
The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 14

A Scalable Architecture for Intelligent Document Processing in Multi-

Cloud Environments

1 Suprakash Dutta
1 Senior Solutions Architect, AMAZON WEB SERVICES Dallas, TX, USA

Received: 28th Nov 2025 | Received Revised Version: 18th Dec 2025 | Accepted: 29th Dec 2025 | Published: 13th Jan 2026

Volume 08 Issue 01 2026 | Crossref DOI: 10.37547/tajas/Volume08Issue01-03

ABSTRACT

This paper reviews an easily expandable plan for smart document handling across multiple cloud systems, aiming to make

work easier to manage, more resilient to issues, and improve the total cost of ownership. The importance of this task stems

from two factors: first, Intelligent Document Processing (IDP) tools are experiencing growth; second, multi-cloud use is

expanding more widely. This increases the primary fight between wanting top-notch help for every step and the dangers of

being stuck with one provider, having messy operations, and uneven safety rules. The study aims to create and support a

complete design that can hide both setup and software links while offering complete control and standard protection in a

mixed environment. The innovation is in the coherent four-layer model, which merges a general control plane atop

Kubernetes and Crossplane with portable application runtime Dapr, exposing standard APIs for statelessness, messaging,

and service invocation, decomposed IDP microservices, and an overlay layer for management and security. The key

findings validate that only the combination of Crossplane at the level of the control plane with GitOps and OPA policies

together with Dapr at the level of the application-API can provide real portability, elastic scaling, governed security, while

maintaining freedom of choice between cloud services. It proves that workflows crossing provider boundaries can be

orchestrated, thus reducing vendor lock-in. The article will be helpful to cloud-platform architects, IT executives, data and

MLOps engineers, IDP product teams, and researchers in distributed systems and enterprise AI.

Keywords: intelligent document processing, multi-cloud architecture, application portability, Kubernetes, Crossplane,

Dapr, GitOps, data management, security, microservices, LLM.

© 2026 Suprakash Dutta. This work is licensed under a Creative Commons Attribution 4.0 International License (CC

BY 4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Dutta, S. (2026). A Scalable Architecture for Intelligent Document Processing in Multi-Cloud

Environments. The American Journal of Applied Sciences, 8(01), 14–25. https://doi.org/10.37547/tajas/Volume08Issue01-

03

1. Introduction

Two powerful and interrelated technological movements

shape the modern corporate IT landscape. The first is the

industrialization of intelligent document processing

(IDP). IDP has moved out of the shadows as a niche

back-office enabler to take a leading role in digital

transformation by automating document-centric

processes and mining value from unstructured data. This

evolution is being fed by lightning advances in artificial

intelligence (AI), machine learning (ML), natural

language processing (NLP)—and now, GenAI—driving

new frontiers of precision and capability. The second

trend is the strategic imperative of multi-cloud

computing. The overwhelming majority of companies

adopt multi-cloud strategies (Innovation at Work, n.d.).

Key drivers include the desire to avoid single-vendor

dependence, cost optimization by selecting the best

price–performance fit for specific workloads, improved

fault tolerance, and access to a broader range of

The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 15

innovative services from providers such as Amazon Web

Services (AWS) (Innovation at Work, n.d.). The

convergence of these trends creates a fundamental

conflict. Running something as complex, data- and state-

heavy as a modern IDP system across many different

clouds brings major problems: dealing with other APIs,

mismatched security setups, tricky data sync, network

delays, and a big skills gap. Just moving things over

without changes doesn’t work because apps get deeply

linked to provider-specific managed tools (like AWS

Textract, SQS, Lambda), bringing in a new type of

dependency lock-in even when the main app is

containerized (Pradhan et al., 2024).

2. Materials and Methodology

This study is made up of seven elements selected from

academic, commercial, and technological knowledge.

Fundamental regulations for forming clouds by Pahl et

al. combine with a present review of multi-cloud

arrangements from Innovation at Work. New measures

in intelligent document management are imparted by Lin

et al., in which the TWIX arrangement significantly

enhances productivity by means of LLM–visual

amalgamation. The market direction and customer needs,

as outlined in Gartner reports are also taken into account,

considering the trend toward ModelOps and heightened

competitive commoditization. Practical application for

microservice decomposition together with managed

services is demonstrated in the Amazon Textract

engineering case, as told by Pradhan et al. The

methodology consists of three interrelated stages. First, a

systematic review of literature covering 2019–2025 to

develop patterns about scalability and portability that

might have relevance to IDP. It then sets side by side the

proposed approaches towards dealing with infrastructure

and application dependencies in Kubernetes +

Crossplane and Dapr, along with other control-plane

ways. Next, by using a design-science approach, it

developed an additional version of the four-layer

framework whose components were associated with

multi-cloud challenges via problem-solution mapping.

3. Results and Discussion

The technological trajectory of IDP has evolved from

simple data capture to content-understanding systems.

The earlier phase used optical character recognition

(OCR) to convert text. These systems were brittle,

template-bound, and limited in scope of application. The

big bang for the world of IT was the shift toward ML-

based IDP—now the semi-structured documents like

invoices and receipts could be processed by training

models on layouts and patterns recognized within

documents to dramatically increase accuracy and

flexibility (Pradhan et al., 2024). The most recent

disruption, not previously discussed, is the integration of

large language models into human conversation in digital

form, which efficiently takes IDP beyond simple

extraction into actual understanding (Moravcik et al.,

2024). Previously unavailable advanced features include

long-document summarization, context-aware answers

to questions within a document, and extracted,

normalized data placed inside structures such as JSON

files; now unattainable for handling fully unstructured

documents like legal contracts or scientific papers, where

what matters cannot be found through predictable

formatting. Progress is measured more by higher bars

and deeper forensics. Academic studies, such as TWIX,

demonstrate that hybrid pattern guesswork with semantic

cleanup via LLM outperforms not only commercial

cloud tools like AWS Textract but also pure visual LLMs

by over 25 percent in F1-score at significantly faster

speeds and lower costs (Lin et al., 2025). This

underscores that a one-size-fits-all model is not optimal.

This evolution leads to an important conclusion: IDP is

not a single task but rather a portfolio of specialized

capabilities. Different tools and models perform various

tasks: TWIX does well with template-driven documents,

LLM with unstructured text, and AWS Textract for

signature detection. The best IDP system is not a product

but rather an Orchestration workflow that can route a

document to the appropriate processing engine (i.e.,

invoice to Amazon Textract, legal contract to an LLM on

Amazon Bedrock, standardized form to Amazon

Textract). This means that a multi-cloud architecture is

not merely a nice-to-have for resilience but a necessity

for peak performance and cost efficiency in IDP. This

conclusion strongly motivates the architecture proposed

in the present work. Table 1 provides a comparison of

IDP.

The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 16

Table 1. Comparison of Intelligent Document Processing (IDP) paradigms (compiled by author)

Characteristic Traditional OCR ML-based IDP GenAI / LLM-based IDP

Core Technology Template matching,

layout analysis

Convolutional/Recurrent

Neural Networks

(CNN/RNN)

Transformers, Large Language

Models (LLM)

Document Types Structured only Structured, semi-structured Structured, semi-structured,

unstructured

Main Capability Text conversion Field extraction, classification Contextual understanding,

summarization, and generation

Accuracy Ceiling Moderate, depends on

template quality

High (up to 99% for known

formats)

Near human-level, depends on

model and prompting

Customization &

Training

Manual templates Large labeled datasets Zero-shot/Few-shot learning,

fine-tuning

Key Limitation Fragility, inflexibility Requires large datasets,

struggles with new layouts

Risk of “hallucinations”, high

computational cost

Multi-cloud computing has become the dominant

paradigm in corporate IT. The main drivers are well

known: avoiding vendor dependence to protect pricing

and strategic flexibility, reducing costs by matching

workloads with the most economical provider, increasing

resilience and disaster recovery by distributing risk, and

gaining access to best-in-class services while stimulating

innovation. Implementing a multi-cloud strategy,

however, is fraught with significant difficulties. Working

with multiple consoles, APIs, and resource models raises

operational overhead and demands specialised skills.

Enforcing consistent security policies, managing

identities, and meeting regulatory requirements in

disjoint environments is a major obstacle. Each cloud

exposes its security primitives, creating potential gaps.

Seamless connectivity and data exchange between

services running in different clouds are hard to achieve.

Lack of standardization hinders portability. Cross-cloud

traffic suffers higher latency and bandwidth limits than

intra-cloud traffic, and transferring large data volumes

can be slow and expensive (Innovation at Work, n.d.).

Teams need to gain skills on many platforms. It is both

complex and costly to acquire and maintain this

knowledge. The suggested fix for this rests on

fundamental software engineering rules for cloud

systems. Big apps break down into small free services,

each taking care of one business task. Main rules involve

loose tying, high unity, and spread out data control. This

setup is key to making systems that can grow and stay

strong. Designing for failure is the core philosophy of

fault-tolerant architecture. It embraces redundancy by

eliminating single points of failure through deployment

across multiple availability zones and regions, as well as

graceful degradation and fault isolation by applying

patterns such as Circuit Breaker so that the failure of a

non-critical component does not bring down the entire

system. Cloud-native systems must be self-adaptive,

responding dynamically to changes in load or

environment. This is often achieved through control

loops (for example, MAPE-K: Monitor, Analyze, Plan,

execute over a Knowledge base) and a pervasive “design

for automation” mindset that spans infrastructure,

deployment, and recovery (Pahl et al., 2018). An

example of such an infrastructure is shown in Figure 1.

The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 17

Fig. 1. A Sample Cloud Architecture Use Case (Pahl et al., 2018)

These principles reveal the so-called portability paradox.

At first glance, containerised microservices are

considered portable. An organization may believe its IDP

application is portable because its components (for

example, a classification service and an extraction

service) are containerised. Yet a typical cloud

architecture for IDP is deeply integrated with provider-

managed services: S3 for storage, Textract for extraction,

Comprehend for classification, Step Functions for

orchestration (Pradhan et al., 2024). Attempting to move

this portable application to another cloud would require

a complete re-architecture to use that provider’s

equivalent services. The code that interacts with these

services must be rewritten. This shows that true

portability depends not only on application code but also

on its dependencies. The architecture is “locked” even if

the container is not. Therefore, a genuinely portable

multi-cloud architecture must abstract not only

infrastructure but also these application-level

dependencies – the key challenge addressed at Layer 3 of

the proposed architecture.

The proposed architecture is a four-layer conceptual

model designed to systematically address the challenges

of deploying IDP in multi-cloud environments. Each

layer provides a specific type of abstraction that together

yields a resilient, scalable, and truly portable system.

Layer 1: Unified Control Plane – manages all

infrastructure resources across clouds through a single

declarative API. Layer 2: Decoupled IDP Microservices

– the containerised business logic of the IDP process.

Layer 3: Abstracted Application Runtime – offers a

portable API for common application-level

dependencies such as state management, messaging, and

service invocation. Layer 4: Cross-Cutting Governance

and Security – a logical layer that enforces policies

through the control plane and other mechanisms.

Layer 1 directly tackles the core multi-cloud issues of

management complexity and heterogeneity. The

fundamental principle is to use Kubernetes not only for

container orchestration but also as a universal control

plane for all cloud resources. To implement this,

Crossplane – an open-source project under the CNCF –

is proposed. Crossplane extends the Kubernetes API to

manage any resource (for example, a database, object

storage, or message queue) at any cloud provider using

standard Kubernetes YAML manifests. The platform

team defines abstract CompositeResourceDefinitions

(XRDs) that represent logical application requirements,

such as IDP-ObjectStore, IDP-Queue, or IDP-AIService.

Developers request these abstract resources without

needing to know the underlying cloud provider.

Compositions then translate these requests into provider-

specific resources (for example, an IDP-ObjectStore

request results in an AWS S3 bucket) based on defined

policies for cost, performance, or data location. This

grants developers self-service capability while

centralising control.

All multi-cloud infrastructure state is defined

declaratively in a Git repository and governed by a

The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 18

GitOps controller such as ArgoCD or FluxCD. This

arrangement provides a single source of truth, automatic

reconciliation, and an auditable history of every change,

thereby eliminating configuration drift.

The approach turns the control plane into a locus of

governance. Because every allocation of infrastructure

passes through the single Crossplane control plane, a

powerful enforcement point for policy emerges. Security

and compliance rules (for example, ‘all storage must be

encrypted’, ‘all workloads must have a network policy’,

‘EU data must use resources located in the EU’) can be

expressed as policies with tools such as OPA or

Gatekeeper and are applied automatically by the control

plane before any resource is created. The result is a shift

from reactive manual auditing to proactive automated

prevention, embedding the organization’s security policy

directly in the infrastructure-management workflow.

Layer 2 contains the core business logic, decomposed

into independent containerised microservices that

correspond to the logical stages of the IDP pipeline.

Ingestion-Service accepts documents from email, API,

and SFTP. Classification-Service determines the

document type, for instance, invoice, contract, or receipt.

Extraction-Service makes calls to the underlying AI or

ML models to get the data. Enrichment-Service does

post-processing, which includes validation of the data,

normalization of the data, and, when necessary, makes

calls to external APIs for extra information. Validation-

Service manages the human-in-the-loop workflow by

sending low-confidence results to a specialist. Egress-

Service sends the structured data to systems like ERP or

CRM. Each service is built and deployed independently,

allowing for independent scaling. The Extraction-

Service may require substantial GPU resources and can

scale separately from the lightweight Ingestion-Service,

entirely consistent with microservice principles.

Layer 3 resolves the previously identified portability

paradox. It supplies standard portable APIs for everyday

application-level needs, separating the Layer 2

microservices from the cloud-specific managed services

provided at Layer 1. A framework such as Dapr

(Distributed Application Runtime), another CNCF

project, implements this layer. Dapr exposes building-

block APIs that microservices invoke through simple

HTTP or gRPC calls. State Management enables a

service to persist data using the Dapr state API. At the

same time, a YAML configuration can specify Amazon

ElastiCache (Redis-compatible) in one region or

Amazon DynamoDB in another, without requiring

changes to the application code. Pub/Sub allows for

asynchronous data exchange using the Dapr pub/sub API

with backends such as Amazon SQS or Amazon SNS.

The service does not know their differences. Secure,

reliable discovery and interaction among services are

made possible by Service Invocation. By developing

against Dapr instead of provider SDKs, Layer 2

microservices attain real portability; the decision of the

provider for storage or messaging is left until runtime

configuration, which is controlled by the Layer 1 control

plane, thus achieving workload portability and reducing

vendor dependence.

Layer 4 is a logical layer that integrates with the other

three to provide end-to-end governance. Centralised data

governance maintains a single catalogue with AWS Glue

Data Catalog, discovering and profiling data assets

across clouds, tracking lineage, and enforcing quality and

classification rules, including PII detection. Unified

security posture management enhances the control-plane

policy by integrating Cloud Security Posture

Management tools that continuously monitor and

provide a consistent view across clouds, identifying

misconfigurations and threats. Federated identity makes

use of such providers as AWS IAM Identity Cente for the

central management of user and service accounts across

all platforms with consistent authentication and

authorization. An architecture sample data flow is as

follows: an invoice comes in through Ingestion-Service,

Classification-Service routes it to the right Extraction-

Service, which might call a foundation model via

Amazon Bedrock. Results are saved through the Dapr

state API with a database on AWS, and a notification is

sent via the pub/sub Dapr API using Amazon SQS/SNS.

Hence, the workflow crosses the cloud boundaries.

Scale happens at two layers. At the app layer, Kubernetes

scales the pods of microservices horizontally by load,

and then the control plane provisions any infra (for

example, new cluster nodes) to support that scale.

Therefore, short-term traffic surges and long-term

document volume growth can be accommodated by

scaling. This is a highly available and fault-tolerant

system comprising many disparate pieces: work spreads

across more than one availability zone or even region

within a single cloud; control planes orchestrate failover

to another provider for anything from a small regional

outage up to total provider outage—high business

continuity. Separation of microservices and patterns,

such as Circuit Breaker, stops cascades within the

application itself.

The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 19

It adds portability and cost optimization. Crossplane

abstracts infrastructure, while Dapr abstracts application

dependencies, making both highly portable in terms of

infrastructure definitions and application code.

Workloads can be moved between clouds by

organizations to achieve better pricing, access new

features, or potentially avoid a punitive price increase,

thereby breaking the lock-in and enabling continuous

cost optimization.

Achieved performance is the main trade-off. Possible

network latency that may be accrued in a workflow

spanning several clouds, and possible data-egress

charges are addressed by co-locating data-intensive

services and by applying compression, as well as by

designing workflows that minimize cross-cloud

interactions. Another challenge is in the control plane’s

complexity; while it does indeed simplify development,

it increases the complexity of tasks at the platform level.

Building and maintaining Crossplane compositions and

Dapr configurations requires a highly skilled platform-

engineering team; hence, abstraction is not free and

comes with a demand for expertise. Tool maturity must

also be considered. While core components such as

Kubernetes, Crossplane, and Dapr are mature CNCF

projects, the broader ecosystem is still evolving, which

means an adopting organization must be ready to work

with leading-edge technology and, if necessary,

contribute to the community. Examples of how the

proposed architecture addresses specific multi-cloud

challenges are presented in Table 2 (Pahl et al., 2018;

Innovation at Work, n.d.).

Table 2. Multi-cloud challenges and their architectural solutions

(compiled by author)

Multi-Cloud Environment

Challenge

Mitigating Architectural Element

Vendor lock-in (infrastructure and

dependencies)

Level 1 (Crossplane): Abstracts provider APIs. Level 3 (Dapr): Abstracts

service SDKs and APIs (databases, queues). Enables backend changes

without modifying application code.

Management complexity and

operational overhead

Level 1 (Crossplane + GitOps): Unified declarative API for the entire

infrastructure. Automated Git-based management eliminates configuration

drift.

Inconsistent security and

governance

Level 1 (Control Point): Enforces security policies (OPA/Gatekeeper) during

resource creation. Level 4: Centralized identity and security posture

management (CSPM).

Low fault tolerance/disaster

recovery capabilities

Level 1 (Crossplane): Orchestrates deployments across multiple regions and

clouds. Level 2 (Microservices): Failure isolation via patterns such as Circuit

Breaker.

Skills shortage/cognitive load on

developers

Level 1 (XRDs): Developers request simple abstract resources (IDP-

Database). Level 3 (Dapr): Developers use simple state and messaging APIs

without learning each cloud’s SDK.

Thus, the proposed architecture demonstrates that successful intelligent document processing in a multi-cloud environment

requires not only containerising and distributing workloads but also deeply abstracting both infrastructure-level and

application-level dependencies. The merge of Crossplane and Dapr into a unified multi-level architecture delivers actual

portability, organized management, and growth while maintaining the freedom to choose top-quality cloud offerings. It

creates a strong base for developing IDP platforms in fast-evolving markets where quick adjustment is crucial and using

assets from different sources efficiently is an essential edge over competitors.

The American Journal of Applied Sciences
ISSN 2689-0992 Volume 08 - 2026

The Am. J. Appl. Sci. 2026 20

4. Conclusion

This paper addresses the challenges of deploying

intelligent document processing systems in multi-cloud

environments and the architectural dead-ends that such

systems encounter due to vendor lock-in and operational

complexity when following traditional approaches. It,

therefore, proposes a new four-layer architectural model

based on systematic abstraction principles. The paper

presents the use of Kubernetes, Crossplane, and Dapr as

a strong, principled approach to building the next

generation of enterprise AI systems for a multi-cloud

world, enabling organizations to achieve real portability,

fault tolerance, and cost optimization.

The prototype architecture forms several promising

directions for future research. Quantitative performance

analysis: build a prototype and benchmark rigorously the

performances as well as costs for various IDP processes

over different cloud combinations. This would result in

an objective assessment of how efficient the solution is

in finding the optimal configurations for a particular

scenario.

Another approach is to implement self-driving control

loops. Stretching the setup with more innovative AI-

powered feedback loops could enable automatic

workload-placement choices based on up-to-the-minute

cost, delay, and performance info, giving more nimble

and adjustable multi-cloud handling.

A further prospect is employing a distributed ledger for

auditing. Using blockchain or other distributed-ledger

technologies could create an immutable, auditable trail of

all document-processing actions across clouds,

enhancing transparency and simplifying regulatory

compliance, especially when handling sensitive data.

Finally, significant potential lies in developing domain-

specific compositions. Building an open-source library

of Crossplane compositions and Dapr components

tailored to common IDP scenarios in finance, healthcare,

and insurance would accelerate adoption and increase

practical value for particular industries.

References

1. Innovation at Work. (2019). The Multi-Cloud:

Challenges and Solutions. IEEE. Retrieved July 14,

2025, from https://innovationatwork.ieee.org/the-

multi-cloud-challenges-and-solutions/

2. Lin, Y., Hasan, M., Kosalge, R., Cheung, A., &

Parameswaran, A. G. (2025). TWIX: Automatically

Reconstructing Structured Data from Templatized

Documents. Arxiv.

https://arxiv.org/abs/2501.06659

3. Moravcik, M., Segec, P., Kontsek, M., & Zidekova,

L. (2024). Model-Driven Approach to Cloud-

Portability Issue. Applied Sciences, 14(20), 9298.

https://doi.org/10.3390/app14209298

4. Pahl, C., Jamshidi, P., & Zimmermann, O. (2018).

Architectural Principles for Cloud Software. ACM

Transactions on Internet Technology, 18(2), 1–23.

https://doi.org/10.1145/3104028

5. Pradhan, S., Chandrasekaran, M., Michaelraj, S., &

Dutta, S. (2024, March 26). Build a receipt and

invoice processing pipeline with Amazon Textract.

Amazon Web Services.

https://aws.amazon.com/ru/blogs/machine-

learning/build-a-receipt-and-invoice-processing-

pipeline-with-amazon-textract/

https://innovationatwork.ieee.org/the-multi-cloud-challenges-and-solutions/
https://innovationatwork.ieee.org/the-multi-cloud-challenges-and-solutions/
https://innovationatwork.ieee.org/the-multi-cloud-challenges-and-solutions/
https://arxiv.org/abs/2501.06659
https://arxiv.org/abs/2501.06659
https://arxiv.org/abs/2501.06659
https://doi.org/10.3390/app14209298
https://doi.org/10.1145/3104028
https://doi.org/10.1145/3104028
https://doi.org/10.1145/3104028
https://aws.amazon.com/ru/blogs/machine-learning/build-a-receipt-and-invoice-processing-pipeline-with-amazon-textract/
https://aws.amazon.com/ru/blogs/machine-learning/build-a-receipt-and-invoice-processing-pipeline-with-amazon-textract/
https://aws.amazon.com/ru/blogs/machine-learning/build-a-receipt-and-invoice-processing-pipeline-with-amazon-textract/
https://aws.amazon.com/ru/blogs/machine-learning/build-a-receipt-and-invoice-processing-pipeline-with-amazon-textract/
https://aws.amazon.com/ru/blogs/machine-learning/build-a-receipt-and-invoice-processing-pipeline-with-amazon-textract/

