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Abstract. We propose a new smart local search for the p-center problem,
based on the critical vertex concept, and embed it in a GRASP framework. Ex-

perimental results attest the robustness of the proposed search procedure and

confirm that for benchmark instances it converges to optimal or near/optimal
solutions faster than the best known state-of-the-art local search.

1. Introduction

The p-center problem is one of the best-known discrete location problems first
introduced in the literature in 1964 by Hakimi [13]. It consists of locating p facilities
and assigning clients to them in order to minimize the maximum distance between a
client and the facility to which the client is assigned (i.e., the closest facility). Use-
less to say that this problem arises in many different real-world contexts, whenever
one designs a system for public facilities, such as schools or emergency services.

Formally, we are given a complete undirected edge-weighted bipartite graph G =
(V ∪ U,E, c), where

• V = {1, 2, . . . , n} is a set of n potential locations for facilities;
• U = {1, 2, . . . ,m} is a set of m clients or demand points;
• E = {(i, j)| i ∈ V, j ∈ U} is a set of n×m edges;
• c : E 7→ R+ ∪ {0} is a function that assigns a nonnegative distance cij to

each edge (i, j) ∈ E.

The p-center problem is to find a subset P ⊆ V of size p such that its weight,
defined as

(1) C(P ) = max
i∈U

min
j∈P

cij

is minimized. The minimum value is called the radius. Although it is not a re-
strictive hypothesis, in this paper we consider the special case where V = U is the
vertex set of a complete graph G = (V,E), each distance cij represents the length of
a shortest path between vertices i and j (cii = 0), and hence the triangle inequality
is satisfied.
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In 1979, Kariv and Hakimi [16] proved that the problem is NP -hard, even in
the case where the input instance has a simple structure (e.g., a planar graph of
maximum vertex degree 3). In 1970, Minieka [20] designed the first exact method
for the p-center problem viewed as a series of set covering problems. His algorithm
iteratively chooses a threshold r for the radius and checks whether all clients can
be covered within distance r using no more than p facilities. If so, the threshold r is
decreased; otherwise, it is increased. Inspired by Minieka’s idea, in 1995 Daskin [3]
proposed a recursive bisection algorithm that systematically reduces the gap be-
tween upper and lower bounds on the radius. More recently, in 2010 Salhi and
Al-Khedhairi [26] proposed a faster exact approach based on Daskin’s algorithm
that obtains tighter upper and lower bounds by incorporating information from
a three-level heuristic that uses a variable neighborhood strategy in the first two
levels and at the third level a perturbation mechanism for diversification purposes.

Recently, several facility location problems similar to the p-center have been
used to model scenarios arising in financial markets. The main steps to use such
techniques are the following: first, to describe the considered financial market via
a correlation matrix of stock prices; second, to model the matrix as a graph, stocks
and correlation coefficients between them are represented by nodes and edges, re-
spectively. With this idea, Goldengorin et al. [11] used the p-median problem to
analyze stock markets. Another interesting area where these problems arise is the
manufacturing system with the aim of lowering production costs [12].

Due to the computational complexity of the p-center problem, several approxi-
mation and heuristic algorithms have been proposed for solving it. By exploiting the
relationship between the p-center problem and the dominating set problem [15, 18],
nice approximation results were proved. With respect to inapproximability re-
sults, Hochbaum and Shmoys [15] proposed a 2-approximation algorithm for the
problem with triangle inequality, showing that for any δ < 2 the existence of a
δ-approximation algorithm would imply that P = NP .

Although interesting in theory, approximation algorithms are often outperformed
in practice by more straightforward heuristics with no particular performance guar-
antees. Local search is the main ingredient for most of the heuristic algorithms that
have appeared in the literature. In conjunction with various techniques for escap-
ing local optima, these heuristics provide solutions which exceed the theoretical
upper bound of approximating the problem and derive from ideas used to solve the
p-median problem, a similar NP -hard problem [17]. Given a set F of m potential
facilities, a set U of n users (or customers), a distance function d : U × F 7→ R,
and a constant p ≤ m, the p-median problem is to determine a subset of p facilities
to open so as to minimize the sum of the distances from each user to its closest
open facility. For the p-median problem, in 2004 Resende and Werneck [25] pro-
posed a multistart heuristic that hybridizes GRASP with Path-Relinking as both,
intensification and post-optimization phases. In 1997, Hansen and Mladenović [14]
proposed three heuristics: Greedy, Alternate, and Interchange (vertex substitu-
tion). To select the first facility, Greedy solves a 1-center problem. The remaining
p − 1 facilities are then iteratively added, one at a time, and at each iteration the
location which most reduces the maximum cost is selected. In [5], Dyer and Frieze
suggested a variant, where the first center is chosen at random. In the first iteration
of Alternate, facilities are located at p vertices chosen in V , clients are assigned to
the closest facility, and the 1-center problem is solved for each facility’s set of clients.
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During the subsequent iterations, the process is repeated with the new locations of
the facilities until no more changes in assignments occur. As for the Interchange

procedure, a certain pattern of p facilities is initially given. Then, facilities are
moved iteratively, one by one, to vacant sites with the objective of reducing the
total (or maximum) cost. This local search process stops when no movement of a
single facility decreases the value of the objective function. A multistart version of
Interchange was also proposed, where the process is repeated a given number of
times and the best solution is kept. The combination of Greedy and Interchange

has been most often used for solving the p-median problem. In 2003, Mladenović
et al. [21] adapted it to the p-center problem and proposed a Tabu Search (TS)
and a Variable Neighborhood Search (VNS), i.e., a heuristic that uses the history
of the search in order to construct a new solution and a competitor that is not his-
tory sensitive, respectively. The TS is designed by extending Interchange to the
chain-interchange move, while in the VNS, a perturbed solution is obtained from
the incumbent by a k-interchange operation and Interchange is used to improve
it. If a better solution than the incumbent is found, the search is recentered around
it. In 2011, Davidović et al. [4] proposed a Bee Colony algorithm, a random search
population-based technique, where an artificial system composed of a number of
precisely defined agents, also called individuals or artificial bees.

To the best of our knowledge, most of the research effort devoted towards the
development of metaheuristics for this problem has been put into the design of
efficient local search procedures. The purpose of this article is propose a new local
search and to highlight how its performances are better than best-known local
search proposed in literature (Mladenović et al.’s [21] local search based on VNS
strategy), both in terms of solutions quality and convergence speed.

The remainder of the paper is organized as follows. In Section 2, a GRASP con-
struction procedure is described. In Section 3, we introduce the new concept of
critical vertex with relative definitions and describe a new local search algorithm.
Computational results presented in Section 4 empirically demonstrate that our lo-
cal search is capable of obtaining better results than the best known local search,
and they are validated by a statistical significance test. Concluding remarks are
made in Section 5.

2. GRASP Construction Phase

GRASP is a randomized multistart iterative method proposed in Feo and Re-
sende [6, 7] and having two phases: a greedy randomized construction phase and
a local search phase. For a comprehensive study of GRASP strategies and their
variants, the reader is referred to the survey papers by Festa and Resende [9, 10],
as well as to their annotated bibliography [8].

Starting from a partial solution made of 1 ≤ randElem ≤ p facilities randomly
selected from V , our GRASP construction procedure iteratively selects the remain-
ing p − randElem facilities in a greedy randomized fashion. The greedy function
takes into account the contribution to the objective function achieved by selecting a
particular candidate element. In more detail, given a partial solution P , |P | < p, for
each i ∈ V \P , we compute w(i) = C(P ∪ {i}). The pure greedy choice would con-
sist in selecting the vertex with the smallest greedy function value. This procedure
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P ← ∅ ;

randElem := bα · pc ;

for k = 1, . . . , randElem do // random component

f ← SelectRandom(V \ P );

P ← P ∪ {f} ;

end

while |P | < p do
zmin ← +∞ ;

zmax ← −∞ ;

for i ∈ V \ P do
if zmin > C(P ∪ {i}) then

zmin ← C(P ∪ {i}) ;

end

if zmax < C(P ∪ {i}) then
zmax ← C(P ∪ {i}) ;

end

end

µ← zmin + β(zmax − zmin) ;

RCL← {i ∈ V \ P | C(P ∪ {i}) ≤ µ} ;

f ← SelectRandom(RCL) ;

P ← P ∪ {f};
end
return P ;

Function greedy-randomized-build(G = 〈V,E,C〉 , p, α, β)

Figure 1. Pseudo-code of the greedy randomized construction.

instead computes the smallest and the largest greedy function values:

zmin = min
i∈V \P

w(i); zmax = max
i∈V \P

w(i).

Then, denoting by µ = zmin+β(zmax−zmin) the cut-off value, where β is a parameter
such that β ∈ [0, 1], a restricted candidate list (RCL) is made up of all vertices whose
greedy value is less than or equal to µ. The new facility to be added to P is finally
randomly selected from the RCL.

The pseudo-code is shown in Figure 1, where α ∈ [0, 1].

3. Plateau Surfer: a New Local Search Based on the Critical
Vertex Concept

Given a feasible solution P , the Interchange local search proposed by Hansen
and Mladenović [14] consists in swapping a facility f ∈ P with a facility f /∈ P
which results in a decrease of the current cost function. Especially in the case
of instances with many vertices, we have noticed that usually a single swap does
not strictly improve the current solution, because there are several facilities whose
distance is equal to the radius of the solution. In other words, the objective function
is characterized by large plateaus and the Interchange local search cannot escape
from such regions. To face this type of difficulties, inspired by Variable Formulation
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Search [22, 23], we have decided to use a refined way for comparing between valid
solutions by introducing the concept of critical vertex. Given a solution P ⊆ V , let
δP : V 7→ R+ ∪ {0} be a function that assigns to each vertex i ∈ V the distance
between i and its closest facility according to solution P . Clearly, the cost of a
solution P can be equivalently written as C(P ) = max { δP (i) : i ∈ V }. We also
give the following definition:

Definition 1 (Critical vertex). Let P ⊆ V be a solution whose cost is C(P ). For
each vertex i ∈ V , i is said to be a critical vertex for P , if and only if δP (i) = C(P ).

In the following, we will denote with maxδP = |{ i ∈ V : δP (i) = C(P ) }| the
number of vertices whose distance from their closest facility results in the objective
function value corresponding to solution P . We define also the comparison operator
<cv, and we will say that P <cv P

′ if and only if maxδP < maxδ′P .

Then, a solution P has p · (n− p) neighbor solutions P̄ = P \ {i} ∪ {j}, one for
each i ∈ P and j ∈ V \ P . A neighbor solution P̄ of P is considered improving if
either C(P̄ ) < C(P ) or C(P̄ ) = C(P ) and maxδP̄ < maxδP . A move is performed
to the best improving neighbor.

The central point on which we base our local search is that the new solution
P̄ hasn’t to be strictly better than P , according to the cost function, but the
algorithm switch from P to P̄ even when the cost is the same, but the number of
critical vertices in P̄ (maxδP̄ ) is less than that in P (maxδP ).

P P̄

N (y1)

y1

N (y2)

y2

N (y3)

y3

xi1

xj1

xk1

xl1

C(P )

N (y2)

y2

N (ȳ3)

ȳ3

N (y1)

y1C(P̄ )

xi1

xj1

xk1

xl1

Figure 2. An example of how the local search works. In this
case, the algorithm switches from solution P to solution P̄ . In P̄ ,
a new facility ȳ3 is selected in place of y3 in P , ȳ3 attracts one
of the “critical vertices” from the neighborhood of the facility y1.
Although the cost of the two solutions is the same, the algorithm
selects the new solution P̄ because maxδP̄ < maxδP .

The main idea of our plateau surfer local search is to use the concept of critical
vertex to escape from plateaus, moving to solutions that have either a better cost
than the current solution or equal cost but less critical vertices. Figure 2 shows a
simple application of the algorithm, while in Figures 3 and 4, for four benchmark
instances, both Mladenović’s local search and our local search are applied once taken
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Figure 3. Plateau escaping. The behavior of our plateau surfer
local search (in red) compared with the Mladenović’s one (in blue).
Both algorithms work on the same instances taking as input the
same starting solution. Filled red dots and empty blue circles
indicate the solutions found by the two algorithms. Mladenović
local search stops as soon as the first plateau is met.

as input the same starting feasible solution. It is evident that both the procedures
make the same first moves. However, as soon as a plateau is met, Mladenović’s
local search ends, while our local search is able to escape from the plateau moving
to other solutions with the same cost value, and restarting the procedure from a
new solution that can lead to a strict cost function improvement, .

Let us analyze in more detail the behavior of our local search, whose pseudo-code
is reported in Figure 5. The main part of the algorithm consists in the portion of
the pseudo-code that goes from line 0 to line 0. Starting from an initial solution
P , the algorithm tries to improve the solution replacing a vertex j /∈ P with a
facility i ∈ P . Clearly, this swap is stored as an improving move if the new solution
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Figure 4. Plateau escaping. The behavior of our plateau surfer
local search (in red) compared with the Mladenović’s one (in blue)
on other two different instances.

P̄ = P \{i}∪{j} is strictly better than P according to the cost function C. If C(P̄ )
is better than the current cost C(P ), then P̄ is compared also with the incumbent
solution and if it is the best solution found so far, the incumbent is update and the
swap that led to this improvement stored (lines 0–0).

Otherwise, the algorithm checks if it is possible to reduce the number of critical
vertices. If the new solution P̄ is such that P̄ <cv P , then the algorithm checks
if P̄ is the best solution found so far (line 0), the value that counts the number of
critical vertices in a solution is update (line 0), and the current swap stored as an
improving move (line 0).

To study the computational complexity of our local search, let be n = |V | and p =
|P |, the number of vertices in the graph and the number of facilities in a solution,
respectively. The loops at lines 0 and 0 are executed p and n times, respectively.
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repeat
modified := false;

forall the i ∈ P do
best flip := best cv flip := NIL;

bestNewSolValue := C(P );

best cv := maxδ(P̄ );

forall the j ∈ V \ P do
P̄ := P \ {i} ∪ {j};
if C(P̄ ) < bestNewSolValue then

bestNewSolValue := C(P̄ );

best flip := j;

end

else if best flip = NIL and maxδ(P̄ ) < best cv then
best cv := maxδ(P̄ );

best cv flip := j;

end

end

if best flip 6= NIL then
P := P \ {i} ∪ {best flip};
modified := true;

end

else if best cv flip 6= NIL then
P := P \ {i} ∪ {best cv flip};
modified := true;

end

end

until modified = false;

return P ;
Function plateau-surfer-local-search(G = 〈V,A,C〉 , P, p)

Figure 5. Pseudocode of the plateau surfer local search algorithm
based on the critical vertex concept.

The update of the solution takes O(n). In conclusion, the total complexity is
O(p · n2).

4. Experimental Results

In this section, we describe computational experience with the local search pro-
posed in this paper. We have compared it with the local search proposed by Mlade-
nović et al. [21], by embedding both in a GRASP framework.

The algorithms were implemented in C++, compiled with gcc 5.2.1 under
Ubuntu with -std=c++14 flag. The stopping criterion is maxTime = 0.1 ·n+0.5 ·p.
All the tests were run on a cluster of nodes, connected by 10 Gigabit Infiniband
technology, each of them with two processors Intel Xeon E5-4610v2@2.30GHz.

Table 1 summarizes the results on a set of ORLIB instances, originally introduced
in [1]. It consists of 40 graphs with number of vertices ranging from 100 to 900,
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each with a suggested value of p ranging from 5 to 200. Each vertex is both a user
and a potential facility, and distances are given by shortest path lengths. Tables 2
and 3 report the results on the TSP set of instances. They are just sets of points
on the plane. Originally proposed for the traveling salesman problem, they are
available from the TSPLIB [24]. Each vertex can be either a user or an open
facility. We used the Mersenne Twister random number generator by Matsumoto
and Nishimura [19]. Each algorithm was run with 10 different seeds, and minimum
(min), average (E) and variance (σ2) values are listed in each table. The second
to last column lists the %-Gap between average solutions. To deeper investigate
the statistical significance of the results obtained by the two local searches, we
performed the Wilcoxon test [2, 27].

Generally speaking, the Wilcoxon test is a ranking method that well applies
in the case of a number of paired comparisons leading to a series of differences,
some of which may be positive and some negative. Its basic idea is to substi-
tute scores 1, 2, 3, . . . , n with the actual numerical data, in order to obtain a rapid
approximate idea of the significance of the differences in experiments of this kind.

Table 1. Results on ORLIB instances.

GRASP + mladenovic GRASP + plateau-surfer

Instance min E σ2 min E σ2 %-Gap p-value

pmed01 127 127 0 127 127 0 0.00
pmed02 98 98 0 98 98 0 0.00
pmed03 93 93.14 0.12 93 93.54 0.25 0.43
pmed04 74 76.21 1.33 74 74.02 0.04 -2.87 1.20E-16
pmed05 48 48.46 0.43 48 48 0 -0.95
pmed06 84 84 0 84 84 0 0.00
pmed07 64 64.15 0.27 64 64 0 -0.23
pmed08 57 59.39 1.36 55 55.54 0.73 -6.48 3.37E-18
pmed09 42 46.87 2.83 37 37.01 0.01 -21.04 2.80E-18
pmed10 29 31.21 0.81 20 20.01 0.01 -35.89 9.38E-19

pmed11 59 59 0 59 59 0 0.00
pmed12 51 51.89 0.1 51 51.41 0.24 -0.93
pmed13 42 44.47 0.73 36 36.94 0.06 -16.93 1.04E-18
pmed14 35 38.59 3.24 26 26.85 0.13 -30.42 2.11E-18
pmed15 28 30.23 0.7 18 18 0 -40.46 1.09E-18
pmed16 47 47 0 47 47 0 0.00
pmed17 39 40.71 0.23 39 39 0 -4.20 8.69E-20
pmed18 36 37.95 0.29 29 29.41 0.24 -22.50 6.37E-19
pmed19 27 29.32 0.42 19 19.13 0.11 -34.75 6.25E-19
pmed20 25 27.05 0.99 14 14 0 -48.24 1.46E-18

pmed21 40 40 0 40 40 0 0.00
pmed22 39 40.06 0.24 38 38.94 0.06 -2.80 1.30E-18
pmed23 30 32.02 0.44 23 23.21 0.17 -27.51 7.16E-19
pmed24 24 25.38 0.34 16 16 0 -36.96 4.37E-19
pmed25 22 22.62 0.24 11 11.89 0.1 -47.44 2.77E-19
pmed26 38 38 0 38 38 0 0.00
pmed27 33 33.96 0.06 32 32 0 -5.77 2.15E-22
pmed28 26 26.78 0.17 19 19 0 -29.05 2.20E-20
pmed29 23 23.43 0.31 13 13.68 0.22 -41.61 8.00E-19
pmed30 20 21.18 0.47 10 10 0 -52.79 6.50E-19

pmed31 30 30 0 30 30 0 0.00
pmed32 30 30.37 0.23 29 29.62 0.24 -2.47
pmed33 23 23.76 0.2 16 16.28 0.2 -31.48 4.31E-19
pmed34 21 22.42 0.66 11 11.56 0.25 -48.44 1.59E-18
pmed35 30 30.01 0.01 30 30 0 -0.03
pmed36 28 29.37 0.31 27 27.65 0.23 -5.86 4.52E-18
pmed37 23 24.07 0.37 16 16 0 -33.53 2.74E-19
pmed38 29 29 0 29 29 0 0.00
pmed39 24 25.08 0.11 23 23.98 0.02 -4.39 4.68E-21
pmed40 20 21.81 0.43 14 14 0 -35.81 5.14E-19

Average -16.78

More formally, let A1 and A2 be two algorithms, I1, . . . , Il be l instances of
the problem to solve, and let δAi

(Ij) be the value of the solution obtained by
algorithm Ai (i = 1, 2) on instance Ij (j = 1, . . . , l). For each j = 1, . . . , l, the
Wilcoxon test computes the differences ∆j = |δA1(Ij)− δA2(Ij)| and sorts them
in non decreasing order. Accordingly, starting with a smallest rank equal to 1, to
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Table 2. Results on TSPLIB instances (1)

GRASP + mladenovic GRASP + plateau-surfer

Instace p min E σ2 min E σ2 %-Gap p-value

pcb3038

50 534.48 608.49 1068.09 355.68 374.66 51.05 -38.43 3.90E-18
100 399.49 481.75 1285.58 259.67 270.2 17.56 -43.91 3.90E-18
150 331.62 428.69 1741.11 206.71 215.78 23.73 -49.67 3.90E-18
200 301.01 386.56 3161.87 177.79 190.88 10.4 -50.62 3.90E-18
250 292.48 359.59 3323.62 155.03 163.75 19.24 -54.46 3.90E-18
300 261.28 349.42 2902.71 143.39 151.89 10.04 -56.53 3.90E-18
350 258.82 336.08 3755.72 123.85 136.22 22.45 -59.47 3.90E-18
400 249.78 337.14 4033.46 119.07 122.31 1.2 -63.72 3.90E-18
450 214.97 321.36 3373.23 115 117 0.6 -63.59 3.90E-18
500 209.35 299.4 3378.98 102 110.38 5.78 -63.13 3.90E-18

pr1002

10 3056.55 3313.49 10132.77 2616.3 2727.45 2260.95 -17.69 3.90E-18
20 2404.16 2668.29 8244.65 1806.93 1886.89 1516.07 -29.28 3.90E-18
30 2124.26 2358.07 4432.11 1456.02 1505.55 910.93 -36.15 3.89E-18
40 1960.23 2172.63 7831.77 1253.99 1302.76 751.62 -40.04 3.90E-18
50 1755.7 1992.08 5842.66 1097.72 1156.77 815.35 -41.93 3.90E-18
60 1697.79 1865.5 5872.47 1001.25 1042.82 257.42 -44.1 3.89E-18
70 1569.24 1736.41 4078.39 900 954.04 307.65 -45.06 3.89E-18
80 1486.61 1633.87 3278.4 851.47 889.5 407.29 -45.56 3.88E-18
90 1350.93 1543.17 3922.25 764.85 809.78 382.29 -47.52 3.89E-18

100 1312.44 1472.47 2616 743.3 767.62 77.4 -47.87 3.89E-18

pr439

10 2575.12 2931.83 38470.59 1971.83 1972.28 19.61 -32.73 3.79E-18
20 1940.52 2577.03 23638.88 1185.59 1194.12 124.58 -53.66 3.71E-18
30 1792.34 2510.91 23692.47 886 919.1 442.37 -63.4 3.89E-18
40 1525.2 2413.33 53876.4 704.45 728.19 39.31 -69.83 3.88E-18
50 1358.54 2252.46 89633.71 575 595.4 64.21 -73.57 3.82E-18
60 1386.09 2170.85 110065.93 515.39 537.66 75.43 -75.23 3.89E-18
70 1370.45 1898.53 116167.77 480.23 499.65 4.93 -73.68 3.73E-18
80 1140.18 1815.1 118394.68 424.26 440.27 166.06 -75.74 3.89E-18
90 1191.9 1699.64 91388.99 400 406.17 31.71 -76.1 3.88E-18

100 1190.85 1679.73 94076.45 375 384.27 98.91 -77.12 3.89E-18

rat575

10 81.32 92.98 9.27 73 74.71 0.79 -19.65 3.90E-18
20 68.07 73.86 3.7 50.54 53.04 0.63 -28.19 3.90E-18
30 59.81 64.61 3.67 41.79 43.53 0.47 -32.63 3.90E-18
40 54.13 58.37 3.43 36.12 37.43 0.29 -35.87 3.90E-18
50 47.68 53.78 3.56 32.45 33.36 0.17 -37.97 3.90E-18
60 45.62 50.03 3.21 29.15 30.17 0.19 -39.7 3.90E-18
70 43.68 46.96 2.97 27 27.78 0.13 -40.84 3.90E-18
80 39.81 44.2 2.75 25.02 25.99 0.11 -41.2 3.90E-18
90 38.48 41.98 2.06 23.85 24.4 0.07 -41.88 3.90E-18

100 37.01 39.93 1.4 22.2 23.01 0.08 -42.37 3.89E-18

rat783

10 102.22 110.93 13.17 83.49 87.82 1.65 -20.83 3.90E-18
20 80.53 88.56 7.68 59.68 62.8 1.41 -29.09 3.90E-18
30 69.58 76.92 7.87 49.25 51.48 0.74 -33.07 3.90E-18
40 62.97 69.63 4.62 42.05 44.27 0.53 -36.42 3.90E-18
50 59.41 65.26 5.59 38.29 39.6 0.42 -39.32 3.90E-18
60 54.82 60.35 4.77 34.48 35.92 0.24 -40.48 3.90E-18
70 49.4 56.56 7.48 32.06 33.11 0.24 -41.46 3.90E-18
80 48.51 53.76 4.03 29.55 30.94 0.21 -42.45 3.90E-18
90 46.07 51.82 3.53 28.18 28.85 0.11 -44.33 3.90E-18

100 43.97 49.5 4.68 26.31 27.49 0.14 -44.46 3.90E-18

Average -46.84

each difference ∆j , it assigns a non decreasing rank Rj . Ties receive a rank equal
to the average of the sorted positions they span. Then, the following quantities are
computed

W+ =
∑

j=1,...,l : ∆j>0

Rj ,

W− =
∑

j=1,...,l : ∆j<0

Rj .

Under the null hypothesis that δA1(Ij) and δA2(Ij) have the same median value,
it should result that W+ = W−. If the p-value associated to the experiment is less
than an a priori fixed significance level α, then the null hypothesis is rejected and
the difference between W+ and W− is considered significant.

The last column of each table lists the p-values where the %-Gap is significant,
all the values are less than α = 0.01. This outcome of the Wilcoxon test further
confirms that our local search is better performing than the local search proposed
by Mladenović et al.
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Table 3. Results on TSPLIB instances (2)

GRASP + mladenovic GRASP + plateau-surfer

Instace p min E σ2 min E σ2 %-Gap p-value

rl1323

10 3810.84 4185.89 24655.46 3110.57 3241.79 3290.56 -22.55 3.90E-18
20 2996.4 3348.31 23183.21 2090.87 2236.28 2798.56 -33.21 3.90E-18
30 2689.44 2979.79 14205.75 1730.78 1808.94 1544.85 -39.29 3.90E-18
40 2337.92 2712.93 14193.05 1479.24 1576.25 1710.4 -41.9 3.90E-18
50 2195.91 2462.95 9835.09 1300 1363.88 950.66 -44.62 3.90E-18
60 2021.87 2278.94 16400.27 1181.3 1244.03 657.55 -45.41 3.90E-18
70 1900.77 2128.45 11883.58 1076.2 1127.98 475.13 -47 3.90E-18
80 1866.8 2033.24 4501.73 988.87 1048.87 438.82 -48.41 3.89E-18
90 1634.37 1966.13 4643.42 935.02 978.6 289.18 -50.23 3.89E-18

100 1631.5 1909.56 8483.55 886.85 914 238.2 -52.14 3.89E-18

u1060

10 3110.65 3373.87 7541.61 2301.7 2440 599.42 -27.68 3.86E-18
20 2652.6 2818.37 5787.51 1650.34 1749.15 2814.03 -37.94 3.90E-18
30 2501.72 2684.87 3811.23 1302.94 1373.21 912.92 -48.85 3.90E-18
40 2442.07 2616.15 5267.85 1118.59 1176.14 593.6 -55.04 3.90E-18
50 2378.36 2591.96 7266.77 950.66 1021.55 418.91 -60.59 3.90E-18
60 2301.83 2602.13 13579.82 860.49 919.97 374.54 -64.65 3.90E-18
70 2378.36 2606.64 10944.09 790.13 828.16 441.03 -68.23 3.90E-18
80 2351.82 2622.32 12980.39 720.94 753.64 306.94 -71.26 3.90E-18
90 2248.61 2562.01 10260.36 667.55 708.04 107.79 -72.36 3.90E-18

100 2060.29 2494.08 11025.91 632.11 653.15 110.65 -73.81 3.90E-18
110 2049.18 2444.22 10385.95 570.49 613.02 148.7 -74.92 3.90E-18
120 2122.97 2406.19 9191.4 570 579.93 96.23 -75.9 3.90E-18
130 1839.55 2390.82 12029.95 538.82 561.62 78.78 -76.51 3.90E-18
140 1924.48 2316.25 12982.87 500.39 527.66 172.51 -77.22 3.90E-18
150 1942.27 2300.45 13245.06 499.65 503.26 20.49 -78.12 3.90E-18

u1817

10 592.97 646.89 325 466.96 485.44 104.33 -24.96 3.90E-18
20 462.3 564.44 560.9 330.2 348.15 53.96 -38.32 3.90E-18
30 418.91 530.34 1018.29 265.19 283.4 58.43 -46.56 3.90E-18
40 407.19 526.44 956.01 232.25 245.78 43.42 -53.31 3.90E-18
50 330.21 507.52 2889.76 204.79 217.05 26.96 -57.23 3.90E-18
60 352.88 497.35 3539.09 184.91 197.26 21.79 -60.34 3.90E-18
70 321.27 477.43 4139.93 170.39 181.53 13.67 -61.98 3.90E-18
80 289.61 445.35 4866.81 154.5 166.46 22.68 -62.62 3.90E-18
90 283.99 422.34 3828.2 148.11 153.5 13.72 -63.65 3.90E-18

100 283.99 416.69 2660.21 136.79 146.67 7.4 -64.8 3.90E-18

Average -54.9

5. Concluding Remarks

In this paper, we presented a new local search heuristic for the p-center prob-
lem, whose potential applications appear in telecommunications, in transportation
logistics, and whenever one must to design a system to organize some sort of public
facilities, such as, for example, schools or emergency services.

The computational experiments show that the proposed local search is capable
to reduce the number of local optimum solutions using the concept of critical vertex,
and it improves the results of the best local search for the problem.

Future lines of work will be focused on a deepeer investigation of the robustness
of our proposal by applying it on further instances coming from financial markets
and manifacturing systems.
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