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ABSTRACT 

This paper reviews an easily expandable plan for smart document handling across multiple cloud systems, aiming to make 

work easier to manage, more resilient to issues, and improve the total cost of ownership. The importance of this task stems 

from two factors: first, Intelligent Document Processing (IDP) tools are experiencing growth; second, multi-cloud use is 

expanding more widely. This increases the primary fight between wanting top-notch help for every step and the dangers of 

being stuck with one provider, having messy operations, and uneven safety rules. The study aims to create and support a 

complete design that can hide both setup and software links while offering complete control and standard protection in a 

mixed environment. The innovation is in the coherent four-layer model, which merges a general control plane atop 

Kubernetes and Crossplane with portable application runtime Dapr, exposing standard APIs for statelessness, messaging, 

and service invocation, decomposed IDP microservices, and an overlay layer for management and security. The key 

findings validate that only the combination of Crossplane at the level of the control plane with GitOps and OPA policies 

together with Dapr at the level of the application-API can provide real portability, elastic scaling, governed security, while 

maintaining freedom of choice between cloud services. It proves that workflows crossing provider boundaries can be 

orchestrated, thus reducing vendor lock-in. The article will be helpful to cloud-platform architects, IT executives, data and 

MLOps engineers, IDP product teams, and researchers in distributed systems and enterprise AI. 
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1. Introduction 

Two powerful and interrelated technological movements 

shape the modern corporate IT landscape. The first is the 

industrialization of intelligent document processing 

(IDP). IDP has moved out of the shadows as a niche 

back-office enabler to take a leading role in digital 

transformation by automating document-centric 

processes and mining value from unstructured data. This 

evolution is being fed by lightning advances in artificial 

intelligence (AI), machine learning (ML), natural 

language processing (NLP)—and now, GenAI—driving 

new frontiers of precision and capability. The second 

trend is the strategic imperative of multi-cloud 

computing. The overwhelming majority of companies 

adopt multi-cloud strategies (Innovation at Work, n.d.). 

Key drivers include the desire to avoid single-vendor 

dependence, cost optimization by selecting the best 

price–performance fit for specific workloads, improved 

fault tolerance, and access to a broader range of 
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innovative services from providers such as Amazon Web 

Services (AWS) (Innovation at Work, n.d.). The 

convergence of these trends creates a fundamental 

conflict. Running something as complex, data- and state-

heavy as a modern IDP system across many different 

clouds brings major problems: dealing with other APIs, 

mismatched security setups, tricky data sync, network 

delays, and a big skills gap. Just moving things over 

without changes doesn’t work because apps get deeply 

linked to provider-specific managed tools (like AWS 

Textract, SQS, Lambda), bringing in a new type of 

dependency lock-in even when the main app is 

containerized (Pradhan et al., 2024). 

 

2. Materials and Methodology 

This study is made up of seven elements selected from 

academic, commercial, and technological knowledge. 

Fundamental regulations for forming clouds by Pahl et 

al. combine with a present review of multi-cloud 

arrangements from Innovation at Work. New measures 

in intelligent document management are imparted by Lin 

et al., in which the TWIX arrangement significantly 

enhances productivity by means of LLM–visual 

amalgamation. The market direction and customer needs, 

as outlined in Gartner reports are also taken into account, 

considering the trend toward ModelOps and heightened 

competitive commoditization. Practical application for 

microservice decomposition together with managed 

services is demonstrated in the Amazon Textract 

engineering case, as told by Pradhan et al. The 

methodology consists of three interrelated stages. First, a 

systematic review of literature covering 2019–2025 to 

develop patterns about scalability and portability that 

might have relevance to IDP. It then sets side by side the 

proposed approaches towards dealing with infrastructure 

and application dependencies in Kubernetes + 

Crossplane and Dapr, along with other control-plane 

ways. Next, by using a design-science approach, it 

developed an additional version of the four-layer 

framework whose components were associated with 

multi-cloud challenges via problem-solution mapping. 

 

3. Results and Discussion 

The technological trajectory of IDP has evolved from 

simple data capture to content-understanding systems. 

The earlier phase used optical character recognition 

(OCR) to convert text. These systems were brittle, 

template-bound, and limited in scope of application. The 

big bang for the world of IT was the shift toward ML-

based IDP—now the semi-structured documents like 

invoices and receipts could be processed by training 

models on layouts and patterns recognized within 

documents to dramatically increase accuracy and 

flexibility (Pradhan et al., 2024). The most recent 

disruption, not previously discussed, is the integration of 

large language models into human conversation in digital 

form, which efficiently takes IDP beyond simple 

extraction into actual understanding (Moravcik et al., 

2024). Previously unavailable advanced features include 

long-document summarization, context-aware answers 

to questions within a document, and extracted, 

normalized data placed inside structures such as JSON 

files; now unattainable for handling fully unstructured 

documents like legal contracts or scientific papers, where 

what matters cannot be found through predictable 

formatting. Progress is measured more by higher bars 

and deeper forensics. Academic studies, such as TWIX, 

demonstrate that hybrid pattern guesswork with semantic 

cleanup via LLM outperforms not only commercial 

cloud tools like AWS Textract but also pure visual LLMs 

by over 25 percent in F1-score at significantly faster 

speeds and lower costs (Lin et al., 2025). This 

underscores that a one-size-fits-all model is not optimal. 

This evolution leads to an important conclusion: IDP is 

not a single task but rather a portfolio of specialized 

capabilities. Different tools and models perform various 

tasks: TWIX does well with template-driven documents, 

LLM with unstructured text, and AWS Textract for 

signature detection. The best IDP system is not a product 

but rather an Orchestration workflow that can route a 

document to the appropriate processing engine (i.e., 

invoice to Amazon Textract, legal contract to an LLM on 

Amazon Bedrock, standardized form to Amazon 

Textract). This means that a multi-cloud architecture is 

not merely a nice-to-have for resilience but a necessity 

for peak performance and cost efficiency in IDP. This 

conclusion strongly motivates the architecture proposed 

in the present work. Table 1 provides a comparison of 

IDP. 
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Table 1. Comparison of Intelligent Document Processing (IDP) paradigms (compiled by author) 

Characteristic Traditional OCR ML-based IDP GenAI / LLM-based IDP 

Core Technology Template matching, 

layout analysis 

Convolutional/Recurrent 

Neural Networks 

(CNN/RNN) 

Transformers, Large Language 

Models (LLM) 

Document Types Structured only Structured, semi-structured Structured, semi-structured, 

unstructured 

Main Capability Text conversion Field extraction, classification Contextual understanding, 

summarization, and generation 

Accuracy Ceiling Moderate, depends on 

template quality 

High (up to 99% for known 

formats) 

Near human-level, depends on 

model and prompting 

Customization & 

Training 

Manual templates Large labeled datasets Zero-shot/Few-shot learning, 

fine-tuning 

Key Limitation Fragility, inflexibility Requires large datasets, 

struggles with new layouts 

Risk of “hallucinations”, high 

computational cost 

Multi-cloud computing has become the dominant 

paradigm in corporate IT. The main drivers are well 

known: avoiding vendor dependence to protect pricing 

and strategic flexibility, reducing costs by matching 

workloads with the most economical provider, increasing 

resilience and disaster recovery by distributing risk, and 

gaining access to best-in-class services while stimulating 

innovation. Implementing a multi-cloud strategy, 

however, is fraught with significant difficulties. Working 

with multiple consoles, APIs, and resource models raises 

operational overhead and demands specialised skills. 

Enforcing consistent security policies, managing 

identities, and meeting regulatory requirements in 

disjoint environments is a major obstacle. Each cloud 

exposes its security primitives, creating potential gaps. 

Seamless connectivity and data exchange between 

services running in different clouds are hard to achieve. 

Lack of standardization hinders portability. Cross-cloud 

traffic suffers higher latency and bandwidth limits than 

intra-cloud traffic, and transferring large data volumes 

can be slow and expensive (Innovation at Work, n.d.). 

Teams need to gain skills on many platforms. It is both 

complex and costly to acquire and maintain this 

knowledge. The suggested fix for this rests on 

fundamental software engineering rules for cloud 

systems. Big apps break down into small free services, 

each taking care of one business task. Main rules involve 

loose tying, high unity, and spread out data control. This 

setup is key to making systems that can grow and stay 

strong. Designing for failure is the core philosophy of 

fault-tolerant architecture. It embraces redundancy by 

eliminating single points of failure through deployment 

across multiple availability zones and regions, as well as 

graceful degradation and fault isolation by applying 

patterns such as Circuit Breaker so that the failure of a 

non-critical component does not bring down the entire 

system. Cloud-native systems must be self-adaptive, 

responding dynamically to changes in load or 

environment. This is often achieved through control 

loops (for example, MAPE-K: Monitor, Analyze, Plan, 

execute over a Knowledge base) and a pervasive “design 

for automation” mindset that spans infrastructure, 

deployment, and recovery (Pahl et al., 2018). An 

example of such an infrastructure is shown in Figure 1. 
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Fig. 1. A Sample Cloud Architecture Use Case (Pahl et al., 2018) 

 

These principles reveal the so-called portability paradox. 

At first glance, containerised microservices are 

considered portable. An organization may believe its IDP 

application is portable because its components (for 

example, a classification service and an extraction 

service) are containerised. Yet a typical cloud 

architecture for IDP is deeply integrated with provider-

managed services: S3 for storage, Textract for extraction, 

Comprehend for classification, Step Functions for 

orchestration (Pradhan et al., 2024). Attempting to move 

this portable application to another cloud would require 

a complete re-architecture to use that provider’s 

equivalent services. The code that interacts with these 

services must be rewritten. This shows that true 

portability depends not only on application code but also 

on its dependencies. The architecture is “locked” even if 

the container is not. Therefore, a genuinely portable 

multi-cloud architecture must abstract not only 

infrastructure but also these application-level 

dependencies – the key challenge addressed at Layer 3 of 

the proposed architecture. 

The proposed architecture is a four-layer conceptual 

model designed to systematically address the challenges 

of deploying IDP in multi-cloud environments. Each 

layer provides a specific type of abstraction that together 

yields a resilient, scalable, and truly portable system. 

Layer 1: Unified Control Plane – manages all 

infrastructure resources across clouds through a single 

declarative API. Layer 2: Decoupled IDP Microservices 

– the containerised business logic of the IDP process. 

Layer 3: Abstracted Application Runtime – offers a 

portable API for common application-level 

dependencies such as state management, messaging, and 

service invocation. Layer 4: Cross-Cutting Governance 

and Security – a logical layer that enforces policies 

through the control plane and other mechanisms. 

Layer 1 directly tackles the core multi-cloud issues of 

management complexity and heterogeneity. The 

fundamental principle is to use Kubernetes not only for 

container orchestration but also as a universal control 

plane for all cloud resources. To implement this, 

Crossplane – an open-source project under the CNCF – 

is proposed. Crossplane extends the Kubernetes API to 

manage any resource (for example, a database, object 

storage, or message queue) at any cloud provider using 

standard Kubernetes YAML manifests. The platform 

team defines abstract CompositeResourceDefinitions 

(XRDs) that represent logical application requirements, 

such as IDP-ObjectStore, IDP-Queue, or IDP-AIService. 

Developers request these abstract resources without 

needing to know the underlying cloud provider. 

Compositions then translate these requests into provider-

specific resources (for example, an IDP-ObjectStore 

request results in an AWS S3 bucket) based on defined 

policies for cost, performance, or data location. This 

grants developers self-service capability while 

centralising control. 

All multi-cloud infrastructure state is defined 

declaratively in a Git repository and governed by a 



The American Journal of Applied Sciences 
ISSN 2689-0992  Volume 08 - 2026 

 
 

The Am. J. Appl. Sci. 2026                                                                                                                         18 

GitOps controller such as ArgoCD or FluxCD. This 

arrangement provides a single source of truth, automatic 

reconciliation, and an auditable history of every change, 

thereby eliminating configuration drift. 

The approach turns the control plane into a locus of 

governance. Because every allocation of infrastructure 

passes through the single Crossplane control plane, a 

powerful enforcement point for policy emerges. Security 

and compliance rules (for example, ‘all storage must be 

encrypted’, ‘all workloads must have a network policy’, 

‘EU data must use resources located in the EU’) can be 

expressed as policies with tools such as OPA or 

Gatekeeper and are applied automatically by the control 

plane before any resource is created. The result is a shift 

from reactive manual auditing to proactive automated 

prevention, embedding the organization’s security policy 

directly in the infrastructure-management workflow. 

Layer 2 contains the core business logic, decomposed 

into independent containerised microservices that 

correspond to the logical stages of the IDP pipeline. 

Ingestion-Service accepts documents from email, API, 

and SFTP. Classification-Service determines the 

document type, for instance, invoice, contract, or receipt. 

Extraction-Service makes calls to the underlying AI or 

ML models to get the data. Enrichment-Service does 

post-processing, which includes validation of the data, 

normalization of the data, and, when necessary, makes 

calls to external APIs for extra information. Validation-

Service manages the human-in-the-loop workflow by 

sending low-confidence results to a specialist. Egress-

Service sends the structured data to systems like ERP or 

CRM. Each service is built and deployed independently, 

allowing for independent scaling. The Extraction-

Service may require substantial GPU resources and can 

scale separately from the lightweight Ingestion-Service, 

entirely consistent with microservice principles. 

Layer 3 resolves the previously identified portability 

paradox. It supplies standard portable APIs for everyday 

application-level needs, separating the Layer 2 

microservices from the cloud-specific managed services 

provided at Layer 1. A framework such as Dapr 

(Distributed Application Runtime), another CNCF 

project, implements this layer. Dapr exposes building-

block APIs that microservices invoke through simple 

HTTP or gRPC calls. State Management enables a 

service to persist data using the Dapr state API. At the 

same time, a YAML configuration can specify Amazon 

ElastiCache (Redis-compatible) in one region or 

Amazon DynamoDB in another, without requiring 

changes to the application code. Pub/Sub allows for 

asynchronous data exchange using the Dapr pub/sub API 

with backends such as Amazon SQS or Amazon SNS. 

The service does not know their differences. Secure, 

reliable discovery and interaction among services are 

made possible by Service Invocation. By developing 

against Dapr instead of provider SDKs, Layer 2 

microservices attain real portability; the decision of the 

provider for storage or messaging is left until runtime 

configuration, which is controlled by the Layer 1 control 

plane, thus achieving workload portability and reducing 

vendor dependence. 

Layer 4 is a logical layer that integrates with the other 

three to provide end-to-end governance. Centralised data 

governance maintains a single catalogue with AWS Glue 

Data Catalog, discovering and profiling data assets 

across clouds, tracking lineage, and enforcing quality and 

classification rules, including PII detection. Unified 

security posture management enhances the control-plane 

policy by integrating Cloud Security Posture 

Management tools that continuously monitor and 

provide a consistent view across clouds, identifying 

misconfigurations and threats. Federated identity makes 

use of such providers as AWS IAM Identity Cente for the 

central management of user and service accounts across 

all platforms with consistent authentication and 

authorization. An architecture sample data flow is as 

follows: an invoice comes in through Ingestion-Service, 

Classification-Service routes it to the right Extraction-

Service, which might call a foundation model via 

Amazon Bedrock. Results are saved through the Dapr 

state API with a database on AWS, and a notification is 

sent via the pub/sub Dapr API using Amazon SQS/SNS. 

Hence, the workflow crosses the cloud boundaries. 

Scale happens at two layers. At the app layer, Kubernetes 

scales the pods of microservices horizontally by load, 

and then the control plane provisions any infra (for 

example, new cluster nodes) to support that scale. 

Therefore, short-term traffic surges and long-term 

document volume growth can be accommodated by 

scaling. This is a highly available and fault-tolerant 

system comprising many disparate pieces: work spreads 

across more than one availability zone or even region 

within a single cloud; control planes orchestrate failover 

to another provider for anything from a small regional 

outage up to total provider outage—high business 

continuity. Separation of microservices and patterns, 

such as Circuit Breaker, stops cascades within the 

application itself. 
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It adds portability and cost optimization. Crossplane 

abstracts infrastructure, while Dapr abstracts application 

dependencies, making both highly portable in terms of 

infrastructure definitions and application code. 

Workloads can be moved between clouds by 

organizations to achieve better pricing, access new 

features, or potentially avoid a punitive price increase, 

thereby breaking the lock-in and enabling continuous 

cost optimization. 

Achieved performance is the main trade-off. Possible 

network latency that may be accrued in a workflow 

spanning several clouds, and possible data-egress 

charges are addressed by co-locating data-intensive 

services and by applying compression, as well as by 

designing workflows that minimize cross-cloud 

interactions. Another challenge is in the control plane’s 

complexity; while it does indeed simplify development, 

it increases the complexity of tasks at the platform level. 

Building and maintaining Crossplane compositions and 

Dapr configurations requires a highly skilled platform-

engineering team; hence, abstraction is not free and 

comes with a demand for expertise. Tool maturity must 

also be considered. While core components such as 

Kubernetes, Crossplane, and Dapr are mature CNCF 

projects, the broader ecosystem is still evolving, which 

means an adopting organization must be ready to work 

with leading-edge technology and, if necessary, 

contribute to the community. Examples of how the 

proposed architecture addresses specific multi-cloud 

challenges are presented in Table 2 (Pahl et al., 2018; 

Innovation at Work, n.d.). 

Table 2. Multi-cloud challenges and their architectural solutions 

(compiled by author) 

 

Multi-Cloud Environment 

Challenge 

Mitigating Architectural Element 

Vendor lock-in (infrastructure and 

dependencies) 

Level 1 (Crossplane): Abstracts provider APIs. Level 3 (Dapr): Abstracts 

service SDKs and APIs (databases, queues). Enables backend changes 

without modifying application code. 

Management complexity and 

operational overhead 

Level 1 (Crossplane + GitOps): Unified declarative API for the entire 

infrastructure. Automated Git-based management eliminates configuration 

drift. 

Inconsistent security and 

governance 

Level 1 (Control Point): Enforces security policies (OPA/Gatekeeper) during 

resource creation. Level 4: Centralized identity and security posture 

management (CSPM). 

Low fault tolerance/disaster 

recovery capabilities 

Level 1 (Crossplane): Orchestrates deployments across multiple regions and 

clouds. Level 2 (Microservices): Failure isolation via patterns such as Circuit 

Breaker. 

Skills shortage/cognitive load on 

developers 

Level 1 (XRDs): Developers request simple abstract resources (IDP-

Database). Level 3 (Dapr): Developers use simple state and messaging APIs 

without learning each cloud’s SDK. 

 

Thus, the proposed architecture demonstrates that successful intelligent document processing in a multi-cloud environment 

requires not only containerising and distributing workloads but also deeply abstracting both infrastructure-level and 

application-level dependencies. The merge of Crossplane and Dapr into a unified multi-level architecture delivers actual 

portability, organized management, and growth while maintaining the freedom to choose top-quality cloud offerings. It 

creates a strong base for developing IDP platforms in fast-evolving markets where quick adjustment is crucial and using 

assets from different sources efficiently is an essential edge over competitors.
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4. Conclusion 

This paper addresses the challenges of deploying 

intelligent document processing systems in multi-cloud 

environments and the architectural dead-ends that such 

systems encounter due to vendor lock-in and operational 

complexity when following traditional approaches. It, 

therefore, proposes a new four-layer architectural model 

based on systematic abstraction principles. The paper 

presents the use of Kubernetes, Crossplane, and Dapr as 

a strong, principled approach to building the next 

generation of enterprise AI systems for a multi-cloud 

world, enabling organizations to achieve real portability, 

fault tolerance, and cost optimization. 

The prototype architecture forms several promising 

directions for future research. Quantitative performance 

analysis: build a prototype and benchmark rigorously the 

performances as well as costs for various IDP processes 

over different cloud combinations. This would result in 

an objective assessment of how efficient the solution is 

in finding the optimal configurations for a particular 

scenario. 

Another approach is to implement self-driving control 

loops. Stretching the setup with more innovative AI-

powered feedback loops could enable automatic 

workload-placement choices based on up-to-the-minute 

cost, delay, and performance info, giving more nimble 

and adjustable multi-cloud handling. 

A further prospect is employing a distributed ledger for 

auditing. Using blockchain or other distributed-ledger 

technologies could create an immutable, auditable trail of 

all document-processing actions across clouds, 

enhancing transparency and simplifying regulatory 

compliance, especially when handling sensitive data. 

Finally, significant potential lies in developing domain-

specific compositions. Building an open-source library 

of Crossplane compositions and Dapr components 

tailored to common IDP scenarios in finance, healthcare, 

and insurance would accelerate adoption and increase 

practical value for particular industries. 
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