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Abstract

Unlike closed-vocabulary 3D instance segmentation that is
often trained end-to-end, open-vocabulary 3D instance seg-
mentation (OV-3DIS) often leverages vision-language mod-
els (VLMs) to generate 3D instance proposals and classify
them. While various concepts have been proposed from ex-
isting research, we observe that these individual concepts
are not mutually exclusive but complementary. In this pa-
per, we propose a new state-of-the-art solution for OV-3DIS
by carefully designing a recipe to combine the concepts to-
gether and refining them to address key challenges. Our
solution follows the two-stage scheme: 3D proposal gen-
eration and instance classification. We employ robust 3D
tracking-based proposal aggregation to generate 3D pro-
posals and remove overlapped or partial proposals by it-
erative merging/removal. For the classification stage, we
replace the standard CLIP model with Alpha-CLIP, which
incorporates object masks as an alpha channel to reduce
background noise and obtain object-centric representation.
Additionally, we introduce the standardized maximum sim-
ilarity (SMS) score to normalize text-to-proposal similarity,
effectively filtering out false positives and boosting preci-
sion. Our framework achieves state-of-the-art performance
on ScanNet200 and S3DIS across all AP and AR metrics,
even surpassing an end-to-end closed-vocabulary method.

1. Introduction
The task of OV-3DIS [2, 8, 9, 22, 39, 49, 57, 59, 63] aims
to predict 3D masks for individual objects in a 3D point
cloud scene given open-vocabulary text queries (Fig. 1).
OV-3DIS has diverse applications across domains, such
as robotics, augmented reality, scene understanding, and
3D visual search. For example, in robotic tasks like in-
door navigation and object manipulation, interpreting open-
vocabulary queries and localizing corresponding objects in
a 3D environment are crucial for effective performance.

Efforts have been made to tackle the task of OV-3DIS.
A two-staged paradigm has been widely adopted across
various works [2, 39, 49, 57]. They first generate the
class-agnostic 3D proposals and then classify the pre-
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Figure 1. Examples of open-vocabulary predictions from our
method in the ScanNet200 dataset [7]. Our method effectively
retrieves instances based on functional descriptions (e.g., drink
water, heat mac & cheese) and object attributes (e.g., red chair).

dicted proposals into open-vocabulary queries. While some
works [2, 49] directly generate 3D proposals from point
clouds using pretrained 3D networks [38, 45], other ap-
proaches [39, 57, 63] generate 3D proposals from images.
For 3D proposal generation from images, they leverage vi-
sion foundation models (VFMs) [33, 43, 66] to ground ob-
ject regions in each image frame. Each object region is then
lifted to 3D point clouds and temporally aggregated across
frames to find complete 3D masks.

While there have been various efforts based on this
scheme, e.g., agglomerative clustering [39], progressive re-
gion growing [63], and graph clustering [57], these indi-
vidual concepts are not mutually exclusive but complemen-
tary. This paper carefully combines the concepts and refines
each step to address key challenges, achieving state-of-the-
art (SoTA) performance in existing benchmarks. We gener-
ate 3D proposals from both images (i.e., image-based 3D
proposals) and aggregated point clouds (i.e., point cloud-
based 3D proposals). Image-based 3D proposal genera-
tion [37, 39, 63] involves many design choices in three
steps: 1) frame-wise 2D object grounding, 2) lifting 2D
predictions to 3D point clouds, and 3) 3D proposal aggre-
gation across frames to find complete 3D masks. Finally,
CLIP-based models [42] are used to classify the 3D propos-
als [39, 49, 57].

While we adopt this general paradigm, we refine each
stage to effectively handle missing details in the existing
literature. Also, we devise an additional iterative merging
and removal step at the end of the proposal generation to
suppress overlapped or partial proposals.
2D Object Grounding. We observe two representative
types of wrong object predictions from VFMs: masks cover-



ing multiple objects and partial masks. While partial masks
can be mitigated in later steps by merging or removal,
wrong masks covering multiple instances can hardly be sep-
arated into individual instances. Thus, we sort 2D predic-
tions in each frame by their size and remove the overlapped
regions from the larger ones to minimize such cases.
2D to 3D Lifting. Following existing works [39, 60, 63], we
use 3D superpoints [13] as a basic unit of point cloud oper-
ations. We aim to find a set of 3D superpoints correspond-
ing to each 2D instance in the lifting step. We adopt two
concepts from existing work [39]: frame-wise and instance-
wise visibility scores to remove unconfident superpoints.
Tracking-based 3D Proposal Aggregation. We progres-
sively enlarge the lifted 3D superpoints of instances by
tracking them sequentially, analogous to OVIR-3D [37].
However, ours has unique features to improve the limita-
tions of existing works. First, we adopt a superpoint-level
intersection over union (sIOU) metric instead of a point-
level IOU. This effectively reduces memory usage and com-
putation time. Also, we apply frame-wise sIOU compari-
son to match a new observation to existing tracklets (i.e.,
a list of tracked 2D instances and their lifted 3D super-
points). Specifically, we compare a new observation with
each tracked instance in tracklets to find a match. We ob-
serve that such frame-wise comparisons induce robustness
to wrong 2D predictions and noisy projections compared to
tracklet-wise comparisons [37] (i.e., using a representative
3D mask for each tracklet by aggregating 3D superpoints of
tracked instances).
Iterative Merging/Removal. We suppress overlapped or
partial proposals by merging and removing them. We itera-
tively merge proposals if they have large overlaps. We refine
merged proposals using multi-view consensus [37, 57] after
every merge iteration. After the merging step, we remove
partial masks if they are included in other proposals.
Instance Classification. We classify the aggregated 3D
proposals into open-vocabulary queries. While existing
works [39, 49] leverage CLIP [42] for classification, they
can be contaminated by co-visible objects or be sensitive
to irregularly shaped objects. Instead, we adopt Alpha-
CLIP [48] to obtain an object-centric representation by at-
tending object regions using alpha-channel masks. Addi-
tionally, we introduce a Standardized Maximum Similarity
(SMS) score as a proxy for uncertainty to reduce false pos-
itives. The maximum similarity score is standardized using
scene-specific statistics, and proposals with low SMS scores
are removed from classification. Such a classification strat-
egy helps enhance precision, delivering SoTA performance
on benchmarking datasets.

Our contributions are summarized as follows:
• We carefully combine the existing concepts and refine 3D

proposal generation by removing overlaps in 2D predic-
tions and applying robust 3D tracking for aggregation.

• We introduce an additional iterative merging/removal step
after aggregation to suppress false positives coming from
overlapped or partial 3D proposals.

• We take advantage of object-centric feature representa-
tion by replacing CLIP with Alpha-CLIP and further re-
duce false positive 3D proposals by measuring the Stan-
dardized Maximum Similarity (SMS) score.

• We demonstrate significant improvements over SoTA
methods on ScanNet200 and S3DIS datasets across AP
and AR metrics.

2. Related Work

2.1. Closed-vocabulary 3D Instance Segmentation

This task aims to predict 3D instance segmentation masks
by assuming a closed set of classes. Several methods [11,
19, 36, 58, 62] have proposed to predict bounding boxes
and segment out the instance in each of the bounding boxes.
Another group of approaches [4, 10, 16, 25, 30, 34, 52, 54]
builds the instances from point embeddings by using graphs
or clustering algorithms. Lastly, the most recent line of
work [17, 29, 38, 45] adopts transformer architecture [51]
or dynamic convolution [24, 50] to predict the 3D instance
proposals from the point cloud. Mask3D [45] utilizes trans-
former architecture along with sparse convolution, demon-
strating state-of-the-art performance. Another work, ISB-
Net [38], proposes to use improved kernel generation and
bounding-box-guided dynamic convolutions. In our paper,
Mask3D and ISBNet are used as our 3D instance segmen-
tation networks, while other networks are also applicable to
ours.

2.2. Open-vocabulary 2D Grounding

One limitation of closed-vocabulary studies is that they
hardly generalize to new environments since they cannot
identify novel classes that did not appear in the training set.
Addressing such concerns, open-vocabulary 2D ground-
ing aims to identify novel classes by adopting 2D foun-
dation models or adapting a model to new scenes to dis-
cover novel classes. Three different categories exist un-
der this task: open-vocabulary object detection [5, 26, 35,
41, 53, 61, 64–66], open-vocabulary semantic segmenta-
tion [3, 14, 32, 33, 55], and open-vocabulary instance seg-
mentation [43, 56, 67]. Most works [5, 14, 15, 32, 33, 66]
propose to align their representations to those of pre-trained
vision-language models (VLMs) such as CLIP [42]. In
our work, we utilize Grounded SAM [43] as our 2D in-
stance grounding method, which utilizes both Grounding
DINO [35] and Segment-Anything Model (SAM) [28].
Grounding DINO detects object bounding boxes with given
open-vocabulary queries, and SAM predicts the instance
mask in each bounding box.
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Figure 2. Overview of image-based 3D proposal generation. We first remove overlaps between 2D predictions within each frame and lift
them to 3D point cloud using a camera projection matrix. Afterward, we aggregate 3D-lifted predictions across frames using a frame-wise
sIOU metric with tracking. These 3D proposals are further iteratively merged and refined to progressively merge similar proposals based
on a predefined threshold (τmerge). At last, we remove partial masks if their inclusion ratios to other proposals are higher than a predefined
threshold (τ incl). For further details about merging and removal, see the last paragraph of Sec. 3.1.

2.3. Open-vocabulary 3D Instance Segmentation
This task aims to address the open-vocabulary grounding
problems in 3D point clouds. Several studies [18, 23, 27,
31, 40] have proposed to align the point embeddings to
the CLIP embeddings. However, they often require cluster-
ing algorithms to find the instances, heavily relying on the
accuracy of clustering algorithms. Also, some of them are
trained on specific datasets, which may limit their general-
ization. On the other hand, other studies [2, 22, 39, 49, 57]
adopt a two-stage scheme, which first generates class-
agnostic masks and then classifies the instances. Open-
Mask3D [49] utilizes Mask3D [45] to generate the class-
agnostic instances in the 3D point cloud and project the
instances to 2D images to extract their CLIP embeddings.
Also, OpenYOLO3D [2] classifies 3D proposals generated
by Mask3D [45] using open-vocabulary 2D object detec-
tor [5]. However, while they demonstrate promising results,
using a pre-trained 3D instance segmentation model often
fails at detecting novel or “tail” classes since they do not
or rarely appear during training. Thus, OVIR-3D [37] and
SAI3D [63] utilize image-based 3D proposals as an alterna-
tive, and Open3DIS [39] uses both image-based and point
cloud-based proposals to improve the recall of tail classes.

3. Method
The task of OV-3DIS is to predict a list of 3D instance
masks m ∈ {0, 1}K×N that correspond to a list of user
queries Q from a sequence of images I and point cloud
P ∈ RN×3. K denotes the number of 3D proposals, and N
denotes the number of points in the point cloud. We gen-
erate proposals from both images and point clouds. Our
image-based proposal generation is composed of four steps:
2D object grounding, 2D-to-3D lifting, 3D proposal aggre-
gation, and iterative merging/removal. Fig. 2 illustrates the
latter three steps in detail with examples. For point cloud-
based 3D proposals, we utilize pre-trained 3D instance seg-
mentation models [38, 45] and discard the class predictions,
retaining only the class-agnostic masks. We concatenate
the proposals from both modalities and classify them into
one of the open-vocabulary queries using Alpha-CLIP with

SMS-based filtering. We will present our image-based pro-
posal generation in Sec. 3.1, and then elaborate on instance
classification in Sec. 3.2.

3.1. Image-based Proposal Generation

Leveraging VFMs [28, 35, 43], image-based proposals pro-
vide a complementary approach for detecting novel classes
not covered during the training of the 3D instance segmen-
tation models [38, 45]. To generate these proposals, we: 1)
ground 2D objects and remove overlapping regions, 2) lift
2D predictions to 3D superpoints, 3) aggregate 3D propos-
als over frames using tracking, 4) refine 3D proposals, 5)
iteratively merge and remove redundant proposals.
2D Object Grounding and Overlap Removal. We use
Grounded SAM [43] to segment 2D instance masks in each
image from open-vocabulary queries. For each frame, pre-
dicted 2D instance masks are sorted by their size, and over-
lapping regions of larger masks are removed (i.e., overlap
removal). This step mitigates the issue of masks frequently
capturing multiple objects, which can lead to 3D proposals
spanning multiple instances. Although overlap removal may
result in partial 3D proposals, we found that separating 3D
masks containing multiple instances into distinct masks is
far more challenging than starting with multiple partial 3D
masks for each instance and merging/removing them after
aggregation.
2D Instance to 3D Superpoints Lifting. For 3D point
cloud lifting of 2D pixels, we leverage camera matrices, i.e.,
the multiplication of an intrinsic and extrinsic matrix for
each frame. We adopt two concepts from Open3DIS [39]:
frame-wise visibility ratio rt(s) and instance-wise visibility
ratio ct,·(s) for filtering out superpoints.

Specifically, rt(s) denotes the visibility ratio of super-
point s with respect to image It. This ratio is defined as the
proportion of 3D points within the superpoint whose pro-
jections are visible in the image. Similarly, ct,i(s) indicate
the ratio of visible superpoint s supported (i.e., overlapped)
by 2D mask of the i-th instance in image It. This is defined
as the proportion of visible 3D points within the instance
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Figure 3. Matching tracklets with a new observation. We con-
duct frame-wise sIOU comparisons between a new observation
and each tracked instance in tracklets. If the maximum sIOU ex-
ceeds a predefined threshold, we update the corresponding track-
let; otherwise, a new tracklet is initialized.

mask relative to the total number of visible 3D points in the
image. Based on these definitions, we define two sets of 3D
superpoints: one for 3D superpoints visible in the image and
another for 3D superpoints visible within a specific instance
mask:

St = {s | rt(s) > τ img}
St,i = {s | rt(s) > τ img and ct,i(s) > τ inst},

(1)

where τ img and τ inst are predefined thresholds for filtering
out 3D superpoints with low visibility and/or support from
the i-th 2D segment. This formulation ensures that only 3D
superpoints with sufficient visibility and/or support are in-
cluded for further processing.
Tracking-based 3D Proposal Aggregation. We aggregate
2D instance masks and their corresponding 3D superpoints
by tracking them over frames. We maintain a list of track-
lets, where each tracklet records a list of tracked 2D instance
masks and their lifted 3D superpoints. Note that each track-
let corresponds to a single 3D instance proposal after aggre-
gation.

Tracklets are initialized using the lifted 3D superpoints
of 2D instances from the first image. Afterward, we as-
sociate new observations from the next frames with exist-
ing tracklets using frame-wise sIOU metrics. Specifically,
we compute the sIOU between the lifted 3D superpoints
of the new observation and each tracked instance in each
tracklet (see Fig. 3). If the highest sIOU exceeds a pre-
defined threshold τ tracking, the new observation is assigned
to the corresponding tracklet for update. Otherwise, a new
tracklet is created for this new instance. When measuring
sIOU between two sets, we only consider co-visible super-
points in both image frames. Formally noting, given the i-
th instance mask from an image Ita and the j-th instance
mask from Itb , we denote their corresponding 3D super-
points within each instance mask as Sta,i and Stb,j respec-
tively and a co-visible 3D superpoints set between images

(a) Original Scene (b) w/o Refinement (c) w/ Refinement

Figure 4. Effectiveness of 3D proposal refinement. Red boxes
indicate the object of interest, and segments of different colors de-
note 3D superpoints. Without refinement, the 3D instance proposal
often extends beyond the object boundaries due to noisy 2D-to-3D
projections or inaccurate mask predictions. With refinement, irrel-
evant 3D superpoints are removed, and our method successfully
removes 3D superpoints that do not belong to the object, resulting
in geometrically consistent and precise predictions.

as Vista,tb = Sta ∩ Stb . sIOU between these two instance
masks from two frames is defined as:

sIOU =
|(Sta,i ∩ Stb,j)|

|(Sta,i ∪ Stb,j) ∩ Vista,tb |
, (2)

where | · | denotes the cardinality.
3D Proposal Refinement. After tracking, we have an addi-
tional refinement step for the 3D proposal in each tracklet
by removing 3D superpoints that are infrequently visible in
the tracked 2D instances across multiple views. We adopt a
concept from MaskClustering [57] and OVIR-3D [37] and
calculate a superpoint-level multi-view consensus rate. As
illustrated in Fig. 4, removing superpoints with low visibil-
ity effectively refines the proposal to have a tight, semantic-
aligned boundary. For each superpoint in a tracklet, the
multi-view consensus rate is defined as the ratio of tracked
frames in which the superpoint appears within the instance
mask to the total number of frames where it is visible.
3D superpoints with a consensus rate below a predefined
threshold τ ref are removed from the tracklet, ensuring only
reliable superpoints are retained.
Iterative 3D Proposal Merge and Removal. While our
overlap removal step in the 2D grounding step effectively
removes masks spanning multiple instances, it may gener-
ate partial masks of instances. For example, as shown in
Fig. 5, a single object may be decomposed into multiple par-
tial 3D proposals, each covering only part of the object. To
address this, we merge these partial proposals into a com-
plete 3D representation. Moreover, we apply this merging
iteratively so that we can progressively enlarge instances at
each iteration. Also, each merge is followed by proposal re-
finement using multi-view consensus to exclude noisy su-
perpoints from later merging. Conversely, when a larger 3D
proposal contains smaller, redundant proposals, we remove
the redundant ones to ensure higher precision.

Suppose we have K tracklets, each with a 3D mask
proposal represented as mk ∈ {0, 1}N , derived from the
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Figure 5. Visualization of merged and removed proposals in
the ScanNet200 dataset. Overlapping and noisy proposals often
emerge after instance tracking. We effectively handle these issues
by merging duplicate proposals and eliminating noisy ones, ensur-
ing high-quality proposals.

tracked 3D superpoints within each tracklet. For each merg-
ing iteration, we compute IOU between a pair of 3D pro-
posals, constructing a cost matrix Cmerge ∈ [0, 1]K×K that
is a strictly upper-triangular matrix. For each 3D proposal,
we identify other proposals with an IOU exceeding a prede-
fined threshold τmerge and merge them into the current 3D
proposal. This process is repeated until no further merges
are possible. After each 3D proposal merge, we also merge
their corresponding tracklets and refine the resulting 3D
proposal using the multi-view consensus rate. More detailed
implementation can refer to supplementary materials.

After merging proposals, we remove smaller 3D propos-
als that are contained within larger ones. Given two 3D pro-
posals mr,mc ∈ {0, 1}N , we define an inclusion rate of
mr within mc as rincl(mr,mc), which is the proportion of
mr included in mc, with a value of 1 indicating that mr

is fully contained within mc. Using this ratio, we construct
an inclusion cost matrix Cincl ∈ [0, 1]K×K , which is a full
matrix since the inclusion ratio is asymmetric. For each 3D
proposal, if its inclusion rate with respect to any other pro-
posal exceeds a predefined threshold τ incl, the proposal is
removed. Unlike the merge process, this filtering step is ap-
plied only once.

3.2. Open-Vocabulary Instance Classification
For instance classification, we concatenate class-agnostic
proposals from image-based and point cloud-based meth-
ods and apply non-maximum suppression (NMS) with an
IOU threshold of 0.95. We prioritize the point cloud-based
proposals over the image-based ones since they have fewer
false positives.
Feature Extraction. Previous work [39, 49] leverages
CLIP [42] to extract visual features from cropped image re-
gions using projected instance bounding boxes. However,
this approach has notable limitations (Fig. 6): (a) Resizing
the crop to a square aspect ratio distorts the object’s original
geometry, hindering CLIP’s ability to capture its geometric
characteristics. (b) Visual features are contaminated by co-
visible objects (e.g., bookshelves, tables), leading to poor
predictions from CLIP. To address these issues, we adopt
Alpha-CLIP [48] to enforce an object-centric focus to the
model. Alpha-CLIP incorporates object masks as an addi-
tional input to guide the model’s attention. The object masks
are generated using SAM by projecting the predicted 3D

Original Image Square-resized Crop
with CLIP

Square Crop
with Alpha-CLIP

Pred: Hat Pred: TelephoneTelephone

(a) Geometry Distortion

Original Image Square-resized Crop
with CLIP

Square Crop
with Alpha-CLIP

Pred: Bookshelf

Pred: BlindBlind

(b) Multiple Objects in a Crop

Figure 6. Failure cases of using CLIP for instance classification.
CLIP fails when the shape of the object gets distorted or when
other objects are also present within the crop.
proposals onto images and querying with bounding boxes
or subsampled points. We also apply a square crop during
preprocessing to preserve the object’s geometry while en-
suring compatibility with the model’s input requirements.

We adopt a similar approach to OpenMask3D [49] for
visual embedding extraction. Given a 3D proposal and the
visual encoder from Alpha-CLIP, we project the proposal
onto all 2D images and select a subset of images with the
highest visibility for multiscale visual feature extraction.
Let f lv,k represent the CLIP feature extracted at a scale level
l from the v-th image for the k-th 3D proposal. The final
L2-normalized feature Fk for this proposal is computed as:

Fk =
∑
v∈Vk

∑
l∈L

f lv,k · αv,k, (3)

where Vk denotes the set of images with top visibility for the
k-th 3D proposal, and αv,k ∈ [0, 1] is the visibility ratio of
the k-th 3D proposal in image Iv . This ratio is defined as the
number of visible points in the image divided by the total
number of points in the 3D proposal. Finally, given K pro-
posals and C text queries, we compute the cosine similarity
between the visual features of the proposals and the text
features, resulting in a similarity matrix L ∈ [−1, 1]K×C .
3D Proposal Filtering with SMS. We further suppress un-
confident proposals by using the CLIP similarity score as
a proxy for uncertainty. However, CLIP scores are not nor-
malized across different text embeddings, making it chal-
lenging to apply a single filtering threshold for all queries.
To address this, we standardize the maximum similarity
scores (i.e., SMS score) within each text embedding to
obtain relative scores. Specifically, for each query qc, we
compute the mean and variance of the similarity scores as
µc = 1

K

∑
k Lk,c and σ2

c = 1
K

∑
k(Lk,c − µc)

2, where K
is the total number of proposals. Next, for each proposal k,
we identify the maximum similarity value Lk,cmax across all
queries and standardize it using the corresponding statistics:
cSMS
k =

Lk,cmax−µcmax
σcmax

. Proposals with an SMS score below
a predefined threshold τSMS are removed from the predic-
tions, ensuring more reliable filtering.



Eval. Protocol Methods 3D Proposals mAP mAP50 mAP25 mAPhead mAPcommon mAPtailImage-based Point cloud-based

Fully Supervised ISBNet [38] ✗ ✓ 24.5 32.7 37.6 38.6 20.5 12.5
Mask3D [45] ✗ ✓ 26.9 36.2 41.4 39.8 21.7 17.9

Top-1

SAM3D† [60] ✓ ✗ 9.8 15.2 20.7 9.2 8.3 12.3
OVIR-3D† [37] ✓ ✗ 9.3 18.7 25.0 9.8 9.4 8.5

SAI3D† [63] ✓ ✗ 12.7 18.8 24.1 12.1 10.4 16.2
Ours (2D Only) ✓ ✗ 21.5 31.2 37.7 18.8 19.6 26.9

OpenIns3D [22] ✗ ✓ 8.8 10.3 14.4 16.0 6.5 4.2
OpenMask3D [49] ✗ ✓ 15.4 19.9 23.1 17.1 14.1 14.9
OpenYOLO3D [2] ✗ ✓ 21.9 28.3 31.7 25.6 21.1 18.5
Ours (3D Only) ✗ ✓ 24.2 31.8 36.4 27.2 22.3 23.1

OpenScene [40] ✓ ✓ 11.7 15.2 17.8 13.4 11.6 9.9
Ours (2D + 3D) ✓ ✓ 25.8 32.5 36.2 26.3 23.2 28.2

Top-K

Open3DIS [39] ✓ ✗ 18.2 26.1 31.4 18.9 16.5 19.2
Ours (2D Only) ✓ ✗ 25.4 37.4 44.4 23.4 23.5 30.2

Open3DIS [39] ✗ ✓ 18.6 23.1 27.3 24.7 16.9 13.3
OpenYOLO3D [2] ✗ ✓ 24.7 31.7 36.2 27.8 24.3 21.6
Ours (3D Only) ✗ ✓ 29.0 37.6 42.8 33.0 28.1 25.3

Open3DIS [39] ✓ ✓ 23.7 29.4 32.8 27.8 21.2 21.8
Ours (2D + 3D) ✓ ✓ 32.7 41.4 45.3 34.5 30.7 33.1

Table 1. OV-3DIS results on the ScanNet200 validation set [7]. Top-1 evaluation protocol refers to assigning one predicted class per
instance mask, and Top-K evaluation protocol [2, 39] refers to allowing multiple predicted classes per instance mask. We evaluate methods
under three settings: image-based 3D proposals only (i.e., 2D only), point cloud-based 3D proposals only (i.e., 3D only), and a combi-
nation of both (i.e., 2D+3D). In all three settings across different protocols, our method achieves the SoTA performance, significantly
outperforming other methods. †numbers are adopted from SAI3D [63].

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on three datasets: Scan-
Net200 [7], S3DIS [1], and Replica [47]. ScanNet200 is a
real-world dataset comprising diverse indoor environments
with 200 object categories. It includes 1,201 scenes in the
training set and 312 scenes in the validation set. Object cate-
gories are divided into head, common, and tail classes based
on their frequency. We validate our method and baselines
on the validation set, reporting performance for each cate-
gory group (i.e., head, common, tail) as well as the overall
performance. S3DIS consists of 271 scenes from 6 differ-
ent areas, with Area 5 used for our evaluation. Although the
dataset includes 13 classes, we exclude “stuff” categories
such as floor, ceiling, wall, and clutter from our evalua-
tion to focus on object-centric performance. Replica is a
synthetic dataset created from digital replicas of real-world
scenes, featuring 48 object classes across 8 different scenes.
On this dataset, we assess generalization performance by
evaluating a 3D instance segmentation model [45] trained
on ScanNet200.
Evaluation Metrics. We measure mean average precision
(mAP) and mean average recall (mAR) at IOU thresholds
of 25% and 50%. Additionally, we measure mAP and mAR
across IOU thresholds ranging from 50% to 95% with 5%
increments. For class-agnostic evaluations, we calculate AP
and AR on those IOU ranges.
Evaluation Protocols. We found existing literature adopts
different evaluation strategies. Several works [22, 40, 49,
63] assign one class prediction per each 3D instance (i.e.,
Top-1), while other works [2, 39] allows multiple predic-

tions per each 3D instance by selecting Top-K predictions
(e.g., top 300 / 600) over class predictions of all instances,
based on their prediction scores. For fair comparisons, we
evaluate our method on both evaluation settings on Scan-
Net200 and Replica. For the S3DIS dataset, we only evalu-
ate by using the Top-1 strategy. Further details can be found
in the supplementary materials.
Implementation Details. For the ScanNet200 dataset, we
downsample the number of image frames by a factor of 5 to
reduce computational load. We follow the same setting of
OpenMask3D [49] for multi-scale CLIP feature extraction,
i.e., 3 scale levels with an expansion ratio of 0.2. We set
the following thresholds for both ScanNet200 and S3DIS:
τ img = 0.1, τ inst = 0.3, τ tracking = 0.3, τmerge = 0.3,
τ ref = 0.4, and τ incl = 0.99. For the Replica dataset, we
adjust τmerge to 0.7 and disable multiview consensus ratio-
based filtering, as Replica is a synthetic dataset without pro-
jection errors. Additionally, we observe a distribution shift
in the CLIP visual representations, as CLIP is trained on
real-world data while Replica consists of synthetic data.
This shift enlarges the gap between the visual and text em-
beddings of CLIP. To address this, inspired by prior work on
handling distributional gaps [6, 20, 21, 44, 46], we perform
dimension reduction by computing the first principal axis
of the visual CLIP features and removing its contribution
from both visual and text embeddings. We use the template
“a blurry photo of {CLASS NAME} in a room.” Further de-
tails are provided in the supplementary materials.

4.2. Quantitative Results
ScanNet200. We adopt Mask3D [45] trained on the Scan-
Net200 training set for point cloud-based proposals. Table 1
shows that our method outperforms all baselines in all three
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Figure 7. Qualitative comparisons on the ScanNet200 dataset. Black regions indicate empty predictions (no object), while red boxes
highlight objects missed by other methods but successfully detected by ours. 3D instance masks are colored randomly.

Methods mAP mAP50 mAP25 mAR mAR50 mAR25

Open3DIS† [39] 24.5 36.2 49.3 30.5 43.4 55.3
Ours (2D Only) 26.9 41.4 51.9 35.3 52.5 62.5

Open3DIS† [39] 26.6 33.5 39.2 34.2 41.7 47.4
OpenYOLO3D† [2] 28.1 37.3 44.6 37.8 46.3 52.0

Ours (3D Only) 30.4 39.4 47.4 38.7 47.9 55.1

Open3DIS† [39] 28.9 37.0 43.1 44.1 54.5 61.4
Ours (2D + 3D) 31.3 43.5 50.4 48.2 65.1 72.9

Table 2. OV-3DIS results on S3DIS [1]. †numbers are obtained
using their official codes. Top-1 evaluation protocol is used.

settings, i.e., 2D-only, 3D-only, and 2D+3D across all eval-
uation protocols. In 2D-only evaluations, our method out-
performs previous SoTA methods, SAI3D and Open3DIS,
by 8.8% and 7.2% , respectively. Notably, our image-based
method excels at predicting tail classes, where other com-
paring methods often struggle. Note that tail classes refer
to less frequent, rare classes in the training set, not based
on their object sizes. For 3D-only evaluations, we use the
same point cloud-based 3D proposals for both our method
and OpenYOLO3D. The resulting 2.3% and 4.3% mAP im-
provements over OpenYOLO3D demonstrate the effective-
ness of our classification method. Furthermore, using both
image-based and point cloud-based proposals, we outper-
form the previous SoTA, Open3DIS [39], by 9.0% in mAP.
S3DIS. We train ISBNet [38] on Area 1∼4, 6 and adopt its
predictions on Area 5 as our point cloud-based proposals
for all the baselines. As reported in Table 2, our method
consistently outperforms the baselines by a large margin
in each experiment setting: 2D-only, 3D-only, and 2D+3D.
Using both image-based and point cloud-based proposals
boosts the recall significantly, improving 2D-only and 3D-
only methods by 12.9% and 9.5%, respectively. Note that
we use thing classes only since our task is 3D instance seg-
mentation. The results for both stuff and thing classes are
available in the supplementary materials.
Replica. The results are summarized in Table 3. This exper-
iment aims to assess the generalizability of our method by
adopting a ScanNet200-trained 3D instance segmentation
model for point cloud-based proposals. Our approach con-
sistently outperforms other methods within the same cat-
egory under both 2D-only and 2D+3D settings, achieving

Eval. Methods mAP mAP50 mAP25 mAR mAR50 mAR25

Top-1

OVIR-3D [37] 11.1 20.5 27.5 - - -
Ours (2D Only) 20.8 32.4 38.5 28.5 43.1 49.9

OpenMask3D [49] 13.1 18.4 24.2 - - -
OpenYOLO3D [2] 23.7 28.6 34.8 26.6 31.9 38.5
Ours (3D Only) 22.0 26.7 32.5 26.6 31.5 37.0

Ours (2D + 3D) 22.6 31.7 37.7 33.9 46.5 53.6

Top-K

Open3DIS† [39] 18.2 25.9 31.0 32.3 46.2 54.9
Ours (2D Only) 21.6 32.6 39.8 39.6 59.5 71.3

Open3DIS† [39] 16.0 19.4 23.5 29.2 35.4 42.5
Ours (3D Only) 18.9 24.4 32.1 34.0 43.9 57.5

Open3DIS† [39] 18.4 23.8 28.2 33.0 42.6 50.0
Ours (2D + 3D) 25.7 34.9 42.3 48.8 66.3 79.7

Table 3. OV-3DIS results on Replica [47]. †numbers are obtained
using their official codes.
superior results on both mAP and mAR. In the 3D-only set-
ting, our method significantly surpasses OpenMask3D and
Open3DIS, which adopt CLIP [42] for predictions. How-
ever, it lags behind OpenYOLO3D [2] in terms of mAP,
which does not use CLIP for instance classification. We hy-
pothesize that the domain gap between real-world data and
synthetic data from Replica may degrade the performance
of Alpha-CLIP. Surprisingly, our 2D-only method achieves
higher mAP50 and mAP25 than 3D only methods where
the masks are generated from ScanNet200-trained 3D net-
works. This highlights the exceptional generalization capa-
bility of our 2D-only approach. Additionally, our 2D+3D
method attains the highest mAR across all settings.

4.3. Qualitative Results
Fig. 7 presents qualitative comparisons on the ScanNet200
dataset. Red boxes indicate instances missed by Open3DIS
and OpenYOLO3D, while our method successfully detects
all objects. These visual results are consistent with the recall
metrics: Open3DIS and OpenYOLO3D achieve the mAR of
43.3% and 47.7%, respectively, whereas our method signif-
icantly outperforms both with an mAR of 61.4%. We also
present OV-3DIS results using novel text queries in Fig. 1.
Our framework effectively retrieves 3D instances based on
functional descriptions (e.g., drink water) and object at-
tributes (e.g., red chair).

4.4. Ablation Study
Class-agnostic Evaluation. To evaluate the quality of gen-
erated proposals, we report class-agnostic AP and AR on



Methods AP AP50 AP25 AR AR50 AR25

ISBNet (fully-sup.)† [38] 40.2 50.0 54.6 66.8 80.4 87.4
Mask3D (fully-sup.)† [38] 50.6 68.0 76.9 65.3 81.0 88.4

Superpoints† [13] 5.0 12.7 38.9 - - -
DBSCAN† [12] 1.6 5.5 32.1 - - -
OVIR-3D [37] 14.4 27.5 38.8 - - -

Mask Clustering [57] 19.2 36.6 51.7 - - -
Open3DIS (2D Only) [39] 29.7 45.2 56.8 49.0 70.0 83.2

Ours (2D Only) 33.3 51.9 66.1 50.2 72.2 85.5

Open3DIS (2D + 3D) [39] 34.6 43.1 48.5 66.2 81.6 91.4
Ours (2D + 3D) 46.6 59.0 64.4 74.0 89.8 95.9

Table 4. Class-agnostic evaluation on the ScanNet200 [7].

the ScanNet200 dataset. As shown in Table 4, our 2D-
only method outperforms all image-based approaches, sur-
passing the previous SoTA by 3.6%. Both our method and
OVIR-3D [37] share the intuition of sequentially tracking
3D proposals to progressively grow regions. However, the
performance gap between our method and OVIR-3D is sub-
stantial, highlighting the effectiveness of our frame-wise
tracklet matching algorithm and iterative merging/removal
with refinements. Furthermore, by leveraging both image-
based and point cloud-based 3D proposals, our 2D+3D
method achieves the highest ARs across all methods, in-
cluding fully-supervised approaches.

Method AP AP50 AP25

Tracklet-wise sIOU for Tracking 34.7 54.3 69.6
Frame-wise sIOU for Tracking 35.1 (+0.4) 56.1 (+1.8) 70.5 (+0.9)

Table 5. Impact of different tracklet matching strategies for ag-
gregation on the subset of the ScanNet200 validation set. Class-
agnostic APs are reported.

Different Tracklet Matching Strategies. While we
adopt frame-wise sIOU for tracklet matching, some ap-
proaches [37] leverage the aggregated 3D mask of each
tracklet for matching (i.e., tracklet-wise sIOU for aggrega-
tion in Table 5). Specifically, we maintain aggregated 3D
superpoint masks of tracked 2D instances for each track-
let and measure sIOU with new observation by only us-
ing co-visible superpoints. As reported in Table 5, frame-
wise sIOU for tracking brings meaningful performance gain
for AP50 and AP25 over the tracklet-wise sIOU while both
maintain reasonably good APs. We conjecture that this is
because wrong predictions are always accounted for obtain-
ing aggregated 3D masks in the case of tracklet-wise match-
ing. However, wrong predictions may not have any impact
at all during the frame-wise matching if wrong predictions
are distinctive from new observations and other predictions
have higher sIOU then them, preventing the wrong predic-
tions from being used for matching.

Method AP AP50 AP25

Agg. Only 31.4 49.9 63.5
+ Iter. Merging/Removal 31.8 (+0.4) 51.8 (+1.9) 68.5 (+5.0)
+ Overlap Removal 33.5 (+2.1) 54.4 (+4.5) 69.8 (+6.3)
+ Iter. Refine 35.1 (+3.7) 56.1 (+6.2) 70.5 (+7.0)

Table 6. Impact of iterative merging/removal, overlap removal,
and iterative refinement on the subset of ScanNet200 valida-
tion set. Class-agnostic APs are reported.

Impact of Iterative Merging/Removal Unlike existing
methods [37, 39, 63], our method has an additional false
positive suppression step by merging/removing duplicated
proposals. As shown in Table 6, applying iterative merging
and removing improves AP25 by 5.0%. More importantly, if
we apply iterative merging with overlap removal in the 2D
grounding step, it further brings significant gains in all AP
metrics. This is because overlap removal effectively sepa-
rates masks spanning multiple instances into each instance
or partial masks, which later can be merged/removed. At
last, applying iterative refinement further improves the qual-
ity, especially in AP and AP50 metrics.

Method mAP mAP50 mAP25

Ours w/ CLIP 27.5 34.7 38.2
+ Alpha-CLIP 30.5 (+3.0) 37.6 (+2.9) 41.1 (+2.9)
+ SMS-based Filtering 32.7 (+5.2) 41.4 (+6.7) 45.3 (+7.1)

Table 7. Impact of Alpha-CLIP and SMS-based filtering in in-
stance classification on the ScanNet200 dataset.
Impact of Alpha-CLIP and SMS Filtering. Table 7
demonstrates the effectiveness of using Alpha-CLIP and
SMS-based filtering. As shown, using Alpha-CLIP im-
proves the performance from 27.5 to 30.5 mAP, proving the
importance of considering object-centric representation in
instance classification. However, we note that our method
with CLIP still surpasses existing baselines by a large
margin (i.e., 3.8% over Open3DIS and 2.8% over Open-
YOLO3D). Using SMS-based filtering also brings gains in
AP metrics by effectively removing unconfident instances
from both image-based and point cloud-based proposals.
Full ablation study on all three datasets can be found in the
supplementary materials.

5. Conclusion
In this paper, we carefully combine existing concepts and
devise each stage to achieve precise 3D proposal generation
and accurate instance classification. Our robust 3D track-
ing allows for more precise 3D proposal aggregation. Also,
overlap removal in 2D predictions accompanied with itera-
tive merging/removal enables much fewer false positive 3D
proposals, such as overlapped or partial masks. At last, we
adopt Alpha-CLIP to obtain object-centric CLIP representa-
tion and remove unconfident 3D proposals by filtering with
a standardized maximum similarity score. Although our
method achieves SoTA precision and recall across datasets,
our method is computationally intense because heavy 2D
foundation models [28, 43, 48] are adopted in our pipeline.
Also, we found that our method fails to improve perfor-
mance on small objects (e.g., ScanNet++ in the supplemen-
tary) but rather remain similar to existing approaches. This
is because iterative merging and removal is more effective
for medium or large objects. Improving such limitations re-
mains our future work.
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