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Abstract
Relevance in e-commerce product search is critical to ensuring
that results accurately reflect customer intent. While large lan-
guage models (LLMs) have recently advanced natural language
processing capabilities, their high inference latency and significant
infrastructure demands make them less suitable for real-time e-
commerce applications. Consequently, transformer-based encoder
models are widely adopted for relevance classification tasks. These
models typically evaluate the relevance of a product to a given
query by encoding the query and product title as input features.
As e-commerce stores expand into new marketplaces, the need for
language- and region-specific relevance models grows, often re-
sulting in the sequential development and maintenance of separate
models per marketplace. To address this challenge, we introduce
a multilingual continual learning (CL) framework that mitigates
catastrophic forgetting. Our proposed method, FR-LoRA (Fisher
Regularized LoRA), integrates Elastic Weight Consolidation (EWC)
with marketplace-specific LoRA modules, where each LoRA is reg-
ularized using the Fisher information matrix. FR-LoRA retains the
same inference-time footprint as the base model, ensuring zero
additional latency while enabling frequent, scalable updates. Em-
pirically, our approach achieves a ∼3% ROC-AUC improvement
over single-marketplace baselines and outperforms several recent
CL baselines on both proprietary and public datasets.
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• Information systems→Web searching and information
discovery;Query reformulation; • Computing methodologies
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Figure 1: In Continual Learning, the language model (LM)
is trained on datasets one at a time—starting with English,
followed by French, and so on. The model’s parameters are
updated sequentially based on the loss function 𝐿(.)
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1 Introduction
Relevance modeling is a foundational component in e-commerce
product search, where the goal is to surface items that align closely
with a customer’s intent [2, 16, 28]. With vast product catalogs and
highly varied user queries, accurately classifying query-product
relevance is critical to delivering satisfying search experiences [4,
20]. While recent advancements in Natural Language Processing
(NLP)—particularly through large language models (LLMs)—have
demonstrated impressive gains in language understanding, their
high inference latency and significant computational costs render
them impractical for production-scale e-commerce systems [3, 26].
Consequently, lightweight transformer-based encoders have be-
come the preferred solution for relevance classification tasks due
to their efficiency and performance [5, 9].

In a typical deployment, these models ingest a customer query
and a product title and produce a relevance score, helping determine
which products should appear in search results [3]. However, as
global marketplaces grow and diversify, a new challenge emerges:
the need for language-specific relevance models. Each new mar-
ketplace introduces unique linguistic and cultural nuances, which
often necessitate training and maintaining dedicated models for
each region [21, 32].

One intuitive solution is to train a single multilingual model on
data from all marketplaces to facilitate semantic alignment across
languages and improve knowledge transfer. However, this approach
is computationally intensive and requires access to all marketplace
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data simultaneously. Such requirements hinder scalability, espe-
cially when continually expanding into new regions. To address
these limitations, we propose a continual learning (CL) framework
for multilingual relevance classification [10]. In this setting, mar-
ketplace datasets—each associated with a unique language—are
introduced sequentially. The model is trained on new language
data without accessing previous datasets, making it crucial to pre-
serve performance on earlier tasks while integrating knowledge
from new ones. A central challenge in this paradigm is avoiding
catastrophic forgetting, where performance on earlier marketplaces
deteriorates as new ones are added.

In this work, we introduce FR-LoRA, a novel continual learning
strategy designed to enable scalable multilingual relevance mod-
eling. FR-LoRA operates in two stages during each training step:
first, it updates the base model using Elastic Weight Consolida-
tion (EWC) to preserve shared knowledge across tasks. Then, it
trains independent adaptation modules (LoRA or DoRA) to cap-
ture marketplace-specific nuances and enhance task-specific per-
formance. To minimize interference between the base model and
adaptation modules, the LoRA/DoRA parameters are regularized
using the Fisher information matrix computed during the EWC
stage. This helps mitigate catastrophic forgetting across sequential
tasks. Importantly, FR-LoRA is designed such that only one LoRA or
DoRA module is active during inference, keeping the total parame-
ter count identical to the base model and ensuring zero additional
inference-time latency. The key contributions of our approach
are:

1. Develop a novel multilingual continual learning method
that enhances relevance classification across multiple mar-
ketplaces. This approach takes advantage of cross-lingual
transfer to boost the performance on each task while being
trained in sequential fashion.

2. Rigorous evaluation on a sequence of 7 multilingual amazon
marketplace data, publicly available aicrowd ESCI data (with
3 marketplaces). Our method achieve an average ROC-AUC
improvement of 3.02% in amazon data, 0.7% improvement on
aicrowd data over vanilla finetuning of base model on each
marketplace separately. Our method achieves these boost in
performance with zero increase in inference time cost.

3. Conducted several ablations to check the robustness of our
approach as well as compare forgetting of our approach
against other state-of-the-art CL methods. Our ablations also
revels the importance of our proposed fisher regularization
on LoRA/DoRA.

Note that our approach is not limited to query-product relevance
prediction and can be easily adapted to support other tasks and
evaluation metrics. For example, it can be used for multilingual
ad categorization, where new languages or product categories are
added over time. These updates can be made without retraining the
model from scratch. In addition, our continual learning framework
works with any transformer-based model and does not depend on
the order in which languages are introduced. This makes it flexible
and easy to use for researchers and practitioners who want to try
different models and language training setups.

2 Related Work
Continual learning methods are commonly categorized into four
main approaches:Regularization-basedmethods: These approaches
apply regularization during training on new tasks to preserve
knowledge learned from previous ones [17, 23, 34]. For example,
methods like Elastic Weight Consolidation (EWC) [17] constrain
updates to parameters deemed important for past marketplaces.
Replay-based methods [11, 29, 30]: These methods maintain a
buffer of samples from previous tasks. During training on new mar-
ketplaces, examples from this buffer are replayed alongside current
data, providing implicit regularization and helping to retain prior
knowledge. Distillation-based methods [6, 13]: In this teacher-
student framework, the model trained on previous tasks serves as
a teacher. As the student model learns from the current task, it also
distills knowledge from the teacher, preserving performance on
earlier marketplaces [7, 8]. Architecture-based methods [27, 33]:
These methods introduce additional parameters to capture task-
specific knowledge. In the context of transformer-based language
models, such approaches are often implemented through parameter-
efficient fine-tuning (PEFT) techniques such as soft prompts [18],
prefix-tuning [19], or Low-Rank Adaptation (LoRA) [15].

With the increasing use of large transformer-based language
models, it is essential to adapt them to downstream tasks while
preserving the general knowledge acquired during pretraining.
PEFT methods are widely adopted for this purpose [14]. Among
them, LoRA [15] has gained significant popularity due to its effi-
ciency. LoRA models the parameter updates as a low-rank matrix
Δ𝑊 = 𝐵𝐴, where 𝐵 and 𝐴 are low-dimensional matrices. This
formulation enables the model to capture task-specific nuances
while significantly reducing the number of trainable parameters
compared to full-model fine-tuning.

Several variants of LoRA have been proposed to address its lim-
itations [24]. One notable recent extension is DoRA [22], which
analyzes the differences in magnitude and direction of parameter
changes between full fine-tuning and LoRA. Based on this insight,
DoRA decouples the learning of directional and magnitude compo-
nents, resulting in improved performance. As a generalization of
LoRA, DoRA can be applied in any context where LoRA is used.

3 Problem Statement
We define the multilingual continual learning problem [10] in the
context of marketplace relevance modeling as follows. Consider a
sequence of 𝑛 distinct marketplaces, each associated with a dataset
{𝐷𝑖 }𝑛𝑖=1, where each 𝐷𝑖 corresponds to a unique combination of
language and domain. Our goal is to train amultilingual transformer
model sequentially on these datasets, with the constraint that data
from previous marketplaces is no longer accessible during future
training stages, ensuring computational efficiency and data privacy.

The objective is to learn a model that, at any point in the se-
quence, performs well across all encountered marketplaces (both
past and current), without suffering from catastrophic forgetting.
Furthermore, the model should leverage forward transfer, benefiting
from shared patterns across languages and domains, to enhance
learning on future marketplaces.
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Figure 2: (a) Shows how two different kinds of LoRA variants (Standard LoRA as LoRA-Block and DoRA as DoRABlock is applied
to any weight matrices to adapt them for a downstream task. (b) demonstrate our method FR-LoRA for each marketplace,
which is trained in two-stage fashion, where Stage-I loss (𝐿𝑡𝑎𝑠𝑘 + EWC-reg) as provided in Equation 2 and Stage-II loss (𝐿𝑡𝑎𝑠𝑘 +
FR-reg) as provided in Equation 4 are used. Here, MHA implies Multi-head Attention and FFN implies Feed-Forward Network
that is added after MHA in transformer blocks.

4 Proposed Methodology
This paper proposes a query-product relevance classification model
designed for sequential multi-marketplace adaptation. Our approach
aims to surpass marketplace-specific training performance while
eliminating the need for historical data storage and retraining. The
model facilitates efficient cross-marketplace knowledge transfer,
reducing both computational and storage overhead.

A core challenge in this setting is balancing the retention of prior
marketplace knowledge with the adaptation to new, marketplace-
specific signals—especially across diverse languages and domains.
To address this, we introduce a two-stage training strategy that
leverages the strengths of Elastic Weight Consolidation (EWC) [17]
and Low-Rank Adaptation (LoRA) [15]. This approach enables the
model to preserve shared knowledge across tasks while introducing
task-specific flexibility, all without requiring access to historical
data.

This section is organized as follows: Section 4.1 discusses the
use of LoRA and its recent variant, DoRA, in a continual learning
environment. Section 4.2 presents the EWCmethod, which serves as
the foundation of our approach. Section 4.3 introduces our proposed
method, FR-LoRAwhich integrates both LoRA and EWC tomitigate
catastrophic forgetting and promote forward transfer.

4.1 LoRA & DoRA in Continual Learning
Weuse a frozenmultilingual transformer backbone𝜃𝑏 (e.g., multilingual-
MiniLM) for all tasks. For each new marketplace T𝑡 , we introduce
lightweight, task-specific LoRA [15] modules 𝜃LoRA,𝑡 , inserted into

the query, key, and value projection layers of every multi-head
attention block, along with a new classification head 𝜃cls,𝑡 . Dur-
ing training on dataset 𝐷𝑡 , only 𝜃𝑡 = {𝜃LoRA,𝑡 , 𝜃cls,𝑡 } is optimized,
keeping 𝜃𝑏 frozen:

𝜃𝑡 ← argmin
𝜃𝑡
L𝑡 (𝐷𝑡 ;𝜃𝑏 , 𝜃𝑡 ) (1)

After training, only 𝜃𝑡 is stored for each task. Across 𝑀 market-
places, the total stored parameters are: Θ = 𝜃𝑏 +

∑𝑀
𝑡=1 𝜃𝑡 . LoRA

approximates weight updates using low-rank matrices and assumes
the pretrained weight magnitudes are optimal, mainly modifying
direction. However, this limits expressiveness when magnitude
updates are important. To address this, DoRA [22] decouples mag-
nitude and direction by reparameterizing a weight matrix𝑊 as:
𝑊 = ∥𝑊 ∥ · 𝑊

∥𝑊 ∥ Here, direction is learned using low-rank matri-
ces (like LoRA), while the magnitude is modeled using a learnable
scalar. This separation improves adaptation with minimal overhead.
Figure 2 (a) illustrates the structural differences for LoRA and DoRA
in our continual learning framework.

4.2 Elastic Weight Consolidation
EWC reduces catastrophic forgetting by preserving parameters
important to previous tasks. When learning task T𝑡 , it adds a regu-
larization term to the current loss, penalizing deviation from the
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previous optimum 𝜃∗
𝑡−1. The regularized loss is:

LEWC (𝜃𝑡 ) = L𝑡 (𝐷𝑡 ;𝜃𝑡 ) + 1{𝑡>1}

(
𝜆

2

∑︁
𝑖

𝐹
(𝑡−1)
𝑖

(
𝜃𝑡,𝑖 − 𝜃∗𝑡−1,𝑖

)2)
(2)

where 𝜆 controls regularization strength and 𝐹
(𝑡−1)
𝑖

is the Fisher
Information value for parameter 𝜃𝑖 from task T𝑡−1. The Fisher
values are estimated as:

𝐹
(𝑡−1)
𝑖

= E(𝑥,𝑦)∼𝐷𝑡−1

[(
𝜕 log 𝑝 (𝑦 |𝑥 ;𝜃∗

𝑡−1)
𝜕𝜃𝑖

)2]
(3)

This approach helps retain critical knowledge while allowing
flexibility for new tasks.

4.3 Proposed Method: FR-LoRA
Overview: In this method we plan to leverage the benefits of EWC
and LoRA both, where our base model will get updated based using
EWC, capturing the general trends across multiple marketplaces
and LoRA which is finetuned on each of the marketplaces inde-
pendently to capture marketplace specific nuances. In our case
then base model that gets updated helps in providing knowledge
transfer for the future tasks, where as LoRAs tries to increase the
plasticity of the model, improving the performance on the current
marketplace. To achieve this we have designed a two-stage training
process where first we train the base model using EWC, and then
add LoRA to that model and optimize it to capture more specific
patters for a particular marketplace. Figure 2(b) demonstrates the
two stage setting of our approach.

Stage I (Base Model Training): We finetune the base model
using the task-specific objective and the EWC regularization as
described in Equation 2. Once this stage is complete, we compute the
Fisher Information Matrix 𝐹𝑡 for the current task 𝑡 , which captures
the importance of each parameter in the base model with respect
to the learned task.

Stage II (LoRA Training): We add LoRA modules to the
base model and optimize the LoRA parameters to better capture
marketplace-specific information. However, our method also re-
quires the base model 𝜃𝑏 to continue updating for future tasks. This
means that if LoRA parameters are trained independently of this
changing base, they may become incompatible as the base parame-
ters shift. For example, suppose the base model is at state 𝜃𝑡 during
task 𝑡 , and LoRA parameters 𝜃LoRA,𝑡 are trained in conjunction
with it. Later, during task 𝑡 + 1, 𝜃𝑡 is updated to 𝜃𝑡+1 to fit the new
data. Now, 𝜃LoRA,𝑡 may no longer align well with the modified base
model 𝜃𝑡+1, leading to performance degradation on earlier tasks.

Fisher-Regularization on LoRA Parameters: To address this
issue, we add a regularization termwhen training the LoRA parame-
ters. This term ensures that LoRA modules focus on modifying only
those parts of the base model that were important for the current
task. We achieve this by weighting the LoRA parameters with the
inverse of the Fisher Information Matrix values. This way, param-
eters with higher importance (i.e., higher Fisher values) receive
lower regularization, allowing LoRA to more freely adjust them,
while parameters with lower importance are restricted from being
changed unnecessarily. The overall loss function for optimizing

LoRA parameters 𝜃LoRA,𝑡 for task 𝑡 becomes:

𝜃LoRA,𝑡 ←− arg min
𝜃LoRA,𝑡

L𝑡 (𝐷𝑡 ;𝜃𝑏 , 𝜃LoRA,𝑡 ) +

𝛽

2

∑︁
𝑖, 𝑗

1
(𝐹𝑡 )𝑖, 𝑗 + 𝜖

(
Δ(𝑊𝑡 )𝑖, 𝑗

)2
Δ(𝑊𝑡 )𝑖, 𝑗 = (𝐵𝑡𝐴𝑡 )𝑖, 𝑗 where 𝜃LoRA,𝑡 = {𝐴𝑡 , 𝐵𝑡 } (4)

Here, L𝑡 is the task-specific loss, (𝐹𝑡 )𝑖, 𝑗 is the Fisher Information
value for the 𝑖, 𝑗-th base model parameter, and 𝜖 is a small constant
to prevent division by zero. Note that as the fisher information
matrix used over here is associated with weight matrix on which
LoRA is applied, which in our case is query, key and value weight
matrices. The hyperparameter 𝛽 controls the strength of the LoRA
regularization. With certain modifications, we can apply the same
fisher regulariztion on DoRA parameters as well.

This approach ensures that even when the base model is updated
for future tasks, each task’s LoRA parameters remain compatible
by aligning them with the parts of the base model that were most
relevant for that task. As a result, we maintain past performance
while still allowing for adaptation to new marketplaces. A detailed
algorithm for our approach is presented in the Algorithm 1.

Algorithm 1 FR-LoRA

Input: Base model 𝜃𝑏 , task sequence {T1, . . . ,T𝑀 }, EWC regular-
ization strength 𝜆, FR regularization strength 𝛽 , lr_decay_rate

1: Initialize Fisher matrix 𝐹𝑡 ← 0
2: Imitialize base model with pretained weights.
3: for each task T𝑡 with dataset 𝐷𝑡 do
4: Fine-tune the base model (𝜃𝑏 ) using Equation 2
5: Calculate Fisher Information Matrix (Equation 3)
6: Freeze the base model
7: Add LoRA to the Query, Key and Value weight matrices.
8: Optimize LoRA parameters 𝜃LoRA, t using Equation 4.
9: Save trained LoRA parameters 𝜃∗LoRA, t ← 𝜃LoRA, t
10: Update Fisher Information Matrix (Equation 3) by calculat-

ing it for the model with LoRA.
11: lr← lr × lr_decay_rate
12: end for
13: Save the final base model 𝜃∗

𝑏
← 𝜃𝑏

14: for t ∈ {1, 2, · · · , 𝑀 − 1} do ⊲ Performing projection of LoRA
parameters

15: Project 𝜃∗LoRA, t to the space of 𝜃∗LoRA, M using Equation 5
16: end for

4.4 Practical Modifications
To further improve the stability and efficiency of the proposed
approach, we incorporate two additional techniques:
• Learning-rate Decay: To minimize excessive drift in the
base model across tasks, we used a learning rate decay mech-
anism. Specifically, after training on each marketplace, we
decay the learning rate used for base model updates.
• LoRA Projection at Inference Time: We introduce a pro-
jection mechanism for LoRA parameters at inference time.
Since LoRA modules are trained on top of a specific version
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Table 1: Performance comparison acrossmultiplemarketplaces. Multilingual training serves as an upper bound, while continual
learning methods aim to balance knowledge retention and new task adaptation. Our proposed method, FR-LoRA (Fisher
Regularized LoRA), achieves the best trade-off between plasticity and stability, outperforming strong baselines. <value>
represents the top performance, and <value> represents second top performance. Mean & std. (±) for ROC-AUCs are reported
based on 5 trials. The reported performance figures are expressed relative to independent fine-tuning, which serves as the
baseline and is normalized to 1×.

Methods Marketplaces

𝑀𝑎 𝑀𝑏 𝑀𝑐 𝑀𝑑 𝑀𝑒 𝑀𝑓 𝑀𝑔 AVG

Independent Training 1× 1× 1× 1× 1× 1× 1× 1×
ER (Buffer = 10000) -0.0445 -0.0279 +0.0745 +0.0063 +0.0029 +0.0397 +0.0756 +0.0181 ± 0.0.0045

Parameter Isolation

Prefix FT +0.0405 -0.0147 +0.0622 -0.0002 +0.0045 +0.0212 +0.0294 +0.0204 ± 0.0.0005
LoRA FT +0.0548 +0.0115 +0.0668 +0.0042 +0.0006 +0.0237 +0.0295 +0.0273 ± 0.0.0007
DoRA FT +0.0475 +0.0208 +0.0694 +0.0025 +0.0037 +0.0201 +0.0385 +0.0289 ± 0.0.0008

LoRA Inference-Time Merging Strategy

linear-combining [12] -0.1704 -0.2231 -0.1749 -0.2648 -0.2147 -0.1483 -0.2303 -0.2038 ± 0.0.0015
lora_delta_w_svd [1] +0.0204 -0.0312 +0.0258 -0.0368 -0.0473 0.0005 -0.0184 -0.0124 ± 0.0.0024

Continual Full Model Merging Strategy

MagMax + Independent FT -0.2057 -0.2658 -0.2237 -0.2756 -0.2283 -0.1745 -0.2674 -0.2344 ± 0.0.0023
MagMax + Sequential FT +0.0112 -0.0481 +0.0165 -0.0948 -0.0927 -0.0285 -0.0674 -0.0434 ± 0.0.0012
OPCM + Independent FT -0.0115 -0.0544 +0.0013 -0.0918 -0.0973 -0.0288 -0.0708 -0.0505 ± 0.0.0007
OPCM + Sequential FT -0.0093 -0.0633 -0.0014 -0.1189 -0.1027 -0.0501 -0.1057 -0.0645 ± 0.0.0004

Recent SOTA Methods for CL

LoRA Sequential Stacking -0.0416 -0.1037 -0.0127 -0.1232 -0.1291 -0.0568 -0.0413 -0.0726 ± 0.0.0010
O-LoRA -0.2785 -0.1561 -0.0841 -0.2223 -0.1923 -0.1180 -0.1472 -0.1712 ± 0.0.0009

Progressive-Prefix +0.0193 -0.0061 +0.0371 -0.0317 -0.0280 +0.0019 -0.0146 -0.0031 ± 0.0.0011

OURS + Variants

FR-LoRA +0.0242 -0.0092 +0.0689 +0.0050 +0.0057 +0.0266 0.0715 +0.0275 ± 0.0.0013
FR-LoRA + Proj. +0.0270 -0.0098 +0.0697 +0.0056 +0.0037 +0.0283 +0.0715 +0.0280 ± 0.0.0009

FR-LoRA + Lr-Decay +0.0311 -0.0077 +0.0722 +0.0062 +0.0078 +0.0287 +0.0716 +0.0300 ± 0.0005
FR-LoRA+Lr-Decay+Proj. +0.0327 -0.0079 +0.0725 +0.0064 +0.0064 +0.0301 +0.0716 +0.0303 ± 0.0.0006

FR-DoRA +0.0288 -0.0089 +0.0731 +0.0061 +0.0070 +0.0322 +0.0728 +0.0302 ± 0.0.0010
FR-DoRA + Lr-Decay +0.0277 -0.0090 +0.0719 +0.0063 +0.0071 +0.0301 +0.0716 +0.0294 ± 0.0.0007

of the base model, they may become less effective if the base
model parameters have significantly changed due to contin-
ual updates. Given a matrix 𝐴 ∈ R𝑛×𝑑 and a target matrix
𝐵 ∈ R𝑛×𝑚 , the function computes the orthogonal projection
of 𝐵 onto the column space of 𝐴 using the Moore-Penrose
pseudo-inverse.The projection 𝑃𝐵 ∈ R𝑛×𝑚 is given by:

𝑃𝐵 = 𝐴(𝐴⊤𝐴)−1𝐴⊤𝐵 (5)

Here, 𝐴⊤𝐴 ∈ R𝑑×𝑑 is invertible. The matrix 𝐴(𝐴⊤𝐴)−1𝐴⊤
is the projection matrix onto the column space of 𝐴, and 𝑃𝐵
is the closest point to 𝐵 in that subspace, minimizing the
squared Euclidean distance. In our case we want to project
LoRA from previous task to the LoRA associated to the last
task. To perform this we use the above equation for projec-
tion for each of the two weight matrices associated with

LoRA. Similar projection can be performed on the weights
associated with DoRA as well.

5 Experiments and Results
5.1 Experimental Setup
In this section we provide details regarding our experimental setup
and choices of hyperparameter. We use paraphrase multilingual
MiniLM 1 as our base encoder model.

All baseline models are trained using the𝐴𝑑𝑎𝑚𝑊 optimizer with
a learning rate of 5𝑒 − 5 for the methods where full model is trained
and 3𝑒 − 4 for PEFT based methods, batch size of 128, and for 25
epochs per marketplace with an early stopping with patience 3. For

1the base model weights can be found here: hugging-face-multilingual-MiniLM

https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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baseline methods specific hyperparameters we considered are the
ones that are reported in their paper.

For our method, the optimizer used for both stages are 𝐴𝑑𝑎𝑚𝑊
with a learning rate of 5𝑒−5 (cosine lr-scheduler) for Stage-I training
and a learning rate of 1𝑒 − 5 (constant lr-scheduler with 1000 step
warmup). For Stage-I, hyperparameter 𝜆 corresponding to EWC
regularization was considered as 1. For Stage-II, hyperparameters
of LoRA (same for DoRA) were rank 𝑟 = 64 and 𝛼 = 16 scaling was
utilized. The hyperparameter associated with Fisher Regularization
on LoRA, 𝛽 was considered as 0.0001. In both stages the model was
trained for 25 epochs with an early stopping (patience = 3).

We report performance using ROC-AUC on all previously seen
marketplaces after each task. All experiments are conducted on 8
NVIDIA V100 16GB GPUs.

5.2 Datasets
We benchmarked our approach on two e-commerce dataset, Ama-
zon proprietary e-commerce data from seven marketplaces. For
query-passage relevance, we use datasets from 7 e-commerce re-
gions across with different languages, which are anonymized, and
present as 𝑀𝑎 , 𝑀𝑏 , 𝑀𝑐 , 𝑀𝑑 , 𝑀𝑒 , 𝑀𝑓 , and 𝑀𝑔 . Each of these mar-
ketplaces includes query-product title pairs and their associated
ground truth label categorized as either relevant or non-relevant.
We also use the publicly available ESCI (E-commerce Search Corpus
with Implicit user feedback) dataset from Amazon, which contains
search sessions sampled from the Amazon Search Query Logs. The
ESCI dataset is used to evaluate the performance across three mar-
ketplaces - United States (US, English), Japan (JP, Japanese), and
Spain (ES, Spanish) marketplaces.

5.3 Baselines
To evaluate our approach, we compare it against a diverse set of
baselines covering both traditional and recent continual learning
methods.

1. Independent Finetuning: The model is trained individu-
ally on each marketplace, with no transfer of information
across tasks. This acts as a lower bound that highlights task-
specific performance without any continual learning.

2. Experience Replay [29]: A subset of data from previous
marketplaces is stored in a memory buffer and replayed
during training on new marketplaces. This provides implicit
regularization and helps reduce forgetting.

3. PEFT Fine-tuning: Parameter-efficient fine-tuning (PEFT)
methods such as Prefix Tuning [19], LoRA [15], andDoRA [22]
are applied independently to each marketplace without any
shared parameters or continual learning objective.

4. MagMax [25]: A parameter-mergingmethod that aggregates
models trained on different tasks by selecting parameter
values with maximum magnitude across tasks.

5. OPCM [31]: A projection-based merging method where pa-
rameters for a newmarketplace are projected into the param-
eter space of the previously learned marketplace to minimize
interference.

6. O-LoRA [33]: Marketplace-specific LoRA modules are fine-
tuned for each task while keeping previously trained LoRA

Table 2: Performance comparision across multiple market-
places on Public Aicrowd dataset. <value> represents the
top performance, and <value> represents second top perfor-
mance.

Methods Marketplaces

US ES JP AVG

Independent Training 0.75387 0.83947 0.84432 0.81255
ER (Buffer = 10000) 0.75651 0.84145 0.84959 0.81585

Parameter Isolation

Prefix FT 0.75293 0.84058 0.83198 0.8085
LoRA FT 0.75271 0.83423 0.83579 0.80758
DoRA FT 0.75478 0.84662 0.8405 0.81397

LoRA Inference-Time Merging Strategy

linear-combining [12] 0.60432 0.61824 0.65368 0.62541
lora_delta_w_svd [1] 0.7415 0.76616 0.76653 0.75806

Continual Full Model Merging Strategy

MagMax + Independent FT 0.59107 0.60528 0.64758 0.61464
MagMax + Sequential FT 0.71057 0.69354 0.69642 0.70017
OPCM + Independent FT 0.77668 0.75325 0.74092 0.75695
OPCM + Sequential FT 0.79699 0.81967 0.76454 0.79374

Recent SOTA Methods for CL

LoRA Sequential Stacking 0.63839 0.63207 0.83028 0.70024
O-LoRA 0.49817 0.63528 0.66559 0.59968

Progressive-Prefix 0.74456 0.79201 0.78641 0.77433

OURS + Variants

FR-LoRA 0.75551 0.84704 0.85214 0.81823
FR-LoRA + Proj. 0.75638 0.84665 0.85214 0.81839

FR-LoRA + Lr-Decay 0.75601 0.84724 0.85208 0.81845
FR-LoRA + Lr-Decay + Proj. 0.75689 0.84692 0.85208 0.81863

FR-DoRA 0.75591 0.84699 0.85240 0.81843
FR-DoRA + Lr-Decay 0.75692 0.84777 0.85262 0.81911

modules frozen. An orthogonality constraint is applied be-
tween LoRA modules of different tasks to reduce representa-
tional interference.

7. Progressive Prefixes [27]: Independent prefixes are fine-
tuned for each marketplace, and during inference, previ-
ously trained (and frozen) prefixes are concatenated with
the current prefix to promote forward transfer and retain
past knowledge.

5.4 Metrics
For classifying relevance and identifying optimal query-product
pairs, we use ROC-AUC as our primary metric. Although ranking
metrics like precision@k, recall@k and NDCG could be used, how-
ever, we opted not to generate results for generating metrics due
to the limited number of products per query in our datasets. As for
our case we have a sequence of multiple marketplaces, we compare
the performances on the basis of average ROC-AUC, i.e., averaged
across all the marketplaces.

5.5 Results
Table 1 compares various methods across multiple marketplaces.
While independent training performs reasonably well, it lacks cross-
market knowledge sharing. Continual learning approaches like
FR-LoRA strike a better balance between remembering previous
tasks and adapting to new ones. FR-LoRA outperforms strong base-
lines such as LoRA Finetuning and recent methods like Progressive
Prefix. Its variants—especially those with learning rate decay and
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Table 3: Table presents ROC-AUC results for the comparison of our methods FR-LoRA and FR-DoRA against EWC. <value>
represents the top performance, and <value> represents second top performance. The reported performance figures are
expressed relative to independent fine-tuning, which serves as the baseline and is normalized to 1×.

Method Marketplaces

𝑀𝑎 𝑀𝑏 𝑀𝑐 𝑀𝑑 𝑀𝑒 𝑀𝑓 𝑀𝑔 AVG

Independent Training 1× 1× 1× 1× 1× 1× 1× 1×
EWC +0.0260 -0.0115 +0.0596 -0.0037 +0.0042 +0.0299 +0.0705 +0.0250 ±0.0059

FR-LoRA +0.0364 -0.0024 +0.0712 +0.0030 +0.0060 +0.0322 +0.0753 +0.0317 ±0.0013
FR-DoRA +0.0288 -0.0089 +0.0731 +0.0061 +0.0070 +0.0322 +0.0728 +0.0302±0.0010

projection tuning—achieve the highest average ROC-AUC, with
FR-LoRA + Lr-Decay + Proj. reaching an improvement of +0.0303.

Table 2 shows similar trends on the Aicrowd dataset. Experi-
ence Replay slightly improves over independent training, while
parameter isolation methods offer moderate gains. Inference-time
and full model merging strategies perform inconsistently, often
lacking stability. Among recent methods, Progressive Prefix shows
promise but falls short. FR-LoRA and its variants again lead, with
FR-DoRA2 + Lr-Decay achieving the top score of 0.8191, reinforcing
the effectiveness of our approach across diverse marketplaces.

5.6 Ablation Study
5.6.1 Does adding LoRA on top of EWC improve performance? In
this section we want to analysis that whether adding LoRA or DoRA
on top of EWC, boosts the downstream task performance. To under-
stand that we compare the task-wise performance of EWC alone,
with our approach FR-LoRA and FR-DoRA. Table 3 presents the
results showing that adding LoRA/ DoRA along with our fisher reg-
ularization improves performance on each and every marketplace.

a) b)

Figure 3: (a) provides a comparison of avg. ROC-AUC for our
method with and without FR. (b) provides a comparison of
FR-LoRA against other baseline methods for forgetting.

5.6.2 Importance of Fisher Regularization in FR-LoRA. To under-
stand the impact of Fisher regularization in our method, we com-
pared the performance of standard LoRA (without Fisher regulariza-
tion) to FR-LoRA (with Fisher regularization) across both Amazon
and Aicrowd datasets. Note that in both cases the base model is
being updated sequentially using EWC, Stage I of our methodology.
Figure 3(a) clearly show that incorporating Fisher regularization

2FR-DoRA is same as FR-LoRA with the modification, where in place of LoRA, DoRA
is being used.

significantly improves ROC-AUC scores. This highlights its role in
preserving previously learned knowledge while adapting to new
marketplaces, making it a crucial component of our continual learn-
ing design.

5.6.3 Forgetting Analysis. We measure forgetting by checking how
much the ROC-AUC for each task drops after learning new ones.
Forgetting is computed as

1
𝑇

𝑇∑︁
𝑡=1

(
ROC-AUC(final)𝑡 −max

𝑘≤𝑇
ROC-AUC(𝑘 )𝑡

)
Higher values mean less forgetting. As shown in the Figure 3(b), our
method (FR-LoRA) forgets the least, while other methods like ER,
MagMax + EWC , OPCM + EWC , and O-LoRA forget more. This
shows that Fisher regularization on LoRA along with EWC to up-
date base model helps keep old knowledge better during continual
learning.

5.6.4 Latency & Number of Parameter. During training, FR-LoRA
updates both the base model and LoRA adapters, resulting in a
slightly higher number of trainable parameters compared to meth-
ods that train the base model or train PEFTs. However, this addi-
tional overhead is only during training. At inference time, LoRA
adapters can be merged with the base model weights, ensuring
that the final model incurs no additional latency. As a result, in-
ference speed and resource usage remain equivalent to that of a
standard base model, making FR-LoRA both efficient and practical
for deployment.

6 Conclusion.
We presented FR-LoRA, a simple yet effective continual learning
method that combines the benefits of parameter-efficient LoRA fine-
tuning with Fisher-based regularization. Our approach consistently
outperforms strong baselines and recent state-of-the-art methods
across multilingual marketplaces, showing better retention of prior
knowledge and strong generalization to new tasks. With minimal
inference overhead and strong performance, FR-LoRA offers a prac-
tical solution for real-world continual learning scenarios. These
gains directly translate to improved query-product relevance, which
is critical in e-commerce applications.
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