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Abstract— Enabling robots to grasp objects specified through
natural language is essential for effective human–robot interac-
tion, yet it remains a significant challenge. Existing approaches
often struggle with open–form language expressions and typ-
ically assume unambiguous target objects without duplicates.
Moreover, they frequently rely on costly, dense pixel–wise anno-
tations for both object grounding and grasp configuration. We
present Attribute–based Object Grounding and Robotic Grasp-
ing (OGRG), a novel framework that interprets open–form
language expressions and performs spatial reasoning to ground
target objects and predict planar grasp poses, even in scenes
containing duplicated object instances. We investigate OGRG
in two settings: (1) Referring Grasp Synthesis (RGS) under
pixel–wise full supervision, and (2) Referring Grasp Affordance
(RGA) using weakly supervised learning with only single–pixel
grasp annotations. Key contributions include a bi-directional
vision–language fusion module and the integration of depth
information to enhance geometric reasoning, improving both
grounding and grasping performance. Experiment results show
that OGRG outperforms strong baselines in tabletop scenes
with diverse spatial language instructions. In RGS, it operates
at 17.59 FPS on a single NVIDIA RTX 2080 Ti GPU, enabling
potential use in closed–loop or multi–object sequential grasp-
ing, while delivering superior grounding and grasp prediction
accuracy compared to all the baselines considered. Under the
weakly supervised RGA setting, OGRG also surpasses baseline
grasp–success rates in both simulation and real–robot trials,
underscoring the effectiveness of its spatial reasoning design.
Project page: https://z.umn.edu/ogrg

I. INTRODUCTION

Target-oriented robot grasping is a fundamental task in

robot manipulation, with wide-ranging applications in real-

world scenarios. Compared to purely vision-driven robot

grasping approaches [1], [2], [3], [4], language-driven robot

grasping offers greater flexibility by leveraging object at-

tributes (e.g., color, shape, category name, and spatial lo-

cation) to differentiate the target object from others [5], [6],

[7]. This capability reduces ambiguity in target identification.

However, the reliance on detailed language descriptions

introduces additional challenges for robust vision–language

understanding.

Previous language-conditioned robot grasping approaches

have been constrained to predefined vocabulary and simplis-
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Fig. 1: Object Grounding and Robot Grasping (OGRG) model
with open-form expressions for spatial reasoning. The model is
designed to solve the attribute-based grounding and grasp detection
task. The RGS subtask aims at predicting grasp rectangles with
pixel-wise full supervision. The RGA subtask focuses on predicting
grasp affordances with weak grasping supervision.

tic attribute descriptions (e.g., “red apple”), while typically

assuming the presence of distinct, non-duplicated objects

in the scene [6], [7], [8]. Consequently, these methods

cannot handle open-form language inputs or perform more

challenging grounding tasks such as spatial reasoning. While

recent advances in Multimodal Large Language Models

(MLLMs), including Vision–Language–Model (VLM) and

Vision–Language–Action (VLA) models, have demonstrated

strong multimodal understanding for high-level planning and

action generation [9], [10], [11], [12], [13], [14], their sub-

stantial computational demands for data generation, training,

and inference often limit their deployment on resource-

constrained robotic platforms. In addition, annotating large-

scale robotic grasp datasets with detailed language descrip-

tions remains labor-intensive for both human operators and

autonomous systems.

Despite the promising performance with MLLMs across

various objects and environments, two critical challenges

remain:

• Grasp learning perspective: Can a compact and com-

putationally efficient fusion module, serving as an alter-

native to MLLMs, be designed to effectively align vision

and language features for real-world robot grasping?

• Data efficiency perspective: Can the grasping model

be trained in a weakly supervised manner using sparse

and imperfect labels?

Without relying on pre-aligned vision–language mod-



els [15], [16], we primarily investigate effective multimodal

fusion and training with both dense and sparse labels for

object grounding and grasp detection. In this paper, we

propose a bi-directional multimodal fusion module to align

vision, language, and depth features from different embed-

ding spaces. The fused multimodal features are used for

two grasp detection settings as shown in Fig .1: Referring

Grasp Synthesis (RGS) [17], [18], [5] and Referring Grasp

Affordance (RGA) [6], [17], [19] (see III-A for problem

formulation details). Both tasks require pixel-level vision-

language understanding for object grounding and planar

grasp pose prediction. The most closely related work to

ours is ETRG [17], which employs the CLIP model with

a downsampling-then-upsampling strategy for parameter-

efficient tuning, aiming to reduce the number of trainable

parameters while maintaining multimodal alignment. How-

ever, the aggressive feature downsampling inevitably leads

to information loss, resulting in suboptimal performance

on object grounding. In contrast, our approach strikes a

better balance between model compactness (approximately

240M total parameters) and task performance by introducing

a novel fusion module that facilitates effective interaction

between the vision and language backbones.

Our grounding and grasping system is capable of (1)

accepting open-form object attribute descriptions, including

colors, shapes, category names, and spatial reasoning, to

predict target object masks and planar grasp poses in the

format of grasp rectangles and grasp affordance maps, (2)

effectively fusing multimodal features without relying on

pre-aligned models and utilizing both dense and sparse robot

grasping labels for predictions, and (3) grounding the target

object with high accuracy while achieving a high success

rate in grasping.

Our primary contributions are summarized as follows:

• An end-to-end Object Grounding and Robot Grasping

(OGRG) model for RGS and RGA tasks, predicting

object masks and 5-DoF grasp poses under dense super-

vision, and grasp affordances under weak supervision.

• A bi-directional multimodal fusion module is introduced

to align vision, language, and OGRG downstream tasks,

RGS and RGA.

• The approach is validated through comprehensive exper-

iments in both simulation and real robot environments,

demonstrating effectiveness across diverse objects and

open-form language inputs compared to baseline meth-

ods.

II. RELATED WORK

A. Language-guided Object Grounding

Language-guided object grounding focuses on localizing

the target object referred to by language within an image.

This problem can be categorized into two tasks based on

the output type for localization: referring expression com-

prehension (REC), which predicts bounding boxes, and refer-

ring expression segmentation (RES), which generates binary

segmentation masks. This paper concentrates on pixel-level

multimodal alignment for predicting segmentation masks and

grasping affordances, deriving from the RES task.

Early RES methods [20], [21], [22] employed fully

convolutional networks for visual feature extraction and

RNN/LSTM architectures for language embeddings. These

approaches typically utilized simple multimodal feature con-

catenation or multiplication, followed by convolutional layers

and upsampling, to decode target masks. More recent works

[17], [23], [24], [25] leverage well-aligned vision-language

models, such as the CLIP model [15], pretrained on large-

scale datasets, to enhance vision-language fusion. Another

line of research, including LAVT [26], CGFormer [27], and

DMMI [28], incorporates Swin Transformer [29] as the

visual feature extractor while actively exploring cross-modal

attention mechanisms to embed vision-language features into

a shared space. The method LAVT [26] is closely related

to ours, which introduces early-stage uni-directional fusion

modules for visual and linguistic feature interactions. In

contrast, this work proposes bi-directional multimodal fusion

modules that further integrate depth features, extending the

RES task to the robotics domain for object grounding and

grasp pose prediction.

B. Language-guided Robot Grasping

Recent advancements in vision-language models [15],

[30], [31] have significantly advanced the field of language-

guided robot grasping, enabling robots to identify and ma-

nipulate objects based on user-provided natural language

instructions [7], [17], [18], [9], [5], [19], [32], [10]. These

models leverage pre-trained embeddings, such as CLIP and

similar architectures, to align visual and textual modalities

effectively, allowing robots to process diverse and open-

vocabulary instructions. Early approaches primarily focused

on tasks like object detection and segmentation, often relying

on handcrafted features and task-specific training data. Re-

cent methodologies extend these capabilities by integrating

multimodal transformers and attention mechanisms to en-

hance contextual understanding and reasoning [9], [5]. These

models excel at handling ambiguous or complex instruc-

tions, such as spatial references or multi-object contexts,

by generating grasp affordance maps and candidate grasp

poses with high precision. Such advancements pave the way

for more robust and flexible applications in unstructured

and dynamic environments, addressing key challenges in

open-world robot manipulation. Our work builds on previous

vision and language models while targeting object grounding

and robot grasping tasks with strong and weak supervision.

III. METHOD

In this section, we propose the OGRG model for attribute-

based language-guided object grounding and robot grasping.

The OGRG method is designed to address two primary

grasp detection tasks: Referring Grasp Synthesis (RGS) and

Referring Grasp Affordance (RGA).

A. Problem Formulation

The detailed formulations for the RGS and RGA subtasks

are first introduced, as shown in Fig. 1. These tasks involve
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Fig. 2: OGRG Architecture. OGRG processes open-form language expressions, visual images, and depth maps as inputs to generate task
predictions. The bidirectional aligner (Bi-Aligner) fuses the multimodal features extracted from Swin Transformer [29] at different stages
and the BERT language model [33]. The updated multimodal features f i

back v and f i

back l are fed back into their corresponding visual and
linguistic branches via feature gates. Finally, the light-weighted fully convolutional network (FCN) heads processes the updated visual
features at different stages to produce the task-specific outputs.

processing multimodal inputs, including an RGB image

denoted as I ∈ R
H×W×3, where (H,W ) represent the

image dimensions; an attribute-based language description

with token length L represented as T ∈ R
L; and a depth

image denoted as D ∈ R
H×W . The proposed OGRG model

leverages these visual observations and open-form language

expressions to generate predictions for object grounding

binary masks M ∈ R
H×W and robot grasp pose G. We

use a unified representation for grasp detection here: G =
{x, y, z, θ, l} is parametrized by: (x, y), the gripper center

location in the image coordinate; z, the depth value; θ, the

gripper rotation angle in the camera frame; and l, the open

width of the gripper.

RGS Subtask: This task aims to predict a segmentation

mask and planar 5-DoF grasp poses in the format of grasp

rectangles, given an RGB image I , a depth map D from

the camera perspective view, and a language expression

T . Following [18], the OGRG model predicts three grasp-

related maps to reconstruct the gripper pose. The ground-

truth grounding and grasping maps are from the OCID-VLG

dataset [18]. The system is formulated as Φ(I,D, T ) =
{M,Q,Θ, P} to predict the object grounding mask M , the

grasp quality map Q, the grasp angle map Θ, and the gripper

open width map P . Specifically, (x, y) is determined by the

pixel coordinate of the maximum value in Q. The rotation

angle θ is derived as θ = Θ(x, y) from Θ. z can be derived

from depth map D(x, y). Finally, the gripper open width l

is obtained from P as l = P (x, y).
RGA Subtask: Unlike RGS, RGA will predict grasp

affordance maps A ∈ R
H×W×N with N discretized rota-

tion angles [6] (Fig. 1b). We adopt a segment-then-grasp

pipeline with OGRG and a Mask-Conditioned Grasping

Network (see section III-F). The 5-DoF grasp pose is

derived from the affordance maps, where (x∗, y∗, θ∗) =
argmax(x,y,θ) A(x, y, θ) and z = D(x∗, y∗). Here, (x∗, y∗)
corresponds to the pixel coordinate with the maximum

affordance value, θ∗ represents the optimal rotation angle,

and z provides the depth value for the grasp motion. We use

a predefined gripper open width l∗ for all grasp attempts in

RGA to facilitate the data collection process.

B. OGRG Multimodal Feature Fusion

Fig. 2 illustrates the details of the proposed OGRG model.

Depending on the different settings for RGS and RGA sub-

tasks, the OGRG model will provide 4 different grounding

and grasping maps {M,Q,Θ, P} simultaneously for the

RGS subtask after passing the task-specific FCN head. On

the other hand, the OGRG model will only predict the object

grounding map for RGA subtask.

The OGRG model employs Swin Transformer [29] as the

visual backbone and BERT Transformer [33] as the language

feature extractor. For the depth branch, a ResNet-18 [34]

model is utilized to extract depth features fd. To enable

efficient vision-language alignment, the model incorporates



a four-stage hierarchical multimodal fusion process with

multiple aligners. At each stage, the visual features f i
in v ∈

R
Ci×Hi×Wi and linguistic features f i

in l ∈ R
L×Ct interact

through two distinct cross-attention mechanisms, resulting

in fused multimodal features f i
back v and f i

back l for their

respective branches. Here, Ci, Hi, and Wi represent the

number of channels, height, and width of the i-th stage

(i ∈ {1, 2, 3, 4}), while L and Ct denote the language token

length and token dimension, respectively.

The fused features are passed through learnable feature

gates gi and added element-wise to f i
in v and f i

in l, generat-

ing enhanced visual and linguistic features f i
v and f i

l . Finally,

the light-weighted Fully Convolutional Network (FCN) head

processes the four-stage intermediate multimodal visual fea-

ture maps to produce the final task-specific outputs.

C. Bidirectional Aligner

Inspired by the unidirectional fusion module from LAVT

[26], a bidirectional aligner is proposed to update the

two branches simultaneously. The bidirectional aligner (Bi-

Aligner in Fig. 2) consists of visual-linguistic and linguistic-

visual cross-attention mechanisms for multimodal fusion.

The visual and depth features are first fused via element-

wise addition, fin vd = fin v + fd, where the depth feature

fd is used only at the first stage. Given the flattened visual-

depth features f i
in vd ∈ R

Ci×D, where D = Hi×Wi, and the

linguistic features f i
in l ∈ R

L×Ct from the model backbone,

cross-attention features are computed using the transformer

attention formulation:

f i
cross v = softmax

(

(WV
q f i

in vd)
T (WV

k f i
in l)√

Ci

)

(WV
v f i

in l)
T ,

(1)

f i
cross l = softmax

(

(WL
q f i

in l)
T (WL

k f i
in vd)√

Ct

)

(WL
v f i

in vd)
T ,

(2)

where WV
q ,WV

k ,WV
v ,WL

q ,WL
k ,WL

v are projection matri-

ces that unify the visual-depth and linguistic feature dimen-

sions. The resulting cross-modal features are reshaped into

f i
cross v ∈ R

Ci×Hi×Wi and f i
cross l ∈ R

L×Ct . These features

are further processed with 1 × 1 convolutions and ReLU

activations to produce the fused visual and linguistic features,

f i
back v and f i

back l.

Following the language pathway design from LAVT [26],

learnable gates gi are applied to enhance the features, yield-

ing the final visual and linguistic outputs:

f i
v = f i

in v + gi(f
i
back v), (3)

f i
l = f i

in l + gi(f
i
back l). (4)

D. Task Specific FCN Head

The annotation Vi, i ∈ {1, 2, 3, 4} is used to represent

the intermediate visual features as inputs to the FCN head.

From an empirical result, we use Vi = {f i
v} in RGS, and

Vi = {f i
back v} in RGA for best performance. The decoding
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Fig. 3: Mask-conditioned Grasping Network (MGN). Condi-
tioned on the object grounding mask M predicted from OGRG,
the MGN network uses a fully convolutional encoder-decoder ar-
chitecture for pixel-level grasp affordance prediction with different
rotation angles.

process is formulated as:
{

Y4 = V4,

Yi = Conv([Up(Yi+1);Vi]), i = 3, 2, 1,
(5)

where Conv(·) denotes a 3 × 3 convolution layer followed

by batch normalization and a ReLU activation function,

and Up(·) indicates bilinear interpolation upsampling. The

decoded Y1 serves as the final model prediction, outputting

{M,Q,Θ, P} for RGS (conducting grounding and grasping

simultaneously) and M for RGA (only for object grounding).

To train the OGRG-RGS model, the loss function com-

bines the cross-entropy loss for object grounding mask

prediction (M ) with smooth L1 losses for the grasp quality

map (Q), grasp angle map (Θ), and gripper open width map

(P ). For the OGRG-RGA model, dice loss and focal loss are

applied for object grounding mask prediction.

E. Mask-conditioned Grasping Network for RGA

As shown in Fig. 3, Mask-conditioned Grasping Network

(MGN) predicts pixel-level affordance maps A for N = 6
discrete rotation angles, each a multiple of θ = 30° based on

the RGB image I , the depth map D, and the OGRG ground-

ing mask M . Specifically, the inputs are concatenated and

passed through a ResNet-18 backbone. To handle challenging

grasping rotations, tensor transformations are applied, and

the processed features are fed into an FCN-based GraspNet,

which consists of standard convolutional layers, batch nor-

malization, and ReLU activations. A Sigmoid layer serves as

the final output layer to produce the grasp affordances.

To minimize human annotation effort, this problem is for-

mulated in a weak-supervision manner, where only a binary

{0, 1} ground-truth label is provided for the sampled grasp

location—a single pixel among the N rotation maps—while

other pixels remain unlabeled. The training process employs

a motion loss Lgrasp from Attribute-Grasp [6]

F. Dataset Collection for RGA

We collect training and testing data for the RGA task

in the CoppeliaSim simulator [35]. From a pool of 32

objects, 7 were randomly selected—primarily from the YCB

dataset [36]—to construct grasping scenes, as illustrated in

Fig. 4a. To improve robustness to environmental variations,

we applied domain randomization to the background tex-

tures. Language instructions were generated from multiple



templates incorporating object color, shape, category name,

and spatial location. Spatial relationships were expressed in

two forms: Absolute (relative to the workspace) and Relative

(relative to other reference objects), increasing the variety of

spatial reasoning cases. In total, we collected over 16,000
visual–language–grasp triplets for model training.

IV. EXPERIMENTS

In this section, attribute-based object grounding and robot

grasping experiments are conducted to evaluate the proposed

method. The objectives of the experiments are to verify the

following: 1) The Bi-Aligner with depth fusion effectively

fuses multimodal features without relying on pre-aligned

vision-language backbones. 2) The OGRG model demon-

strates the ability to understand object-attribute descriptions

and achieves a high grasping success rate, even with complex

spatial relationship language inputs. 3) The proposed OGRG-

RGA, combined with the MGN, successfully addresses the

weakly supervised RGA problem and efficiently adapts from

simulation to real robot experiments.

A. OGRG-RGS with Depth Fusion

Implementation Details: The OGRG-RGS model is trained

on the OCID-VLG dataset for 26 epochs with a batch size

of 4 per GPU, using a total of 8 NVIDIA V100 GPUs.

The training process employs the AdamW optimizer with

an initial learning rate of λ = 0.00005 and a polynomial

learning rate decay. For fair comparisons, input images are

resized to a resolution of 416 × 416, and the maximum

sentence length is capped at 20 tokens for all baselines.

RGS Evaluation Dataset: The OGRG-RGS model and cor-

responding baselines are evaluated on the OCID-VLG dataset

[18]. This dataset is designed for target object grounding

and grasp pose prediction based on open-form language

descriptions. It includes 58 unique object candidates, over

89.6k referring language expressions describing a wide range

of object attributes, and more than 75k hand-annotated grasp

rectangles.

Evaluation Metrics: The image segmentation results for

the language-referred object grounding task are evaluated

using the mean intersection over union (mIoU). For robot

grasping, the Jaccard Index J@N metric, as described in

[18], is employed. This metric measures the top-N grasp

rectangles that achieve an IoU greater than 0.25 and have

rotation angle differences of less than 30◦ compared to the

ground-truth grasp rectangles.

Baselines: The RGS evaluation results are reported with

the following baselines: 1) CROG, proposed by [18], ex-

tends the referring expression segmentation model CRIS

[25] for grasp map prediction. This approach involves full

model fine-tuning, including the pre-trained CLIP model

[15]. 2) ETRG [17] is a CLIP-based method that employs

a parameter-efficient tuning framework with depth fusion

branches. Instead of fine-tuning the full CLIP model, it uses

a bidirectional adapter optimized for multiple tasks. 3) HiFi-

CS [37] applies hierarchical FiLM [38] fusion for multimodal

TABLE I: OGRG-RGS ablation study and baseline comparison
on the OCID-VLG dataset. Our proposed method improves both
object grounding performance and the accuracy of grasp rectangle
predictions.

Baselines
Grounding Grasping

mIoU J@1 J@Any

CROG [18] 81.10 77.20 87.70
ETRG [17] 80.11 89.38 93.49
HiFi-CS [37] 88.26 - -
LAVT [26] 92.52 87.55 91.77
OGRG-nodepth 94.87 88.49 93.70
OGRG (Ours) 95.60 90.81 94.70

(a) Simulated novel objects (b) Real-world objects

(c) Training phase background textures

(d) Testing novel background textures from VIMA [39]

Fig. 4: Target objects used in both simulation and the real world
include 32 instances for simulation and 15 for real-robot exper-
iments. We apply domain randomization to the robot workspace
during training for robust performances and use the textures from
VIMA [39] in testing.

alignment and serves as another CLIP-based object ground-

ing method. 4) LAVT [26] adopts unidirectional aligners

for multimodal fusion. 5) OGRG-nodepth applies our bi-

directional aligner but without depth inputs.

RGS Results. Table I presents the language-guided object

grounding and robot grasping performance comparison with

the selected baselines on the OCID-VLG dataset [18]. The

proposed OGRG-RGS consistently outperforms all base-

lines across different backbone architectures. For the object

grounding task, the method achieves a significant improve-

ment of +14.5% mIoU compared to CROG. Addition-

ally, the Bi-Aligner with depth fusion enhances grounding

performance by +3.08% and +0.73% mIoU compared to

LAVT and OGRG-nodepth. In terms of robot grasping per-

formance, OGRG-RGS demonstrates a substantial improve-

ment, achieving +13.61% J@1 over CROG. The ablation

study further highlights that both the Bi-Aligner and depth

fusion contribute significantly to the overall accuracy of

grasp rectangle predictions. During model inference, OGRG

is able to run on a single RTX 2080Ti GPU with an inference

speed of 17.59 FPS.

B. Referring Grasp Affordance with Weak Supervision

Implementation Details: Following the collection of the

RGA dataset, both the OGRG-RGA grounding model and the

MGN affordance prediction model are trained for 50 epochs,

with batch sizes of 12 and 32, respectively. The AdamW

optimizer is employed for the OGRG-RGA model, with an



TABLE II: OGRG-RGA object grounding performance (oIoU)
in simulation.

Baselines Abs Rel Attr-cls Attr-base Avg

ETRG [17] 93.67 84.35 92.85 91.28 90.54
LAVT [26] 95.62 85.83 95.34 94.24 92.76
OGRG-nodepth 95.88 84.59 95.55 94.91 92.73
OGRG-db 96.49 85.88 96.51 95.69 93.64
OGRG (Ours) 97.00 87.05 96.55 95.49 94.02

initial learning rate of 5 × 10−5 and a polynomial learning

rate decay. The maximum sentence length is set to 25 tokens.

All RGA-related models are trained and tested on a single

NVIDIA RTX 2080 Ti GPU.

Evaluation Metrics: The object grounding task is evaluated

using the overall Intersection over Union (oIoU), similar to

the metric used in RGS. For object grasping, the evaluation

metric is defined as the object instance grasp success rate:
# of successful grasps on the correct target

# of total grasps
. In each test case, a single

grasp attempt is executed. A grasp is considered successful

only if the correct target object is grasped.

OGRG-RGA Object Grounding in Simulation: Test

scenes were collected with varying numbers of objects,

ranging from 1 to 7 per scene. For spatial attribute grounding

experiments, the Abs and Rel settings correspond to absolute

and relative spatial reasoning, respectively. A total of 1000

scenes were formulated, with and without object repetition

(e.g., five objects consisting of three apples, one banana, and

one tissue box). For general attribute grounding experiments,

two language templates were used: Attr-cls, which includes

color, shape, and category names, and Attr-base, which

includes only color and shape attributes. These experiments

were conducted on an additional 777 scenes.

The object grounding results are presented in Table II.

ETRG [17] is used as a baseline, modified to predict

grounding masks with minor adjustments to its architecture.

LAVT [26] uses a unidirectional aligner and no depth fusion;

Variants of the OGRG-RGA model were also evaluated,

OGRG-nodepth, which incorporates a bidirectional aligner

without depth fusion; and OGRG-db, where the multimodal

fused features f i
back v and f i

back l are passed directly to

the next following aligner, similar to the depth branch in

ETRG. The proposed OGRG-RGA model outperforms all

baselines, achieving an average improvement of +3.48% in

oIoU compared to ETRG.

OGRG-RGA Robot Grasping in Simulation: For testing,

1,600 test cases were created across 32 objects with pre-

selected query language descriptions based on object at-

tributes. In each test case, three identical object instances

were randomly dropped into the workspace, and spatial

language expressions were used to specify the target. For

fair comparisons, all baselines were tested under identical

scenes and language expressions.

The robot grasping performance results are presented in

Table III. The OGRG-RGA method significantly outperforms

the state-of-the-art ETRG [17] grasp affordance method,

achieving a +4.86% improvement in overall grasping per-

formance on the spatial reasoning task. Detailed qualitative

visualizations are shown in Fig. 5. As demonstrated, the

TABLE III: Grasp-success rates of OGRG-RGA in simulation,
reported for seen and unseen background (BG) conditions to
demonstrate generalization capability.

BG Baselines
Absolute Relative

AVG
4-obj 7-obj 7-obj

Seen
ETRG [17] 90.75 88.38 86.56 88.56
OGRG-nodepth 96.31 95.75 80.38 90.81
OGRG (Ours) 96.50 96.88 86.88 93.42

Unseen
ETRG 92.06 91.00 88.56 90.54
OGRG (Ours) 97.06 95.86 82.75 91.90

(a) Language input: pass me the banana that is to the middle right
of the workspace

(b) Language input: grasp me the bottom center dice

(c) Language input: grasp the tissue box that is to the upper right
of the green cylinder green cup

Fig. 5: Grounding masks and grasp affordances with spatial
reasoning in simulation. The green bounding boxes highlight the
correct language-referred target object. The first column shows the
input scene. The second column shows the affordance predictions
from ETRG [17]. The third and fourth columns denote the ground-
ing mask and grasp affordances from OGRG pipeline.

ETRG method in Fig. 5a and Fig. 5b fails to localize the

target and provide successful grasp poses, while the proposed

OGRG-RGA accurately segments the language-referred tar-

get and predicts feasible grasp poses. Furthermore, the grasp

affordance maps generated by ETRG (Fig. 5c) exhibit re-

dundant high values on incorrect object candidates, whereas

the proposed approach focuses directly on the correct target

object.

OGRG-RGA Real Robot Grasping: Real robot experi-

ments were conducted using a Franka Emika Panda robot

equipped with a FESTO DHAS soft gripper. As shown in

Fig. 4b, 15 household objects were collected, and testing

scenes were created by randomly sampling 6 target objects.

A total of 100 visual-language-grasp triplets were manually

collected in the real robot setup, and 246 grasping data points

were generated after applying data augmentation [6]. For

each baseline, all models were fine-tuned using the same

augmented dataset. Comparing with ETRG [17] test scene

setup, we parsed object candidates that have similar object

attributes formulating more challenging real-robot scenes for



(a) Grasp affordances Attribute-Grasp [6]

(b) Grasp affordances ETRG [17]

(c) Grasp affordances OGRG-nodepth

(d) Grasp affordances OGRG (Ours)

Fig. 6: Visualization of grasping affordances for real robot
experiments with distinct challenging objects. (a) to (d) show
the grasp affordances maps from the RGA models: Attribute-Grasp
[6], ETRG [17], OGRG-nodepth, and OGRG (Ours), respectively.
The language inputs from left to right columns are: yellow banana,
black cuboid, mustard bottle, and yellow cuboid sponge.

open-form language comprehension.

Fig. 6 illustrates the qualitative results on general object at-

tribute reasoning with distinct objects. Compared to the state-

of-the-art Attribute-Grasp method [6], the proposed OGRG-

RGA approach accurately localizes the target and generates

precise grasp poses with distinct rotation angles (Fig. 6d).

In contrast, Attribute-Grasp (Fig. 6a) struggles when object

candidates have similar colors or shapes as the target. Fig.

7 presents visualizations from challenging real robot spatial

reasoning experiments. The OGRG-RGA method (Fig. 7c)

produces clean and correctly focused grounding and grasping

affordance maps. While ETRG (Fig. 7a) successfully local-

izes language-referred objects, it predicts high affordance

values on incorrect objects. Additionally, OGRG-nodepth

fails in both grounding and grasping tasks under these

conditions.

Across 24 grasp attempts for each baseline, the qualitative

evaluation of real robot grasping success rates is presented

in Table IV. Due to the challenge of obtaining ground-truth

target object masks in the real robot setup, a grounding

accuracy metric is introduced to evaluate whether the grasp-

ing motion in each scene aligns with the target object. The

proposed OGRG-RGA model achieves the highest grounding

and grasping success rates, validating the effectiveness of its

design, including the Bi-Aligner and depth fusion compo-

(a) ETRG grasping affordances

(b) OGRG-nodepth grounding and grasping maps

(c) OGRG (Ours) grounding and grasping maps

Fig. 7: Visualization of grounding masks and grasp affordance
for challenging real robot spatial reasoning. The green bounding
boxes highlight the correct language-referred target object. The
visualization in the first column shows the original scene arrange-
ment and the grounding masks, while the rest of the three columns
indicate the grasp affordances corresponding to spatial language
descriptions on the same scene. The language expressions from
left to right are: (1) grasp the upper right mustard bottle; (2)
the mustard bottle that is to the top center of the workspace; (3)
pass the mustard bottle that is to the lower right of the sponge;
and (4) pass the mustard bottle below the sponge. Our proposed
method demonstrates strong grounding capability, rapid adaptation,
and accurate grasp pose predictions.

TABLE IV: OGRG-RGA real robot experiment results. We
evaluate the grounding accuracy and the grasping success rate under
different scenes with challenging objects.

Methods Grounding (%) Grasp Succ. (%)

ETRG [17] 75.0 62.5
OGRG-nodepth 75.0 33.3
OGRG (Ours) 87.5 70.8

nents. Despite the small dataset size used for fine-tuning, the

model efficiently adapts to new scenes with novel objects.

V. CONCLUSION

We introduced OGRG, a framework that aligns visual

and language features through a bidirectional aligner without

relying on pre-aligned vision–language models. By incorpo-

rating depth fusion, OGRG supports open-form, attribute-

based grounding and demonstrates rapid adaptability to new

scenes and novel objects. On both RGS and RGA bench-

marks, it achieves competitive performance in language-

guided grounding and grasping. Although our experiments

focus on planar grasps using a parallel-jaw gripper, the

proposed approach is embodiment-agnostic and can be trans-

ferred to humanoid tabletop manipulation tasks. Furthermore,

OGRG facilitates cross-embodiment grasping data collection

by reusing language-grounded supervision across different

end-effectors.



While OGRG achieves strong results on RGS and RGA

tasks, our current evaluation is limited to common household

objects with regular geometries in planar grasping settings.

The experiments assume a fixed camera viewpoint, a parallel-

jaw gripper, and relatively uncluttered tabletop environments.

Addressing scenarios involving complex object geometries,

severe occlusions, and diverse gripper configurations remains

an important direction for future work.
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