.

The rest of the paper is organized as follows. We �rst provide
the preliminary knowledge and problem de�nition in Section 2.
Our method is presented in Section 3 and we demonstrate the
experimental results as well as analysis in Section 4. We review the
literature and summarize the di�erences of our methods in Section
5. At last, we conclude the whole paper in Section 6.

2 PROBLEM DEFINITION
A knowledge graph G is de�ned as a graph with multi-typed nodes
and edges. We denote nodesV as entities and edgesE as relations.
Formally we have G = (V , E; T ; R) with a node type mapping
� : V ! T and edge type mapping : E ! R .

Given two di�erent knowledge graphs G and G0on same domain,
the node type and edge type arefT ; T 0gandfR ; R0g, respectively.
Assuming node and edge types are aligned in advance:T � f¹ t ; t 0º 2
T � T 0jt , t 0g, R� f¹r ; r 0º 2 R � R 0jr , r 0g, certain amount
of ground truth node pairsSf¹v t �

i ;v t �

i 0 ºjt � 2 T � g are available.
Normally, there are only a few aligned seed pairs for some of the
aligned node typeT � , i.e.jSj � jV j .

Formally, we de�ne the problem of entity alignment as follows.

De�nition 2.1 (KG Entity Alignment).Given two knowledge
graphsG = ¹V ; E; T ; Rº andG0 = ¹V 0; E0; T ; Rº, entity align-
mentaims to �nd a set of entity pairsf¹v i ;v i 0º 2 V � V 0g with
high precision and recall, such that each pair refers to the same real
world entity.

3 METHOD
CG-MuAlign features a collective GNN framework to address the
KG Entity Alignment problem. Our model not only bridges the
gap between single-type and multi-type alignment model, but also
generalize to unlabeled types. In Section 3.1, we describe the over-
all picture of our alignment model. Then we discuss two proposed
attention mechanisms and explain how they contribute to thecollec-
tive setting in Sections 3.3 and 3.4, respectively. At last, we present
our model speci�cations and reason about scalability concerns.

Figure 3: CG-MuAlignarchitecture

3.1 Solution Overview
We model the entity alignment problem as a classi�cation problem,
where we predict whether two nodesv 2 V andv 0 2 V0 represent
the same real-world entity.

The model includes two GNN encoders and an entity alignment
loss layer. The GNN encoder takes an K-hop sub-graph derived
from target nodev, aggregates the neighborhood information and
outputs representationhk

v for nodev. In its k-th layer, for nodei ,
the GNN encoder aggregates neighbor information from k-1 layer,

zk
i = Aggregate � Transform ¹k º

�
fhk � 1

j ; j 2 Ni g
�

(1)

wherehk � 1 is the hidden representation of the previous layers and
Ni is the neighborhood of nodei in the knowledge graph. The
output representationhk

i is the combination ofhk � 1
i andzk

i ,

hk
i = Combine¹k º

�
fhk � 1

i ;zk
i g

�
(2)

For two KGs, we have two K-layer models GNN1 and GNN2 with
identical structure and shared parameters. For each pair of entities
¹i ; i 0º in the training data, we sampleN negative entities fromKG1
andKG2. Then we obtain the �nal representations from two GNN

encoders as¹hK
i ;hK

i 0º and apply a marginal hinge loss on distance
between output vector of two nodes,

L =
Õ

¹i ; i 0º

Õ

¹i � ; i 0�º

max
�
0;d¹hK

i ;hK
i 0º � d¹hK

i � ;hK
i � 0º +

�

In the experiments, we used¹x;yº = jjx � y jj2 as the distance func-
tion. The overall architecture of our solution is shown in Figure 3.

3.2 Collective Graph Neural Networks
In CG-MuAlign, we �rst group the neighbor nodes by edge typer
asNi ;r and apply di�erent Transform , i.e.Wr . In Figure 1, for ex-
ample, the target node �Aditya Raj� in the left IMDB sub-graph
have Ni ;write = {Don't stop Dreaming, Shamaal: The Sandstorm,
Sambar Salsa} andNi ;edit = f Gawaahig. At each layer, we trans-
form the neighborhood (j 2 Ni ;r) information regarding the rela-
tion between nodei andj as follows,

zk
i ; j = Wk

r hk � 1
j ; j 2 Ni ;r (3)

As one entity can belong to multiple overlapping types, the above
transformation explicitly di�erentiate the same person's represen-
tations as editor and writer in the aggregation.

We calculate node-level attention� (details in Section 3.3), edge-
level attention� (details in Section 3.4) andAggregate neighbor-
hood as,

zk
i =

Õ

[Ni ; r

� i j � i j zk
i ; j ; � j � i j � i j = 1 (4)

Then we proposes the followingCombinefunction:

hk
i = �

�
»Wk

sel f h
k � 1
i j jzk

i ¼
�

(5)

Intuitively, we concatenate the self information and neighborhood
information to make the alignment decision on self information
and neighborhood information independently. And we name this
layer asCollectiveAgg .

In CG-MuAlign, we stack multiple layers in each GNN encoder,
where the inputs at layer k is the output representation of layer k-1.
The layer-0 representation is the input node features and we allow
entities of di�erent types to have di�erent length of features. Let
the hidden dimension of the model be m, we have the �rst layer
of relation matricesW1

r 2 Rdr � m
2 , wheredr is the feature length

of entity in neighbor groupNr . After concatenation as depicted in
Equation 5, the hidden representation is thenm

2 + m
2 = m. For the

layerk = 2;3; :::;K, we haveWk
r 2 Rm� m

2 Then we describe how
we compute the two attentions� and� .

3.3 Node-level Cross-graph Attention
Existing GNN-based entity alignment methods reconcile structural
di�erence across two knowledge graphs by implicit means, such
as graph matching objective [46] and rule grounding [4]. As we
discussed in the introduction, the structural di�erences are mainly
raised by the nature of incompleteness in a knowledge graph. In
CG-MuAlign, we address this problem by collective aggregation of
con�dentneighborhood information. Namely, we explicitly assign
higher weights for those neighbors that are likely to have the corre-
sponding ones in the other graph. We achieve this by employing a
cross-graph attention mechanism that attends over the neighbor's
feature vectors.

(a) Cross-graph Attention (b) Relation-aware Self-Attention

Figure 2: Illustration of node-level and edge-level attention in CG-MuAlign

Given the candidate node pair¹i ; i 0º, we haveNi and Ni 0 as
neighborhood of nodei and nodei 0, respectively. We makesoft
decisions by calculating similarity of pairs¹p;qº 2 Ni � N i 0,

� p =

Í

q2Ni 0

exp� j j zp � zq j j2

Í

p2Ni

Í

q2Ni 0

exp� j j zp � zq j j2
; � q =

Í

p2Ni

exp� j j zq � zp j j2

Í

q2Ni 0

Í

p2Ni

exp� j j zq � zp j j2

The hidden representationzp andzq are calculated in Equation 3.
Forp1;p2 2 Ni , � p1 > � p2 if the accumulated similarity between
p1 and neighborsNi 0 in GraphG0 is larger thanp2. In computation,
weight � p and� q are the row-wise and column-wise normalized
vector for the cross-graph attention matrixAi ; i 0 2 RjNi j� jN i 0j.
In Figure 2a, we turn the 1-hop neighbor in Figure 1 into actual
computation graph in ourCollectiveAgg layer. The neighborhood
for �Aditya Raj� two knowledge graphs are {Gawaahi:edit, Don's
stop Dreaming:write , The Sandstorm:write, Sambar Salsa:write } and
{Don's stop Dreaming:write, Don's stop Dreaming:produce, Sambar
Salsa:write, Sambar Salsa:produce}. The cross-graph attention will
give high weights to neighbor nodes {Sambar Salsa:write, Don's
stop Dreaming Salsa:write} as their hidden representation is similar.
Thus, the proposed cross-graph attention leverages thepositive
evidence to the collective decisions.

3.4 Edge-level Relation-aware Self-attention
Yet, cross-graph attention neglects thenegativeevidence across
the graphs. If the neighborhood aggregation only relies on the
cross-attention, it fails to predict �negative� when only unimpor-
tant nodes are softly aligned. In our music data set at Figure 2, when
aligning song �Radioactive� by American rock band Imagine Drag-
ons between Amazon Music and Wikipedia, cross-graph attention
producepositiveevidence on most of the neighbors such as song
writer, producer and one performer. However, it is an unmatched
pair since the one in Amazon is a deluxe version collaborated with
�Kendrick Lamar�. In other words, di�erent relations shall play dif-
ferent roles in alignment prediction. For example,performed byis
more informative thanwritten by.

In fact, the computation of cross-graph attention focuses on
the neighbor nodes similarity and considers each relation equally
important. In light of this issue, similar with Graph Attention

Table 2: Alignment Example for song Radioactive. Neighbor nodes
are grouped by relations as described in Section 3.2. Bold font indi-
cates the neighbor node with large cross-attention weights.

Amazon Music Wikipedia

Attributes

Title Radioactive Radioactive
Duration 2M19S 2M19S

Neighbors

Song writer

Wayne Sermon Wayne Sermon
A. Grant Alexander Grant

Dan Reynolds Dan Reynolds
Josh Mosser Josh Mosser

Song producer Alex Da Kid

Album Night Visions (Deluxe) Night Visions

Main performer
Imagine Dragons

Imagine Dragons
Kendrick Lamar

Networks [41], we adjust the cross-graph attention with an edge-
level self-attention that considers the edge(tuple) information,i.e.
hRadioactive,perform by, Kendrick Lamari we calculate an edge-
level self-attention by a weight vector®ar to estimate the importance
of an edge composed of subject, object and relation.

� i j =
exp¹� ¹®aT

r »zi j jzj ¼ºº
Í

k 2Ni

exp¹� ¹®aT
r »zi j jzk ¼ºº

We use� ¹�º as LeakyReLU suggested in [41]. As depicted in Fig-
ure 2b, self-attention measures the importance of a relation tuple
with the relation aware linear layerar . In the previous example,
the attention score ofhRadioactive,perform by, Kendrick Lamari is
similar with hRadioactive,perform by, Imagine Dragonsi and much
larger than grouped neighbors such as writer and producer.

3.5 Scaling up
Despite the e�ectiveness of the proposed GNN model, training
and applying it is very expensive. We scale it up in three ways:
by carefully removing unnecessary computation, by strategically

sampling the neighborhood, and by selectively considering the
matching candidates.

Simplifying Computation: We now analyze the e�ectiveness of
CollectiveAgg under the Open World Assumption1, that is, no
knowledge graph has complete knowledge. We assume graphG and
G0observesp portion andq portion from the underlying complete
knowledgeGu . In our example in Figure 1, both IMDB and Freebase
contains only partial information of �Aditya�. Given a ground truth
pair ¹i ; i 0º, that both refers to the real world entitye, the number
of neighborhood ofe in the real world isNe. We now quantify
the Collective Powerby counting numer of shared (same) nodes
regarding order of the neighbors.

Theorem 3.1.If G andG0 have the same number of nodes,i.e.
jV1j = jV2j and there exists a injective functionF : V1 ! V 2. Let K
denote the order of the neighborhood,jEj is the total number of edges
in the underlying graphGu , the expected Collective Power decays
geometrically as K increases.

E¹v ; F¹v ºº� G1CP¹Kº � jEj � p
K
2 q

K
2

Proof. According to the de�nition ofp andq. Letpi andqi be
the actual observed ratio for nodev i andF ¹v i º in graphG andG0,
we have,

p =

jV1 jÍ

i =1
jNi j � pi

jE j
;q =

jV2 jÍ

i =1
jNi j � qi

jE j
For a speci�c nodei , the expected number of same neighborhood
from a uniform distribution in two graphs isjNe jpi qi . Thus, when
K = 1,

E¹v ; F¹v ºº� G1CP¹1º =
Õ

i

jNe jpi qi (6)

�

s Õ

i

¹
p

Nepi º
2 Õ

i

¹
p

Neqi º
2

(7)

�
s Õ

i

Nepi

Õ

i

Neqi = jEj �
p

pq (8)

Recursively, we repeat the same calculation on shared neighbor
nodes in previous step, that is,E»CP¹K + 1º¼= E»CP¹Kº¼ �

p
pq �

The above theorem can be explained as jaccard similarity of
neighborhood follows a long-tail distribution asK grows, because
only same �rst-order neighbor nodes may contain the same second-
order neighbor nodes in principle. According to this, we employ the
CollectiveAgg as theAggregate only at the last layer to reduce
the computation cost as the collective power decrease. That is,

hk
i =

8>><

>>
:

CollectiveAgg
�
fhk � 1

j ; j 2 Ni [f i gg
�

; k = K � 1

AverageAgg
�
fhk � 1

j ; j 2 Ni [f i gg
�

k < K � 1
(9)

where theAverageAgg replaces the� i j � i j in Equation 4 as 1
jNi j .

Mini-batch Training and Neighborhood Sampling. Traditional
graph neural nets are trained globally, which is infeasible when the
graph is large. Instead, we sample a batch of positive pairs from

1the assumption that the truth value of a statement may be true irrespective of
whether or not it is known to be true, from wikipedia:https://en.wikipedia.org/wiki/
Open-world_assumption

training data and construct aK-hop sub-graph fromG andG0. To
further speed up the training, we adopt neighborhood sampling to
control the size of the computation graph.

Lemma 3.2.Let the maximum neighborhood size asN and batch
size asB, the space complexity ofCG-MuAlign isO¹BNK º. Without
batch training or sampling, the space complexity isO¹jVj � Kº. For
training data of size S, the expected running time isO¹S� NK º.

Additionally, we adopt a relation-aware neighborhood sampling
to leverage the maximal collective power, which samples those �one-
to-one� relation �rst. The probability of sampling possibly matched
neighbor node is greater than those �one-to-many� relations. For
example, one movie usually has only one director but many actors,
knowing whether the director issameis more informative than
knowing one actor issame. For each type of entityv t , we calculate
the average numberavg_N t

r of neighbors connected by relationr .
During the neighborhood sampling process for nodei of typet , we
sample from the neighborhood groupNi ;r with probability

Pr¹nº /
�

avg_N t
rÍ

r avg_N t
r

� � 1

Therefore, director neighbors are more likely to be sampled com-
pared with characters and actors due to their large population. It
helps make the collective decisions when we sample a small number
of neighborhoods.

Candidate Generation. Though the training cost is controlled by
number of GNN layers and number of sampled neighbors, the infer-
ence cost remains as a problem. Naive one-versus-all comparison
leads to time complexity up toO¹jVj !º: To scale up to millions
of entities, we employ candidate generation during the inference
stage, also known as blocking. For each test node, we use several
strong keys(e.g.name and date of birth for person) to collect possi-
ble match entities and useCG-MuAlign to predict alignment score
within candidate pairs.

3.6 Relations with other GNN variants
Now we summarize the key di�erences of proposedCollectiveAgg
with previous popular GNN framework.

Similar with RGCN [32], we adopt multi-relational matrices to
model the semantics of di�erent relations when aggregating the
neighbors. Our self-attention modules shares similar motivation
with GATGAT [41]. Both GraphSage andCollectiveAgg charac-
terize with concatenating self representation and neighborhood
representations. The GraphSage GNN layer includes concatenation
and aggregate function, like average

hk
i = �

�
W1

h
hk � 1

i j j�
�
W2 � MEANfhk � 1

j ; j 2 Ni ;r g
� i �

; (10)

There are two di�erences betweenCollectiveAgg and GraphSage.
First, we have multi-relational projection matrixWr in the hidden
layer. Second, we use weighted average (attention)� instead of
averaging or max pooling.

hk
i = �

�
W1

h
hk � 1

i j j� ¹Wr � fhk � 1
j ; j 2 Ni gº

i �
(11)

In the toy example below, all kinds of previous aggregation
function,e.g.MEAN/MAX/SUM, fail to �t the label if node id is the
only input feature. A learnable mask� on neighborhood, instead,

Table 3: Overall Dataset Statistics

Dataset # Nodes # Edges # Node Types # Edge Types

Movie 2,684,233 6,851,166 8 8/8
Music 1,768,983 10,723,141 6 4/5

Table 4: Movie Dataset

Dataset # Films # People # Characters # Genres # Train/Test

Freebase 273,526 314,869 859,289 599
53,405/53,405

IMDB 423,118 600,909 211,895 28

Figure 4: The schema of the Movie Graph

can �t the label by masking out nodec andd. To some extent,
CollectiveAgg has a greater representation power for the task of
entity alignment when data is sparse.

Example 3.3.For nodea 2 G anda0 2 G0, we have �rst-order
neighborsfb;c;dg in graphG and fbg in graphG0, the training
label is 1.

4 EXPERIMENTS
We compareCG-MuAlignwith other knowledge graph alignment
algorithms to examine our three major claims one by one in Sec-
tion 4.4.

� CG-MuAlign outperforms existing methods on real-world
large-scale dataset.

� Collective alignment is not sensitive to the amount of training
data.

� CG-MuAlign generalizes to unlabeled type e�ectively with
limited labels.

4.1 Datasets
In our experiments, we use two di�erent knowledge graph align-
ment data sets and evaluate the performance under inductive set-
tings. Both (i.e.Movie and Music domain) contain abundant node
attributes and feature with millions of nodes and tens of millions
edges of di�erent types. We report basic graph statistics in Table 3
and then introduce them in more details. The number of nodes and
number of edges are summed over two knowledge graphs.

Movie Dataset contains a subset of IMDB (an online database of
information related to �lms) and Freebase (a large knowledge base
on general domains). The latter originally has a large number of
edge types compared with IMDB. We sample a subset of Freebase
that is related to the movie domain. It has ground truth links to the
IMDB ID for some of the �lms and people. We split the ground truth
pairs into training and testing data. It has four di�erent entity types
and eight di�erent relations, the schema can be found in Figure 4.

Table 5: Music Dataset

Dataset # Songs # Albums # Artists # Train/Test

Wikipedia 104,179 188,602 71,409
57,062/23,485

Amazon-Music 999,900 200,911 201,550

Figure 5: The schema of the Music Graph

In Table 4, we report the distribution of entity types and the size of
the training/testing data.

Music Dataset contains two music knowledge graph from Amazon
Music and wikipedia. There are three major types in this dataset:
song, album and artist. The �ve relations among them can be found
in Figure 5. The positive pairs on songs and albums are generated
with noise and we ask annotators to label testing pairs among a
candidate pool for two types. Detailed number of entities can be
found in Table 5.

4.2 Baselines
We consider methods from three families: (1) link prediction (2)
entity alignment between graphs (3) entity matching in multi-
relational database.

Link prediction. Between two knowledge graphsGandG0, we can
addequivalentedges between ground truth node pairsf¹v t

i ;v t 0
j ºg.

We then run advanced graph embedding algorithm with node fea-
tures to embed nodes from di�erent graphs in the same uni�ed
space. Later, we train a two-layer perceptron on the labeledequiv-
alent edges. Speci�cally, we consider the following method that
consider the node attributes:

� GraphSage [18] is the �rst large-scale inductive representation
learning algorithm.

We denote this method asGraphSage+NNalong with another
baseline namedFeature+NN to verify the feature e�ectiveness
and inspect how di�erent methods gain improvement over its per-
formance.

Knowledge Graph Alignment. Most of the previous work focus
on the transductive setting. Some recent work [4, 45, 46] based on
Graph Neural Networks, start to extend graph alignment problem
under inductive setting. We group these methods intotransductive
only : MuGNN [4] and BootEA [37] that both models knowledge
graph embedding and entity alignment simultaneously andinduc-
tive : MultiKE [49] and AttrE [39] further incorporate attribute in-
formation into embedding-based entity alignment. GCN-Align [45]
models both structure and attribute features with same relation

matrices for di�erent relations. As we found embedding-based meth-
ods fail to scale up to graphs with millions of entities, we carefully
verify the e�ectiveness of proposed GNN model with following
recent GNN variants.

� GCN-Align [45] models both structure and attribute features
with the original graph convolutional network [21].

� GraphSage [18] concatenates the self feature vector and neigh-
borhood aggregation vector.

� GAT [41] aggregates neighborhood information with multi-
head attention.

� RGCN [32] di�ers GCN with multi-relational linear transfor-
mation matrices.

� R-GraphSage is a variant of GraphSage with multi-relational
linear transformation matrices.

To address the scalability issue, we re-implement all of them in
PyTorch [28] under DGL framework [43]. CG-MuAlignand above
GNN variants adopt same mini-batch paradigm training described
in Section. 3.5 with the batch size of 32. We sample 10 negative en-
tities from each graph and have total 20 negative samples for every
positive pair. We use Adam [20] as our optimizer with learning rate
as 0.003. We set the max neighborhood size as 10 in the neighbor
sampler function. The number of layers for all GNN methods are
set as two. And we set hidden dimension as 100 for link prediction
and graph alignment baselines.

Entity Matching. We refer methods that �nds all tuple pairs¹a;bº
across di�erent multi-relational databases into this category. We
explore the performance of two representative methods:

� Magellan [22] is end-to-end entity matching framework that
supports di�erent matching functions like linear regression,
SVM, random forest,etc.We choose random forest as the
matching function.

� DeepMatcher [27] is a recent deep learning entity matching
algorithm, we use its �hybrid� mode in our experiments.

� PARIS [36] is an unsupervised RDF ontologies alignment model,
which makes collective decisions based on iterative probability
estimates.

4.3 Experimental Settings
Now we describe how we conduct the experiments and evaluate
the performance.

Data Processing.For all of the GNN-based methods, we pre-compute
the feature vector of di�erent entities. There are two major types
of features: string and numerical. We use fastText [26] to encode
string features. For numerical features, we preserve the original
value except time values. For time values, like duration, date of
birth, we use periodical functionsin¹�º to encode each periodical
segment,e.g.seconds, minutes. Finally, we concatenate all of the
features into a uni�ed vector as the node feature.

For entity matching baselines, we convert one-hop neighbor
node in the knowledge graph into the formatrelation@attribute ,
e.g.for a movie record, we have the �eldisDirectedby@Name
indicating movie director's name. Thus, we can turn the �rst order
information in the knowledge graph into a multi-relational table in
a lossless way. In Magellan [22], the features used in the random
forest are automatically generated by the model. Di�erent string

similarities are computed as features, such as jaccard similarity,
levenshtein edit distance between attributes of entity pairs.

Evaluation Metrics. We evaluate di�erent methods on both la-
beled and unlabeled settings and report their Recall@Precision=0.95,
F1, PRAUC (precision-recall area under curve) and hit@1 on three
data sets. Typically, previous research mainly use hit@1 since the
evaluation data set is small. It is infeasible to conduct one-versus-all
comparison when there are millions of candidate nodes. Thus, we
use candidate generation introduced in Section. 3.5 in the test-
ing stage and report hit@1 based on the candidate set. We re-
port the precision and recall curve while tuning the alignment
threshold. PRAUC and best F1 provide more insights how di�er-
ent methods perform without knowing all positive pairs. We will
later show in Table 6, methods have similar hit@1 result could
produce rather di�erent PRAUC and F1. Besides, we propose metric
Recall@Precision=0.95 to evaluate model performance when high
precision is required.

Evaluation Settings. The ground truth links between person and
movie serve as positive data in training and testing. During training,
we adopt the same random sampling to construct negative samples
for di�erent methods as we assume no prior knowledge of the target
domain. We construct the testing data by joining output of candidate
generation and the test split of ground truth links. Speci�cally, we
use blocking function in Magellan [22] to generate candidates. For
example, we use person's name and date of birth(allow missing) as
the blocking key. Note that on the music domain, the ground truth
links are also noisy. We annotate a subset of the candidates, thus,
hit@1 metric is not included for music data. For unlabeled type
evaluation, we use the same way to generate the evaluation data.

4.4 Experiments and Performance Study

Alignment Result on labeled types. We train a uni�ed model
for multiple entity types and report all of baselines including GNN
variants. From Table 6, we can concludeCG-MuAlign outperforms
all other method. On the movie dataset, it yields a large margin
over the second best method - DeepMatcher. It is mainly because
IMDB and Freebase have rather di�erent relation distributions and
they su�er from data incompleteness di�erently. DeepMatcher con-
siders the di�erence between attribute sets from two graphs, thus,
it performs better than the remaining ones. It is quite surprising
that Feature+NN outperforms most of the GNN variants, which
indicates the neighborhood information a�ects the performance
negatively in those methods. Although other GNN algorithms suf-
fer from the sparsity of knowledge graphs while our collective
aggregation layer avoid performance drop by aggregating mostly
aligned neighborhood via cross-graph attention. Speci�cally, among
three GNN variants that do not consider multi-relational structure
(GCN, GrageSage, GAT) perform worse than those includes multi-
relational transformation as expected. We �nd the concatenation
mechanism �rst introduced in GraphSage bene�t the task. The rea-
son could be self-information is critical to the alignment task and
mixing it with neighborhoods confuses the model predictions. On
the music data set,CG-MuAligngain a smaller margin over other
baselines as we observe the music graphs are much denser. The
performance di�erence is similar with the movie dataset, vanilla
GNN perform badly while GraphSage and R-GraphSage obtain
reasonable results compared with Feature+NN. We notice the link

Table 6: Alignment Result on labeled types for inductive setting. For simplicity, transductive only methods are not included in this table. We
report the standard deviation by 5-runs of each method except DeepMatcher, which takes long time for one run.

Method
Movie Dataset Music Dataset

Rec@Prec=.95 PRAUC F1 hit@1 Rec@Prec=.95 PRAUC F1

Feature+NN 0 0.3672� 0.053 0.6380� 0.000 0.7197� 0.001 0.0025� 0.002 0.7251� 0.027 0.6795� 0.009
GraphSage+NN 0.0155� 0.001 0.3229� 0.003 0.3557� 0.001 0.4503� 0.003 0.0002� 0.000 0.2468� 0.018 0.3134� 0.012
Magellan 0.4387� 0.000 0.7067� 0.000 0.6945� 0.000 0.7974� 0.000 0.1071� 0.000 0.7461� 0.000 0.6760� 0.000
DeepMatcher 0 0.5829� 0.000 0.7549� 0.000 0.8468� 0.000 0 0.1748� 0.000 0.3559� 0.000
PARIS 0.5840� 0.000 0.7759� 0.000 0.7661� 0.000 0.7725� 0.000 0.2333 0.4175� 0.000 0.4640� 0.000

G
N

N
va

ria
nt

s GCN 0.0098� 0.001 0.2831� 0.006 0.3313� 0.004 0.4896� 0.003 0.0020� 0.002 0.3829� 0.009 0.4190� 0.003
GraphSage 0.1900� 0.007 0.5589� 0.004 0.5251� 0.003 0.6605� 0.009 0.2868� 0.029 0.8252� 0.003 0.7637� 0.001
GAT 0.0147� 0.002 0.3448� 0.006 0.3793� 0.004 0.5483� 0.003 0.0004� 0.001 0.4485� 0.014 0.4819� 0.007
RGCN 0.0106� 0.002 0.4247� 0.003 0.4435� 0.001 0.5450� 0.002 0.0025� 0.004 0.4419� 0.024 0.4625� 0.020
R-GraphSage 0.2829� 0.009 0.6573� 0.003 0.6110� 0.004 0.7125� 0.003 0.4081� 0.029 0.8335� 0.004 0.7646� 0.003

CG-MuAlign 0.6010� 0.004 0.8548� 0.004 0.8050� 0.006 0.8869� 0.002 0.4437� 0.023 0.8400� 0.008 0.7762� 0.004

(a) Test on Person (b) Test on Film

Figure 6: Sensitivity to the amount of training data. The orange
curve indicates the collective setting, i.e.supervision of other types
are provided. The blue curve indicates the non-collective setting.

prediction baseline -GraphSage+NNachieves worse results than
Feature+NN. GraphSage embedding models every edges of di�er-
ent types in the objective and the �equivalent� edges contributes
than 1%in total. The �equivalent� relation may be biased by other
links, therefore, predicts unsatisfactory results. Three entity match-
ing baselines reports competitive performance on movie dataset but
DeepMatcher performs much worse on the music dataset. Moreover,
it achieves almost zero on the metric Rec@Prec.95. It may be caused
by over�tting the noisy training data with huge amount of param-
eters(20 million). PARIS, though unsupervised, yield second-best
F1 on the movie dataset, which proves the collective design works
very nice on incomplete knowledge graphs. However, it can not tell
the subtle di�erence between songs with slightly di�erent names
and duration due to lack of supervisions. Overall, Magellan and
CG-MuAlignare the most robust methods under di�erent datasets
and metrics. As we know, the feature importance of random forest
depends on the training data. So Magellan produces more false
positives than ours, whileCG-MuAlign reports above 50% recall
when precision is at 95% across two datasets.

Sensitivity to the amount of training data. Then we investigate
how much supervision needed inCG-MuAlign, since label scarcity
is quite normal in the real applications. Also, we are interested in
how collective alignment bene�ts from di�erent types in this case.
Therefore, we range ratio of supervision from 0 to 1.0 on type A and
test it on type A on two conditions: (1) 100% training type of type
B (2) 0% training type of type B. The result is plotted in Figure. 6.

Table 7: Alignment Result on unlabeled types for few-shot setting.
We mark the best and second-best result. Column person stands for
unlabeled type in the evaluation.

Method
Person Film

PRAUC F1 PRAUC F1

Node features 0.8285 0.8563 0.4231 0.4780
PARIS 0.7303 0.7489 0.8392 0.7961

G
N

N
va

ria
nt

s GCN 0.3492 0.4659 0.2589 0.3223
GraphSage 0.5495 0.6069 0.4269 0.4158
GAT 0.3518 0.3791 0.4926 0.4818
RGCN 0.3130 0.3518 0.4288 0.4369
R-GraphSage 0.8065 0.7582 0.5008 0.4705

Few-shot 0.8403 0.8033 0.8505 0.8136
Fully-supervised 0.8543 0.8214 0.9101 0.8794

When we do not have any labeled data for person type, the model
can achieve 0.53 F1 already and adding 10% of training data make
the performance quickly converge to the �nal model in Figure 6a.
Note that 10% of training data in our setting is about 2K samples
only. When we have about 40% of training data, both settings are
on a par with full supervision model. On the �lm type, the trends
are similar but result is not that satisfactory when supervision is
limited. We explain it as �lm alignment is more tricky since di�erent
�lms could have partially overlapped titles and same movies across
di�erent graphs could have multi-lingual names. Both �gure shows
that CG-MuAligndoes not rely on large amount of training data.

Few-shot alignment on unlabeled types. In order to investigate
the generalization capability of di�erent methods, we design few-
shot alignment experiments, that �rst train a model on type A and
�ne-tune the model with only a few (i.e.2,000) training pairs of type
B. The model is evaluated on the test data of new type. We train and
test on person and �lm alternatively. Magellan and DeepMatcher
are trained on one type is not compatible with the new type, so
we do not report their performance in Table 7. In addition, we add
cosine similarity of node features as an unsupervised benchmark in
the table. When tested on person, we observe the cosine similarity
of feature vector is a very competitive method, since people who

Table 8: E�ectiveness of proposed attention mechanism. We report
the averaged metrics on movie and music data set.

Method Averaged-PRAUC Averaged-F1

w.o. cross attention 0.7654 0.7034
w.o. self attention 0.8342 0.7880

CG-MuAlign 0.8474 0.7906

(a) Varying #sampled neighbors (b) Varying #hidden dimensions

(c) Varying #negative samples (d) Varying #layers

Figure 7: Parameter sensitivity of CG-MuAlign on movie dataset.
Each �gure shows the result of varying the x-axis parameter.

have the same names are likely to be the same person. Another
unsupervised baseline PARIS reports promising results thanks to
the collective probabilistic alignment. Most of the GNN variants
report poor performance exceptCG-MuAlign and R-GraphSage
that consider the self information (person name) separately. On
type of �lm, few-shot CG-MuAlignachieves 81.4% F1 when feature
similarity only obtains 47.8%. All other methods perform worse
or slightly better than node feature similarity. The result clearly
demonstrates the e�ectiveness of collective design, especially when
the training data is limited. We want to note that alignment result
reported in Table 6 are for multi-type alignment, but here the result
is evaluated for each type separately. Our fully supervised model
achieves better results than the reported �gures in Table 6, because
multi-type alignment is more challenging. Overall, our few-shot
results are quite close to the fully-supervised version.

4.5 Analysis of CG-MuAlign

E�ectiveness of Collective Aggregation. Overall,CG-MuAlign
outperforms baselines by 10% F1 in average. We report the quan-
titative improvement by two di�erent mechanism in Table 8. It
shows the cross attention boost the performance by 7% in averaged-
PRAUC and by 5% in averaged-F1. The self-attention further im-
proves 1% PRAUC and F1. The cross attention contributes the major
part of the performance boost. But when the training data is not
that sparse,i.e.the music dataset, self-attention help identify the
strong negative evidence.

Parameter Study. To measure the parameter sensitivity ofCG-
MuAlign, we evaluate the performance on movie dataset varying
one of the following parameters while �xing the others to the de-
fault values mentioned above: (1) number of neighbor sampled for
each node (2) hidden dimension size of each GNN layer (3) number
of negative samples for each positive pair (4) number of GNN lay-
ers. The result is shown at Figure 7, where PRAUC, F1 and Hit@1
are reported under di�erent parameters. First, the performance on
three metrics improves when number of sampled neighbors,i.e.
2,4,6. It is mainly because many useful neighborhood information
is dropped, when number of neighborhood size is small. When the
neighbor window size is reasonably large, the performance tends to
be similar. Then in Figure 7b, we observe the performance is similar
under di�erent hidden dimensions, which reveals thatCG-MuAlign
neither over�ts nor relies on huge amount of parameters. Since we
have the similar positive ratio in training and testing (10:1), we are
also interested whetherCG-MuAlignachieves good performance
under di�erent positive ratio. Result presented in Figure 7c shows
the positive ratio does not a�ect the model performance. At last, we
notice our model performs best with 2 alignment layers. More lay-
ers negatively a�ects the model performance, besides the running
time increases as number of layers grows. The results shows that
1-hop neighborhood information is not su�cient for the task of
entity alignment, while higher (> 2) order information deteriorates
the performance as lots of asymmetric information appears. It is
consistent with our scaling up analysis in Section 3.5.

E�ciency Study. We compare the training time, number of param-
eters and the average F1 score on two large-scale entity alignment
datasets with two existing systems,i.e.Magellan [22] and Deep-
Matcher [27]. As shown in Table 9,CG-MuAlignachieves the best
performance with the least training time. Compared with the other
Deep Learning solution,i.e.DeepMatcher, we yield better perfor-
mance with 100 times fewer parameters and 20X speed up. All of
our experiments run on AWS EC2 instance with one 16G NVIDIA
V100 Tensor Core GPU.

Table 9: E�ciency study of three di�erent methods

Method Training Time # Parameters Averaged-F1

Magellan 7m13s 9,300 0.6641
DeepMatcher 13h40m 17,757,810 0.6014
CG-MuAlign 30m47s 175,134 0.7925

The running time ofCG-MuAlign is a�ected by number of sam-
pled neighbors and number of the GNN layers as discussed in
Lemma 3.2. Thus, we report the training time for single epoch by
varying these two parameters. In Figure 8a, we change the number
of sampled neighbors while �xing #layers=2. The training time
increases slowly from 80 seconds to 200 seconds, because only a
few nodes have many neighbors. In Figure 8b, we set the number
of neighbors as 4 and increase the number of layers in GNN. Al-
though the running time grows exponentially, our discussion in
Figure 7d supports that the 2-hop model works best in terms of the
performance-e�ciency trade-o�s.

5 RELATED WORK
In this section, we review the literature of entity alignment from
four di�erent perspectives.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Method
	3.1 Solution Overview
	3.2 Collective Graph Neural Networks
	3.3 Node-level Cross-graph Attention
	3.4 Edge-level Relation-aware Self-attention
	3.5 Scaling up
	3.6 Relations with other GNN variants

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental Settings
	4.4 Experiments and Performance Study
	4.5 Analysis of CG-MuAlign

	5 RELATED WORK
	6 Conclusion
	7 Acknowledgements
	References

