
0740 -7459 / 19©2019 I EEE NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 61

 FORMAL METHODS ARE mathe-
matically based approaches for speci-
fying, building, and reasoning about
software. Despite 50 years of research
and development, formal methods
have had only limited impact in in-
dustry. While we have seen success
in such domains as microprocessor
design and aerospace (e.g., proofs
of security properties for helicopter
control systems1), we have not seen
wide adoption of formal methods for
large and complex systems, such as
web services, industrial automation,
or enterprise support software.

One of the key difficulties when
proving the security, safety, and
robustness of these systems is the
problem of finding system architec-
ture models necessary for analysis.
Proving the system at its lowest level
of detail is intractable, and, thus, we
must reason at higher levels of ab-
straction. If written by hand, these
models are expensive to build and
hard to keep up to date with imple-
mentations. Another problem is
that the size of the potential user
community and the business value
have typically not justified the cre-
ation of scalable and easy-to-use

tools for the formal verification of
those models.

With the cloud, much of this has
changed. Descriptions of cloud ser-
vices provide accurate models of the
system. That is to say, the appli-
cation program interfaces (APIs) of
cloud services are computer-readable
contracts that establish and govern
how the system behaves. In many
cases, these models are amenable to
formal analysis at scale.2 Most im-
portantly, since those models are uti-
lized by a large user community, it is
now economically feasible to build
the tools needed to verify them.

The larger cloud providers are
rapidly developing and applying for-
mal method tools. At Amazon Web
Services (AWS), for example, we have
used cloud models to construct large-
scale automated reasoning tools
that can prove whether or not access
controls meet governance rules and
whether networks are properly
secured. These tools are used mil-
lions of times daily and help AWS
customers manage the security of
their accounts.

This is the beginning of an era in
which security, compliance, avail-
ability, durability, and safety proper-
ties can be proven about large-scale
architectures. In this short column,

we discuss the trend of constructing
practical and scalable cloud-based
formal methods and how they can
easily be used by customers—some-
times with a single operation for one-
click formal methods.

The Classical Approach
(Where Formal Verification
Was Hard)
Figure 1 shows a simplified, three-
tier web application for uploading
pictures developed in a traditional
(noncloud) environment. The web tier
has two REST resources:

• the Login API for users to au-
thenticate with the service

• the Upload API to upload new
pictures to the website.

The app tier consists of four mi-
croservices that interact with each
other through a standardized API.
The Auth Service processes authori-
zation requests; the Session Service
tracks stateful data relevant to the
user’s current visit to the website;
the Upload Service receives photos
from the user and stores them for
future retrieval; and the Thumbnail
Service creates thumbnails for the
photos in the data store. The data
tier has three databases: Auth DB for

One-Click
Formal Methods
 John Backes, Pauline Bolignano, Byron Cook, Andrew Gacek, Kasper Søe Luckow, Neha Rungta,
Martin Schaef, Cole Schlesinger, Rima Tanash, Carsten Varming, and Michael Whalen

Digital Object Identifier 10.1109/MS.2019.2930609
Date of current version: 22 October 2019

Editor: Tim Menzies
North Carolina State University
tim@menzies.us

REDIRECTIONS

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

REDIRECTIONS

authorization credentials, User Ses-
sion DB for user sessions, and Photo
Store for user photos and thumbnails
on the website.

Imagine that we want to prove
least-privilege access to resources
for the system. Toward this goal, we
would have to prove the following
requirements:

1. Only the Auth Service shall ac-
cess the Auth DB.

2. The Auth Service shall not write
to Auth DB. (For simplicity, we
assume that users are added to
the authentication database us-
ing an external mechanism.)

3. Resources in the web tier shall
not directly access databases in
the data tier.

4. The Thumbnail Service shall
access only the Photo Store (no
other databases) and shall write
only to the thumbnail portion of
the Photo Store.

In a noncloud computing envi-
ronment, the problem is that the

diversity of technologies compos-
ing the system makes it challenging
to verify these end-to-end require-
ments. At the very least, we have
to consider the following:

• Network controls: These are
used to guard the compute nodes
in each tier. Typically, controls
are enforced through the use of
hardware or software firewalls,
which block packets from re-
stricted Internet Protocol (IP)
addresses and/or port ranges.

• File system permissions: These
are employed to control and del-
egate user access to local data.

• Database credentials: These
are utilized to restrict access to
a set of privileged users, e.g.,
developers.

• Cryptographic keys: These are
used to protect user credentials
in the databases.

We also must reason about combi-
nations of these access control mech-
anisms. For example, requirement 4

involves reasoning about network
reachability, database access control,
and, potentially, file system permis-
sions, depending on how the Photo
Store is implemented. We are rea-
soning simultaneously about both
low-level implementation details and
higher-level architectural design.

To reason end to end, we must ei-
ther build new mechanisms and tools
over a combined semantic model
or determine how to decompose prop-
erties such that results from existing
tools can be soundly combined. Also,
for any model we build, we must check
that it matches the behavior of the de-
ployed system. Finally, maintaining
and scaling the model as components
are added or changed is a daunting
and often-neglected task.

A New Approach (in the Cloud,
Where Formal Verification
Works Well)
Now consider the example from Fig-
ure 1 in the cloud. Cloud computing
providers, such as AWS, give custom-
ers a comprehensive set of system
services and features that are easy to
plug in to each other. We will keep the
same services in the app tier and use
the provided database and storage fa-
cilities from AWS for the data tier. As
we did before, imagine we are aim-
ing to prove least-privilege access to
resources of the system. In the cloud
context, the proof in this example boils
down entirely to reasoning about poli-
cies. This is because AWS defines a
policy language that allows customers
to configure access control across all
services and resources, including APIs,
compute instances, databases, alarms,
logs, and metrics. This policy language
governs access to all of the components
in Figure 1. A common language allows
us to reason about all of the disparate
components and soundly compose
the results, with no additional effort.

Auth Service

Session Service

Upload Service

Thumbnail Service

Auth DB

User Session DB

Photo Store

Login API

Upload API

Web Tier App Tier Data Tier

Post

Post

Check
Credentials

Verify
Session

Retrieve
Session

Create
Session

Save
Photo

Trigger

Save
Thumbnail

FIGURE 1. The architecture of a three-tier web application.

REDIRECTIONS

REDIRECTIONS

NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 63

Also, the cost of creating the analysis is
amortized across all of the platform’s
users, so we can invest in scalable and
accurate analyses.

 Figure 2(a) shows a policy for the
Thumbnail Service. In this example,
we have implemented the Photo Store
using Amazon Simple Storage Service
(Amazon S3) and the Auth and User
Sessions databases in Amazon Dy-
namoDB. The access control policy
in Figure 2(a) determines the access
rights for the Thumbnail Service. The
first statement allows the service to
read files from the photo directory.
The second and third statements al-
low the Thumbnail Service to write to
the thumbnail directory and invoke an
external function to compress images.

 At AWS, we have developed the
Zelkova tool3 to prove properties
across examples like that in Figure 1.
Zelkova encodes access control poli-
cies and properties into satisfiability
modulo theories (SMT) logic. SMT
is a language for checking proposi-
tional logic satisfiability extended

with theories that allow reasoning
about richer data, such as unbounded
integers or real numbers. Zelkova
uses the theories of strings, regular
expressions, bit vectors, and integer
comparisons. The SMT models gen-
erated by Zelkova can be analyzed
by several efficient back-end tools.

Suppose we wish to verify require-
ment 4 of the policy in Figure 2(a).
We write constraints representing
violations of this requirement, as
shown in Figure 2(b). Informally, the
constraints state that any write re-
quest outside of the thumbnail direc-
tory of the Photo Store is a violation,

as well as any read request outside of
the thumbnail and photo directory or
any access to a DynamoDB database
(which contains the Auth and User
Sessions databases).

In the example involving Fig-
ure 2(a) and (b), if there were no further
Allow statements on Amazon S3

resources, the tool would return a
valid; it is not possible for the thumb-
nail account to read files from other
locations in Amazon S3. Suppose,
however, that the policy had an addi-
tional statement that allowed reading
from the website-photo-store/back-
ups directory. In this case, the result

{
"Statement": [
…
{
"Effect": "Allow",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::website-photo-store/photos/*"

},
{
"Effect": "Allow",
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::website-photo-store/thumbnails/*"

},
{
"Effect": "Allow",
"Action": "lambda:InvokeFunction",
"Resource":
"arn:aws:lambda:us-east-1:111122223333:function:CompressImage"

},
…

]
}

"Constraints": {
"Actions": ["s3:PutObject"],
"NotResources": [

"arn:aws:s3:::website-photo-store/thumbnails/*"
]

}

"Constraints": {
"Actions": ["s3:GetObject"],
"NotResources": [
"arn:aws:s3:::website-photo-store/thumbnails/*"
"arn:aws:s3:::website-photo-store/photos/*"

]
}

"Constraints": {
"Actions": ["dynamodb:*"]

}

{
"Principal": "arn:aws:iam::123456789012:role/Thumbnail",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::website-photo-store/backups/"

}

(a)

(b)

(c)

FIGURE 2. The policies and constraints in Zelkova: (a) a small portion of the access control policy for the Thumbnail Service from

Figure 1, (b) three constraints representing violations of requirement 4, and (c) a representative violation report.

We can now use automated
reasoning to provide inexpensive and
provable assurance to customers.

REDIRECTIONS

64 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JOHN BACKES is a senior software
development engineer with the Amazon
Inspector service team at Amazon Web
Services, where he is the lead developer for
the Tiros service, which performs semantic
analysis of virtual private cloud networks.
Contact him at jbackes@amazon.com.

MARTIN SCHAEF is a software engineer at
Amazon Web Services Security. His research
focuses on large-scale program analysis infra-
structure. Contact him at schaef@amazon.com.

PAULINE BOLIGNANO is a software
engineer at Amazon Web Services. Her research
focuses on providing quality assurance to
customers through the verification of the various
aspects of software and system development.
Contact her at pln@amazon.

COLE SCHLESINGER is a senior
applied scientist at Amazon Web Services.
His research interests include programming
languages and formal methods with a focus
on building domain-specific models
supporting automated verification. Contact
him at awscole@amazon.com.

BYRON COOK is a professor of computer sci-
ence at University College London and director of
Automated Reasoning at Amazon. Contact him
at byron@amazon.com.

RIMA TANASH is the lead security engineer with
the Amazon Security Hub service team, where she
applies automated reasoning technologies to audit
various access configurations. Her research inter-
ests include data privacy using machine learning.
Contact her at tanashr@amazon.com.

ANDREW GACEK is an applied scien-
tist with the Automated Reasoning Group
at Amazon Web Services. His research
interests include developing and applying
automated formal verification at scale.
Contact him at gacek@amazon.com.

CARSTEN VARMING is a senior software
engineer with the Automated Reasoning
Group at Amazon Web Services. His research
interests include functional programming
paradigms, logic, software architecture, and
program analysis at scale. Contact him at
varming@amazon.com.

KASPER SØE LUCKOW is a software
development engineer with the Automated
Reasoning Group at Amazon Web Services. His
research interests include program analysis and
automated verification at scale. Contact him at
luckow@amazon.com.

MICHAEL WHALEN is a principal applied
scientist and leader of the Proof Platforms team
at Amazon Web Services. His research interests
include scaling formal verification tools and their
application to industrial problems. Contact him
at mww@amazon.com.

NEHA RUNGTA is a principal applied scientist
and the leader of the Formal Services team at
Amazon Web Services. Her research interests
include improving the customer experience in
the cloud through the use of formal verification.
Contact her at rungta@amazon.com.

REDIRECTIONS

 NOVEMBER/DECEMBER 2019 | IEEE SOFTWARE 65

would be an invalid, and Zelkova
would report a violation involving the
constraint shown in Figure 2(c).

It is possible to customize Zelkova
for a variety of workflows. First, one
may use the tool as a preventative
control. These controls serve as gate-
keepers in an automated workflow,
enforcing a set of checks that, if unsuc-
cessful, halt the workflow. As part of
the pipeline, Zelkova controls ensure
that only compliant access control pol-
icies are created and attached to pro-
duction resources. It is also possible to
use Zelkova for detective (i.e., audit-
ing) and responsive (i.e., monitoring
and alarming) controls. Such controls
dynamically monitor, analyze, and re-
spond to events in the cloud, includ-
ing configuration changes, and can
be equipped with Zelkova checks to
detect policy compliance violations.
In the case of a violation, several op-
tions are available. A notification email
can be generated and sent to the user,
or the system can revert to a known
good state.

In practice, Zelkova is used millions
of times a day by both internal and ex-
ternal customers, supporting preventa-
tive, detective, and reactive controls,
and 99% of all Zelkova proofs com-
plete in 160 ms or lower. Zelkova is cur-
rently integrated within AWS services,
including Amazon S3, AWS Config,
AWS IoT Device Defender, Amazon
Macie, AWS Trusted Advisor, and Am-
azon GuardDuty. External customers,
ranging from the financial industry to
compliance regulators, use Zelkova to
ensure that their access control policies
are compliant with corporate gover-
nance rules.

Opportunities for Formal Methods
in a Cloud Environment
Formal methods in the cloud are used
for more than just access control.

Tiros,4 part of Amazon Inspector,
uses the model provided by Amazon
Elastic Compute Cloud (Amazon
EC2) network configurations to per-
form proofs of network reachability
without generating any network traf-
fic. For example, a customer may
check whether there exists any pub-
lic IP address on the Internet that
can access a local database server.
Unlike packet-scanning approaches,
Tiros will find any such access path
and does not add load to the net-
work. Other examples where we
will investigate the common cloud
model to perform proofs include the
Internet of Things (IoT) (AWS IoT
Core), build and deploy (AWS Cod-
eStar), infrastructure as code (AWS
CloudFormation), logging (AWS
CloudTrail), monitoring (Amazon
CloudWatch), and machine-learning
frameworks (Amazon SageMaker).

One-Click Formal Methods—
Try It Out!
We have constructed the Zelkova
and Tiros tools so that this technol-
ogy is available at the click of a but-
ton (or check of a checkbox).

• In Amazon S3 Block Public
Access, when creating a stor-
age bucket, the creation page
includes a checkbox to deny pub-
lic access to the bucket. If this
option is selected, Zelkova will
safeguard a policy, disallowing
modifications that would allow
public access.

• In Amazon Inspector, by en-
abling network reachability
checks, Tiros will prove which
servers are publicly accessible.

• In AWS Config, which assesses
and audits resource configura-
tion, enabling certain managed
rules will use Zelkova to ensure

that common corporate gover-
nance policies are followed.

M ore generally, we can now
use automated reasoning
to provide inexpensive

and provable assurance to customers.
We expect that this trend of building
practical and scalable formal methods
in the cloud will lead to environments
where security, compliance, availabil-
ity, durability, and safety properties
can be proved about large-scale sys-
tems. For more information, check
out our Amazon Provable Security
webpage at https://aws.amazon.com/
security/provable-security.

References
1. D. Cofer et al., “A formal approach

to constructing secure air vehicle

software,” Computer, vol. 51, no. 11,

pp. 14–23, 2018.

2. B. Cook, “Formal reasoning about

the security of Amazon Web Ser-

vices,” in Proc. Federated Logic

Conference (FLoC), 2018. doi:

10.1007/978-3-319-96145-3_3.

3. J. Backes et al., “Semantic-based Au-

tomated Reasoning for AWS Access

Policies using SMT,” in Proc. Formal

Methods in Computer-Aided Design

(FMCAD), 2018. doi: 10.23919/

FMCAD.2018.8602994.

4. J. Backes et al., “Reachability

analysis for AWS networks,” in

Proc. Computer Aided Verifica-

tion, July 2019, pp. 231–241. doi:

10.1007/978-3-030-25543-5_14.

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

