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ABSTRACT

This paper reviews an easily expandable plan for smart document handling across multiple cloud systems, aiming to make
work easier to manage, more resilient to issues, and improve the total cost of ownership. The importance of this task stems
from two factors: first, Intelligent Document Processing (IDP) tools are experiencing growth; second, multi-cloud use is
expanding more widely. This increases the primary fight between wanting top-notch help for every step and the dangers of
being stuck with one provider, having messy operations, and uneven safety rules. The study aims to create and support a
complete design that can hide both setup and software links while offering complete control and standard protection in a

mixed environment. The innovation is in the coherent four-layer model, which merges a general control plane atop
Kubernetes and Crossplane with portable application runtime Dapr, exposing standard APIs for statelessness, messaging,

and service invocation, decomposed IDP microservices, and an overlay layer for management and security. The key
findings validate that only the combination of Crossplane at the level of the control plane with GitOps and OPA policies

together with Dapr at the level of the application-API can provide real portability, elastic scaling, governed security, while
maintaining freedom of choice between cloud services. It proves that workflows crossing provider boundaries can be
orchestrated, thus reducing vendor lock-in. The article will be helpful to cloud-platform architects, IT executives, data and
MLOps engineers, IDP product teams, and researchers in distributed systems and enterprise Al
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1. Introduction intelligence (AI), machine learning (ML), natural
language processing (NLP)—and now, GenAl—driving

Two powerful and interrelated technological movements new frontiers of precision and capability. The second

shape the modern corporate IT landscape. The first is the
industrialization of intelligent document processing
(IDP). IDP has moved out of the shadows as a niche
back-office enabler to take a leading role in digital
transformation by automating document-centric
processes and mining value from unstructured data. This
evolution is being fed by lightning advances in artificial

trend is the strategic imperative of multi-cloud
computing. The overwhelming majority of companies
adopt multi-cloud strategies (Innovation at Work, n.d.).
Key drivers include the desire to avoid single-vendor
dependence, cost optimization by selecting the best
price—performance fit for specific workloads, improved
fault tolerance, and access to a broader range of
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innovative services from providers such as Amazon Web
Services (AWS) (Innovation at Work, n.d.). The
convergence of these trends creates a fundamental
conflict. Running something as complex, data- and state-
heavy as a modern IDP system across many different
clouds brings major problems: dealing with other APIs,
mismatched security setups, tricky data sync, network
delays, and a big skills gap. Just moving things over
without changes doesn’t work because apps get deeply
linked to provider-specific managed tools (like AWS
Textract, SQS, Lambda), bringing in a new type of
dependency lock-in even when the main app is
containerized (Pradhan et al., 2024).

2. Materials and Methodology

This study is made up of seven elements selected from
academic, commercial, and technological knowledge.
Fundamental regulations for forming clouds by Pahl et
al. combine with a present review of multi-cloud
arrangements from Innovation at Work. New measures
in intelligent document management are imparted by Lin
et al., in which the TWIX arrangement significantly
enhances productivity by means of LLM-visual
amalgamation. The market direction and customer needs,
as outlined in Gartner reports are also taken into account,
considering the trend toward ModelOps and heightened
competitive commoditization. Practical application for
microservice decomposition together with managed
services is demonstrated in the Amazon Textract
engineering case, as told by Pradhan et al. The
methodology consists of three interrelated stages. First, a
systematic review of literature covering 2019-2025 to
develop patterns about scalability and portability that
might have relevance to IDP. It then sets side by side the
proposed approaches towards dealing with infrastructure
and application dependencies in Kubernetes +
Crossplane and Dapr, along with other control-plane
ways. Next, by using a design-science approach, it
developed an additional version of the four-layer
framework whose components were associated with
multi-cloud challenges via problem-solution mapping.

3. Results and Discussion
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The technological trajectory of IDP has evolved from
simple data capture to content-understanding systems.
The earlier phase used optical character recognition
(OCR) to convert text. These systems were brittle,
template-bound, and limited in scope of application. The
big bang for the world of IT was the shift toward ML-
based IDP—now the semi-structured documents like
invoices and receipts could be processed by training
models on layouts and patterns recognized within
documents to dramatically increase accuracy and
flexibility (Pradhan et al., 2024). The most recent
disruption, not previously discussed, is the integration of
large language models into human conversation in digital
form, which efficiently takes IDP beyond simple
extraction into actual understanding (Moravcik et al.,
2024). Previously unavailable advanced features include
long-document summarization, context-aware answers
to questions within a document, and extracted,
normalized data placed inside structures such as JSON
files; now unattainable for handling fully unstructured
documents like legal contracts or scientific papers, where
what matters cannot be found through predictable
formatting. Progress is measured more by higher bars
and deeper forensics. Academic studies, such as TWIX,
demonstrate that hybrid pattern guesswork with semantic
cleanup via LLM outperforms not only commercial
cloud tools like AWS Textract but also pure visual LLMs
by over 25 percent in Fl-score at significantly faster
speeds and lower costs (Lin et al., 2025). This
underscores that a one-size-fits-all model is not optimal.
This evolution leads to an important conclusion: IDP is
not a single task but rather a portfolio of specialized
capabilities. Different tools and models perform various
tasks: TWIX does well with template-driven documents,
LLM with unstructured text, and AWS Textract for
signature detection. The best IDP system is not a product
but rather an Orchestration workflow that can route a
document to the appropriate processing engine (i.e.,
invoice to Amazon Textract, legal contract to an LLM on
Amazon Bedrock, standardized form to Amazon
Textract). This means that a multi-cloud architecture is
not merely a nice-to-have for resilience but a necessity
for peak performance and cost efficiency in IDP. This
conclusion strongly motivates the architecture proposed
in the present work. Table 1 provides a comparison of
IDP.
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Table 1. Comparison of Intelligent Document Processing (IDP) paradigms (compiled by author)

Characteristic

Traditional OCR

ML-based IDP

GenAl / LLM-based IDP

Core Technology

Template matching,
layout analysis

Convolutional/Recurrent
Neural Networks
(CNN/RNN)

Transformers, Large Language
Models (LLM)

Document Types

Structured only

Structured, semi-structured

Structured, semi-structured,
unstructured

Main Capability

Text conversion

Field extraction, classification

Contextual understanding,
summarization, and generation

Accuracy Ceiling

Moderate, depends on
template quality

High (up to 99% for known
formats)

Near human-level, depends on
model and prompting

Customization &
Training

Manual templates

Large labeled datasets

Zero-shot/Few-shot learning,
fine-tuning

Key Limitation

Fragility, inflexibility

Requires large datasets,
struggles with new layouts

Risk of “hallucinations”, high
computational cost

Multi-cloud computing has become the dominant
paradigm in corporate IT. The main drivers are well
known: avoiding vendor dependence to protect pricing
and strategic flexibility, reducing costs by matching
workloads with the most economical provider, increasing
resilience and disaster recovery by distributing risk, and
gaining access to best-in-class services while stimulating
innovation. Implementing a multi-cloud strategy,
however, is fraught with significant difficulties. Working
with multiple consoles, APIs, and resource models raises
operational overhead and demands specialised skills.
Enforcing consistent security policies, managing
identities, and meeting regulatory requirements in
disjoint environments is a major obstacle. Each cloud
exposes its security primitives, creating potential gaps.
Seamless connectivity and data exchange between
services running in different clouds are hard to achieve.
Lack of standardization hinders portability. Cross-cloud
traffic suffers higher latency and bandwidth limits than
intra-cloud traffic, and transferring large data volumes
can be slow and expensive (Innovation at Work, n.d.).
Teams need to gain skills on many platforms. It is both
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complex and costly to acquire and maintain this
knowledge. The suggested fix for this rests on
fundamental software engineering rules for cloud
systems. Big apps break down into small free services,
each taking care of one business task. Main rules involve
loose tying, high unity, and spread out data control. This
setup is key to making systems that can grow and stay
strong. Designing for failure is the core philosophy of
fault-tolerant architecture. It embraces redundancy by
eliminating single points of failure through deployment
across multiple availability zones and regions, as well as
graceful degradation and fault isolation by applying
patterns such as Circuit Breaker so that the failure of a
non-critical component does not bring down the entire
system. Cloud-native systems must be self-adaptive,
responding dynamically to changes in load or
environment. This is often achieved through control
loops (for example, MAPE-K: Monitor, Analyze, Plan,
execute over a Knowledge base) and a pervasive “design
for automation” mindset that spans infrastructure,
deployment, and recovery (Pahl et al., 2018). An
example of such an infrastructure is shown in Figure 1.
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Fig. 1. A Sample Cloud Architecture Use Case (Pahl et al., 2018)

These principles reveal the so-called portability paradox.
At first glance, containerised microservices are
considered portable. An organization may believe its IDP
application is portable because its components (for
example, a classification service and an extraction
service) are containerised. Yet a typical cloud
architecture for IDP is deeply integrated with provider-
managed services: S3 for storage, Textract for extraction,
Comprehend for classification, Step Functions for
orchestration (Pradhan et al., 2024). Attempting to move
this portable application to another cloud would require
a complete re-architecture to use that provider’s
equivalent services. The code that interacts with these
services must be rewritten. This shows that true
portability depends not only on application code but also
on its dependencies. The architecture is “locked” even if
the container is not. Therefore, a genuinely portable
multi-cloud architecture must abstract not only
infrastructure  but also these application-level
dependencies — the key challenge addressed at Layer 3 of
the proposed architecture.

The proposed architecture is a four-layer conceptual
model designed to systematically address the challenges
of deploying IDP in multi-cloud environments. Each
layer provides a specific type of abstraction that together
yields a resilient, scalable, and truly portable system.
Layer 1: Unified Control Plane — manages all
infrastructure resources across clouds through a single
declarative API. Layer 2: Decoupled IDP Microservices
— the containerised business logic of the IDP process.
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Layer 3: Abstracted Application Runtime — offers a
portable APl  for common  application-level
dependencies such as state management, messaging, and
service invocation. Layer 4: Cross-Cutting Governance
and Security — a logical layer that enforces policies
through the control plane and other mechanisms.

Layer 1 directly tackles the core multi-cloud issues of
management complexity and heterogeneity. The
fundamental principle is to use Kubernetes not only for
container orchestration but also as a universal control
plane for all cloud resources. To implement this,
Crossplane — an open-source project under the CNCF —
is proposed. Crossplane extends the Kubernetes API to
manage any resource (for example, a database, object
storage, or message queue) at any cloud provider using
standard Kubernetes YAML manifests. The platform
team defines abstract CompositeResourceDefinitions
(XRDs) that represent logical application requirements,
such as IDP-ObjectStore, IDP-Queue, or IDP-AlService.
Developers request these abstract resources without
needing to know the underlying cloud provider.
Compositions then translate these requests into provider-
specific resources (for example, an IDP-ObjectStore
request results in an AWS S3 bucket) based on defined
policies for cost, performance, or data location. This
grants developers self-service capability while
centralising control.

All  multi-cloud infrastructure state is defined
declaratively in a Git repository and governed by a
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GitOps controller such as ArgoCD or FluxCD. This
arrangement provides a single source of truth, automatic
reconciliation, and an auditable history of every change,
thereby eliminating configuration drift.

The approach turns the control plane into a locus of
governance. Because every allocation of infrastructure
passes through the single Crossplane control plane, a
powerful enforcement point for policy emerges. Security
and compliance rules (for example, ‘all storage must be
encrypted’, ‘all workloads must have a network policy’,
‘EU data must use resources located in the EU’) can be
expressed as policies with tools such as OPA or
Gatekeeper and are applied automatically by the control
plane before any resource is created. The result is a shift
from reactive manual auditing to proactive automated
prevention, embedding the organization’s security policy
directly in the infrastructure-management workflow.

Layer 2 contains the core business logic, decomposed
into independent containerised microservices that
correspond to the logical stages of the IDP pipeline.
Ingestion-Service accepts documents from email, API,
and SFTP. Classification-Service determines the
document type, for instance, invoice, contract, or receipt.
Extraction-Service makes calls to the underlying Al or
ML models to get the data. Enrichment-Service does
post-processing, which includes validation of the data,
normalization of the data, and, when necessary, makes
calls to external APIs for extra information. Validation-
Service manages the human-in-the-loop workflow by
sending low-confidence results to a specialist. Egress-
Service sends the structured data to systems like ERP or
CRM. Each service is built and deployed independently,
allowing for independent scaling. The Extraction-
Service may require substantial GPU resources and can
scale separately from the lightweight Ingestion-Service,
entirely consistent with microservice principles.

Layer 3 resolves the previously identified portability
paradox. It supplies standard portable APIs for everyday
application-level needs, separating the Layer 2
microservices from the cloud-specific managed services
provided at Layer 1. A framework such as Dapr
(Distributed Application Runtime), another CNCF
project, implements this layer. Dapr exposes building-
block APIs that microservices invoke through simple
HTTP or gRPC calls. State Management enables a
service to persist data using the Dapr state API. At the
same time, a YAML configuration can specify Amazon
ElastiCache (Redis-compatible) in one region or
Amazon DynamoDB in another, without requiring
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changes to the application code. Pub/Sub allows for
asynchronous data exchange using the Dapr pub/sub API
with backends such as Amazon SQS or Amazon SNS.
The service does not know their differences. Secure,
reliable discovery and interaction among services are
made possible by Service Invocation. By developing
against Dapr instead of provider SDKs, Layer 2
microservices attain real portability; the decision of the
provider for storage or messaging is left until runtime
configuration, which is controlled by the Layer 1 control
plane, thus achieving workload portability and reducing
vendor dependence.

Layer 4 is a logical layer that integrates with the other
three to provide end-to-end governance. Centralised data
governance maintains a single catalogue with AWS Glue
Data Catalog, discovering and profiling data assets
across clouds, tracking lineage, and enforcing quality and
classification rules, including PII detection. Unified
security posture management enhances the control-plane
policy by integrating Cloud Security Posture
Management tools that continuously monitor and
provide a consistent view across clouds, identifying
misconfigurations and threats. Federated identity makes
use of such providers as AWS IAM Identity Cente for the
central management of user and service accounts across
all platforms with consistent authentication and
authorization. An architecture sample data flow is as
follows: an invoice comes in through Ingestion-Service,
Classification-Service routes it to the right Extraction-
Service, which might call a foundation model via
Amazon Bedrock. Results are saved through the Dapr
state API with a database on AWS, and a notification is
sent via the pub/sub Dapr API using Amazon SQS/SNS.
Hence, the workflow crosses the cloud boundaries.

Scale happens at two layers. At the app layer, Kubernetes
scales the pods of microservices horizontally by load,
and then the control plane provisions any infra (for
example, new cluster nodes) to support that scale.
Therefore, short-term traffic surges and long-term
document volume growth can be accommodated by
scaling. This is a highly available and fault-tolerant
system comprising many disparate pieces: work spreads
across more than one availability zone or even region
within a single cloud; control planes orchestrate failover
to another provider for anything from a small regional
outage up to total provider outage—high business
continuity. Separation of microservices and patterns,
such as Circuit Breaker, stops cascades within the
application itself.
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It adds portability and cost optimization. Crossplane
abstracts infrastructure, while Dapr abstracts application
dependencies, making both highly portable in terms of
infrastructure  definitions and application code.
Workloads can be moved between clouds by
organizations to achieve better pricing, access new
features, or potentially avoid a punitive price increase,
thereby breaking the lock-in and enabling continuous
cost optimization.

Achieved performance is the main trade-off. Possible
network latency that may be accrued in a workflow
spanning several clouds, and possible data-egress
charges are addressed by co-locating data-intensive
services and by applying compression, as well as by
designing workflows that minimize cross-cloud

Volume 08 - 2026

interactions. Another challenge is in the control plane’s
complexity; while it does indeed simplify development,
it increases the complexity of tasks at the platform level.
Building and maintaining Crossplane compositions and
Dapr configurations requires a highly skilled platform-
engineering team; hence, abstraction is not free and
comes with a demand for expertise. Tool maturity must
also be considered. While core components such as
Kubernetes, Crossplane, and Dapr are mature CNCF
projects, the broader ecosystem is still evolving, which
means an adopting organization must be ready to work
with leading-edge technology and, if necessary,
contribute to the community. Examples of how the
proposed architecture addresses specific multi-cloud
challenges are presented in Table 2 (Pahl et al., 2018;
Innovation at Work, n.d.).

Table 2. Multi-cloud challenges and their architectural solutions
(compiled by author)

Multi-Cloud Environment
Challenge

Mitigating Architectural Element

Vendor lock-in (infrastructure and
dependencies)

Level 1 (Crossplane): Abstracts provider APIs. Level 3 (Dapr): Abstracts
service SDKs and APIs (databases, queues). Enables backend changes
without modifying application code.

Management complexity and
operational overhead

Level 1 (Crossplane + GitOps): Unified declarative API for the entire
infrastructure. Automated Git-based management eliminates configuration

drift.

Inconsistent security and
governance

Level 1 (Control Point): Enforces security policies (OPA/Gatekeeper) during
resource creation. Level 4: Centralized identity and security posture

management (CSPM).

Low fault tolerance/disaster Level 1 (Crossplane): Orchestrates deployments across multiple regions and
clouds. Level 2 (Microservices): Failure isolation via patterns such as Circuit

Breaker.

recovery capabilities

Skills shortage/cognitive load on
developers

Level 1 (XRDs): Developers request simple abstract resources (IDP-
Database). Level 3 (Dapr): Developers use simple state and messaging APIs
without learning each cloud’s SDK.

Thus, the proposed architecture demonstrates that successful intelligent document processing in a multi-cloud environment
requires not only containerising and distributing workloads but also deeply abstracting both infrastructure-level and
application-level dependencies. The merge of Crossplane and Dapr into a unified multi-level architecture delivers actual
portability, organized management, and growth while maintaining the freedom to choose top-quality cloud offerings. It
creates a strong base for developing IDP platforms in fast-evolving markets where quick adjustment is crucial and using
assets from different sources efficiently is an essential edge over competitors.
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4. Conclusion

This paper addresses the challenges of deploying
intelligent document processing systems in multi-cloud
environments and the architectural dead-ends that such
systems encounter due to vendor lock-in and operational
complexity when following traditional approaches. It,
therefore, proposes a new four-layer architectural model
based on systematic abstraction principles. The paper
presents the use of Kubernetes, Crossplane, and Dapr as
a strong, principled approach to building the next
generation of enterprise Al systems for a multi-cloud
world, enabling organizations to achieve real portability,
fault tolerance, and cost optimization.

The prototype architecture forms several promising
directions for future research. Quantitative performance
analysis: build a prototype and benchmark rigorously the
performances as well as costs for various IDP processes
over different cloud combinations. This would result in
an objective assessment of how efficient the solution is
in finding the optimal configurations for a particular
scenario.

Another approach is to implement self-driving control
loops. Stretching the setup with more innovative Al-
powered feedback loops could enable automatic
workload-placement choices based on up-to-the-minute
cost, delay, and performance info, giving more nimble
and adjustable multi-cloud handling.

A further prospect is employing a distributed ledger for
auditing. Using blockchain or other distributed-ledger
technologies could create an immutable, auditable trail of
all document-processing actions across clouds,
enhancing transparency and simplifying regulatory
compliance, especially when handling sensitive data.
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Finally, significant potential lies in developing domain-
specific compositions. Building an open-source library
of Crossplane compositions and Dapr components
tailored to common IDP scenarios in finance, healthcare,
and insurance would accelerate adoption and increase
practical value for particular industries.
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