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Abstract

Simulating step-wise human behavior with Large Language Models (LLMs) has
become an emerging research direction, enabling applications in various practical
domains. While prior methods, including prompting, supervised fine-tuning (SFT),
and reinforcement learning (RL), have shown promise in modeling step-wise be-
havior, they primarily learn a population-level policy without conditioning on a
user’s persona, yielding generic rather than personalized simulations. In this work,
we pose a critical question: how can LLM agents better simulate personalized
user behavior? We introduce CUSTOMER-R1, an RL-based method for person-
alized, step-wise user behavior simulation in online shopping environments. Our
policy is conditioned on an explicit persona, and we optimize next-step rationale
and action generation via action correctness reward signals. Experiments on the
OPeRA dataset demonstrate that CUSTOMER-R1 not only significantly outper-
forms prompting and SFT-based baselines in next-action prediction tasks, but also
better matches users’ action distribution, indicating higher fidelity in personalized
behavior simulation.

1 Introduction

History Behaviors:

Next Action:
Click on “add to cart”

- Search for “facial cleanser”
- Click on a brand filter
- Click on a product 
- Click on the review …

I got enough product info, 
this one suits my need.

Alex, male, age 32, 
software engineer, … 

Figure 1: User Behavior Simulation in Online Shopping.
The model observes a sequence of historical user actions and
learns to reason over this behavioral context to predict the
user’s next action.

Human behavior simulation [12, 13,
8] aims to model how humans take ac-
tions. Recent advances in the reason-
ing capabilities [25, 17] of Large Lan-
guage Model Agents (LLM Agents)
have enabled both believable [12] and
accurate [13] simulations of human
behavior, drawing increasing atten-
tion to this topic. These advance-
ments have opened up new applica-
tion opportunities in various practical
domains, including computational so-
cial science [12], psychology [1], e-
commerce [8], and UX- testing [9].

Recent efforts in human behavior sim-
ulation have shifted from simulating
coarse-grained or unverified human
behaviors towards accurately modeling step-wise actions [8, 22, 28]. However, existing methods
typically learn an average-user policy: they predict the most common next action in seen contexts,
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but fail to account for individual differences in goals, preferences, or browsing styles. This lack of
personalization limits their usefulness since different users may take very different actions in the same
context [5]. For instance, Lu et al. [8] introduced step-wise user behavior simulation via supervised
fine-tuning (SFT) on private data. Zhang et al. [28] proposed Shop-R1, a Reinforcement Learning
(RL)-based approach to improve action generation accuracy. While promising, neither method is
conditioned on individual user traits or preferences. Although Wang et al. [22] benchmarked the
value of persona information in the OPeRA dataset, they only evaluated the prompting method with
off-the-shelf LLMs, which yields marginal gains in aligning actions to a specific user. These gaps
motivate our question: how can LLM agents better simulate personalized user behavior?

To study this question systematically, we introduce CUSTOMER-R1, a reinforcement learning-based
method for step-wise and personalized user behavior simulation in online shopping scenarios. An
overview of the task setup is illustrated in Figure 1. The model takes in a sequence of historical
user actions taken by user ‘Alex’, and learns to reason over the behavioral context to predict Alex’s
next action accordingly. Our method leverages explicit user persona information to guide the model
toward individualized behavioral patterns and introduces a tailored reward design to encourage
accurate and semantically coherent action generation. We conduct extensive experiments on the
OPeRA dataset [22], which includes rich user interaction logs and annotated persona profiles. Results
show that CUSTOMER-R1 significantly outperforms prompting-based and SFT-based baselines in
next-action prediction task and exhibits more aligned action distribution with persona information.
Ablation studies further confirm the importance of persona conditioning: using correct persona
information improves performance, while shuffled personas introduce noise and degrade accuracy.
The contributions of this work are as follows:

1) We introduce CUSTOMER-R1, a reinforcement learning-based method for personalized, step-wise
user behavior simulation in online shopping, incorporating explicit persona information and custom
reward design.

2) We provide a comprehensive evaluation on the OPeRA dataset, demonstrating substantial improve-
ments over existing methods.

3) We conduct detailed ablations and analysis on persona, rationale, model size, and context length,
together with error studies. These results offer practical guidance for building personalized behavior
simulators in online shopping.

2 Related Works

2.1 Human Behavior Simulation with Large Language Models

Understanding and simulating human behavior has long been a central goal in psychology, human-
computer interaction, and computational social science [10, 18]. The emergence of large language
model (LLM) agents with human-like reasoning, planning, and tool-use abilities [2, 25, 17] has
opened new opportunities for modeling complex behaviors across diverse environments [21, 9, 20].
For example, in computational social science, generative agents have been used to simulate daily
routines and social interactions in virtual communities [12]. However, many of these efforts primarily
focus on generating “believable” user behavior, without quantitative evaluation against real human
data. A few studies, such as Lu et al. [8], have explored step-wise behavior simulations in online
shopping and evaluated next-action prediction using real-world user traces. Yet these approaches
often rely on private datasets and supervised fine-tuning (SFT), limiting reproducibility and further
generalization. More recently, Zhang et al. [28] applied reinforcement learning (Shop-R1) to further
improve action generation. However, these works focus on simulating an “average” user instead of
an unique individual.

In terms of personalization, recent studies have begun incorporating user personas into behavior
simulation [19, 13, 22]. For instance, Park et al. [13] showed that agents equipped with interview-
based persona profiles exhibit improved performance in survey-taking tasks. Wang et al. [22] also
introduced persona into simulations, but the experiments are conducted solely on off-the-shelf LLMs
without task adaptation, showing limited performance gain. As a result, verifiable and personalized
user simulation at the action level remains underexplored. To fill the gap, this study investigate how
user persona information can enhance personalized behavior simulation.
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HTML Observation

<html><body>
<div name=“navigation_bar”> ... </div>
<div name=“search_result”>

<div name=“search_results.
Salmon_flakes_for_cats_dogs_extra
_large_4oz_bag”>

<span class=“product_rating”> …
<span name=“add_to_cart”> …

</div>
<div name=“search_results.
cat_sushi_crunchy_salmon_1_5oz”>
</div> …

</div> … </body></html>

Persona Demographics: $50,000 
income; student; …
Personality: INFJ; …
Shopping Preferences:
Care about brand; …

Behavior History in the Session < ", $!…#$!, %!…#$!, &!…#$! >

Current 
HTML $#

Predict
Next Action

“The product seems nice for my 
cat, I want to add it to cart.”

Type: “click”
Element name: “add to cart”

Type: “click”
Element name: “add to cart”

Rollout n

Reward Calculation

Policy
Optimization

Sample 1: 
Json Format reward: 1
Action reward: 100

Sample 2: 
Json Format reward: 1
Action reward: 0

Sample n: …

Ground-truth Action %#

Predicted Action %′#

Predicted Rationale &′#

Rewards
Rationale

“I searched for cat treats, now
I want to see what options are 
there”

Type: “click”
Element name:
“search_results.Salmon_flakes…”

Action

Figure 2: CUSTOMER-R1 Framework for Simulating User Behavior in Online Shopping. The
model observes user history behaviors in a session composed of HTML observations o1, . . . , ot−1,
actions a1, . . . , at−1, rationales r1, . . . , rt−1, along with real user persona P (demographics, per-
sonality, and shopping preferences). At time step t, given the current HTML observation ot, the
model predicts the rationale r′t for conducting an action and the corresponding next action a′t. During
training, the model samples n rollouts per step. For each sampled prediction, a reward is calculated
by comparing the predicted action a′t with the ground-truth action at based on action correctness and
format validity. These rewards are aggregated and used for policy optimization.

2.2 Reinforcement Learning for LLM Post-Training

Reinforcement learning (RL) has emerged as a powerful approach for training large language models
(LLMs). Early methods, such as PPO [15], RLHF [11], and DPO [14] focus on aligning model
outputs with human or proxy preferences. More rencently, methods with verifiable reward signals,
such as GRPO [4], DAPO [26], and GSPO [29], have further improved stability and scalability.
Furthermore, Chen et al. [3] systematically explores the contrast between supervised fine-tuning
(SFT) and RL-based training paradigms, showing that GRPO-based methods can elicit stronger
reasoning abilities compared to traditional SFT approaches. Despite these advancements, much of
current RL application targets tasks with clear correctness criteria, such as mathematical problem
solving [16, 27]. In these settings, reward design is straightforward because binary or graded notions
of correctness are available. Extending RL to open-ended or user-centric tasks still poses challenges,
particularly in defining meaningful and stable reward signals. In response, recent efforts have explored
RL for more complex language interaction settings. For instance, RL has been applied to improve
retrieval-augmented question answering systems [6] and recommender system outputs [7], where
reward signals must account for relevance, diversity, or user engagement. Wei et al. [23] propose an
end-to-end multi-turn RL framework for web agents, achieving higher task success rates by optimizing
agent decisions over long-horizon interactions. However, the use of RL for simulating step-by-step
personalized user behaviors remains underexplored. This presents a significant opportunity for future
work.

3 Methods

3.1 Task Formulation

Following the setup in the OPeRA dataset [22], we formulate the objective as a next-action prediction
task. Given a shopping session j, the model observes a history of user actions {a1, a2, ..., at−1},
their associated rationales {r1, r2, ..., rt−1}, the sequence of web observations (i.e., HTML states)
{o1, o2, ..., ot}, and a user persona Pi. The model is tasked with generating the rationale rt for the
next action and predicting the next action at. Formally, the learning objective is to model the function:

rt, at = F (a1...t−1, r1...t−1, o1...t, Pi)

Each action type is associated with specific attributes that must also be predicted. Table 1 summarizes
the required attributes for each action type.

3.2 CUSTOMER-R1 Framework
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Table 1: Required attributes for each action type.

Action Type Attributes Example
click element_name click on “filter_price”
input element_name, text search for “earbuds”
terminate None terminate the session

The CUSTOMER-R1 framework
is illustrated in Figure 2. Each
simulation step is grounded in
a real person from the dataset,
with a corresponding action his-
tory, web page HTML, and anno-
tated reasoning steps. The model
is instructed to generate a ratio-
nale for conducting an immedi-
ate next action as well as the corresponding action. We incorporate a rich user persona consists of
surveys and interviews, which capture user demographics, personality traits, and shopping prefer-
ences. These persona profiles provide high-level behavioral tendencies (e.g., brand loyalty, price
sensitivity) that help the model generate actions consistent with an individual’s style rather than
an“average” user. Grounding in real-person personas allows the simulation to reproduce authentic
decision patterns that are often missing from generic user models. In the prompt, we explicitly inject
the persona description and instruct the model to follow it when producing plausible next actions.
Nevertheless, the simulation remains context-driven: if the persona conflicts with evidence from the
current page or the user’s goals, the latter take precedence to maintain realism and task coherence.

To optimize the model, we define a verifiable reward function based on the predicted action. Specifi-
cally, we introduce a two-part reward computation:

• Action reward Raction: This component measures the correctness of the predicted action by
directly comparing it against the ground truth action. Specifically, the reward is given only
when both the action type and all required action attributes match exactly.

Raction =

{
1 if âtype = a∗type and âattr = a∗attr

0 otherwise
(1)

where â is the predicted action, and a∗ is the ground-truth action. A reward of 1 is assigned
only if all required fields match exactly between prediction and ground truth. For example,
for a click action, the model needs to predict both the action type as well as the clicked
element name correct.

• Format reward Rformat: This binary reward ensures that the predicted action follows a
predefined JSON schema that regulates generated reasoning and action.

The overall reward is computed as:
R = w(â) ·Raction +Rformat (2)

where â is the predicted action. Given that simulating user behavior is a challenging generation
task [22], we introduce a pre-defined difficulty-aware weighting function w(a) that amplifies the
reward for correctly predicting complex actions. This design mitigates the model’s tendency to
overfit to frequent, simple actions and incentivizes accurate prediction of rarer but more informative
behaviors. In addition, the output format enforces the model to first generate a rationale before the
action, which implicitly guides the model toward generating a more informative reasoning process
alongside correct actions.

We adopt the Group Relative Policy Optimization (GRPO) [4] method as the reinforcement learning
objective. The overall optimize goal is as follows:

J(θ) = E

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ) Ãi, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Ãi

)
− β DKL

(
πθ ∥πref

)]
,

(3)
Here, ri,t is the ratio between the new and old policy probabilities for sample i at token t, and Ãi is
the group-relative advantage:

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (4)

Ãi =
Ri − µR

σR + δ
, (5)
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4 Experiments

4.1 Data Processing

We conduct experiments on the OPeRA-filtered dataset [22], which contains 527 real-world online
shopping sessions, comprising 5,856 <action, observation> pairs and 207 annotated rationales from
49 real users. The overall action distribution is shown in Table 2. On average, each session contains
11.11 actions. Among them, click is the dominant action type and is further splitted into 13 fine-
grained subtypes as shown in Table 3. All sessions either end with a click on purchase related
button action or a terminate action.

Table 2: Action in OPeRA-filtered.

Action Type Count Percentage
Click 5,051 86.3%
Input 597 10.2%
Terminate 208 3.6%

All 5856 -

Given the long HTML-based contexts in these ses-
sions, we implement a dynamic content selection
strategy to fit within the model’s maximum context
length N . For each input, we compute its token
length L; if L > N , we truncate by discarding the
earliest HTMLs while preserving the full HTML con-
tent for the most recent interactions. For older inter-
actions, we keep only the action and rationale tokens.
This preserves temporally relevant page context while
retaining semantically rich behavioral cues from ear-
lier actions.

Table 3: Click type distribution in OPeRA-
filtered dataset.

Click Type Count Percentage
review 1052 20.8%
search 763 15.1%
product_option 700 13.9%
product_link 537 10.6%
other 449 8.9%
purchase 321 6.4%
nav_bar 283 5.6%
page_related 198 3.9%
quantity 191 3.8%
suggested_term 182 3.6%
cart_side_bar 145 2.9%
cart_page_select 139 2.8%
filter 91 1.8%

In addition, the modeling framework requires the
model to generate a rationale alongside each pre-
dicted action. However, as some action entries in
the dataset lack annotated rationales, directly training
with such incomplete data would hinder supervised
fine-tuning (SFT). To address this, we adopt the ra-
tionale augmentation approach proposed by Lu et al.
[8]. Specifically, we employ claude-3.5-sonnet
to generate synthetic rationales by conditioning on
the current HTML context and the user’s executed
action. These model-generated rationales serve as
plausible supervisory signals to facilitate fine-tuning.

4.2 Evaluation

To evaluate model performance on the next action
prediction task, we utilize the following evaluation
metrics: a) Next Action Generation Accuracy: An
action prediction is considered correct only when all
required components exactly match the ground truth.
For example, for input actions, the model need to
correctly predict the action type, input area, as well as the input text; b) Action Type F1: Measures
the correctness of action type classification. Given the highly unbalanced action type distribution, the
macro F1 score is reported. c) Fine-grained Type Accuracy: This metric measures the accuracy of
predicted action types with finer granularity. For click actions, we first calculate the click subtype
from the predicted target element and then compare it to the ground-truth. For non-click actions,
we assess whether the model correctly identifies them as terminate or input. This provides a
more detailed view of the model’s understanding of user behavior patterns. d) Session Outcome
F1: Evaluates whether the session is correctly predicted to end in click on purchase related
button or terminate, capturing the overall user intent. These metrics collectively reflect both the
step-wise fidelity of behavior prediction and the ultimate decision quality of the simulated user.

4.3 Experimental Setup

We use Qwen2.5-7B-Instruct-1M [24] as the main model and experiment with four training
configurations. In the Zero-shot Inference setting, the model generates actions directly without
any task-specific fine-tuning. In the SFT setting, we apply supervised fine-tuning using behavior

5



Table 4: Evaluation of next action prediction task. ‘Action Gen.’: Next Action Generation. ‘Outcome’:
‘Session Outcome’. All metrics are reported as percentages (%).

Method Action Gen.
(Accuracy)

Action Type
(Macro-F1)

Fine-grained Type
(Accuracy)

Outcome
(Weighted-F1)

Zero-shot Inference 7.32 33.43 25.72 41.11
RL 24.72 31.17 39.58 40.51
SFT 35.14 72.66 56.43 66.29

SFT+RL 39.58 78.50 61.20 79.45

traces annotated with ground-truth actions. In the RL setting, the model is optimized via GRPO with
verifiable action-level rewards. Finally, in the SFT+RL setting, reinforcement learning is initialized
from the SFT checkpoint to improve the training stability.

In terms of reward weighting, the action reward (Raction) is scaled by task difficulty in the SFT+RL
setting: a) correct prediction of text inputs receive 2000; b) correct prediction on most click types
(harder click subtypes) receive 1000; c) correct prediction of clicks on product_option receive 10; d)
correct predicting clicks on reviews or search button receive 1; e) termination receives 1; f) incorrect
clicks receive −1. In the RL-only setting, we use the same weighting scheme except that incorrect
clicks receive 0 instead of a negative reward, since negative rewards made training unstable.

SFT training uses a standard token-level cross-entropy objective with the AdamW optimizer, a base
learning rate of 1× 10−5, 150 warm-up steps, and 2,000 total training steps with a batch size of 64.
RL training is conducted using the VERL + Megatron framework, with tensor model parallelism,
context parallelism, and activation checkpointing enabled. We train for 2 epochs with a batch size of
64. All experiments are conducted on 8× 8 P4de clusters, each equipped with A100 (80GB) GPUs.

The prompt used is shown in Appendix B.

4.4 Main Results

Table 4 presents the results for the next-action prediction task across all four settings. Zero-shot
performance is low, with an Next Action Generation Accuracy of only 7.32%. This highlights the
difficulty of behavioral prediction and the limitations of relying on pretrained knowledge alone
without model adaptation. RL training alone improves exact match accuracy to 24.72%, but is
unstable across other metrics. Applying SFT leads to significant improvements, boosting Next
Action Generation Accuracy to 35.14%, and substantially improving both Action-Type F1 score and
Fine-Grained Type Accuracy (72.66% and 56.43%, respectively). Combining SFT with RL yields
the best performance across all metrics. By first grounding the model with supervised learning and
then applying RL-based optimization initialized from the SFT checkpoint, this setting benefits from
both stable pretraining and reward-driven refinement. Specifically, the method achieves the highest
Next Action Generation accuracy of 39.58%, the best Macro F1 score, Fine-Grained Type Accuracy
(78.50% and 61.20% respectively), and the highest Session Outcome F1 score of 79.45%.

4.5 Effect of Persona and Rationale

We quantify how explicit persona and intermediate rationale affect personalized behavior. Table 5
ablates these signals under four training regimes (Zero-shot, RL, SFT, SFT+RL) by removing persona
text from the prompt (w/o persona) and further removing rationale from both input and generation
(w/o rationale).

Under SFT+RL, both signals matter and they are complementary. Removing persona reduces Next
Action Generation Accuracy by 1.78 points (39.58→37.80), Macro-F1 by 11.83 (78.50→66.67), Fine-
grained Type Accuracy by 1.78 (61.20→59.42), and Session Outcome F1 by 19.72 (79.45→59.73).
This indicates that persona provides user-level priors that help balance action types and decide when
to purchase versus terminate. Removing rationale also consistently hurts performance. This shows
that step-wise reasoning supports precise behavior generation.

For Zero-shot and RL-only, removing persona can increase some surface metrics (e.g., Next Action
Generation Accuracy), likely because these weaker models are not trained to use long persona text and
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Table 5: Model performance without persona or rationale. ‘Zero-shot’: Zero-shot Inference. ‘Action
Gen.’: Next Action Generation. ‘Outcome’: ‘Session Outcome’. All metrics are reported as
percentages (%).

Method Setting Action Gen.
(Accuracy)

Action Type
(Macro-F1)

Fine-grained Type
(Accuracy)

Outcome
(Weighted-F1)

Zero-shot - 7.32 33.43 25.72 41.11
Zero-shot w/o persona 10.20 33.10 26.05 35.88
Zero-shot w/o rationale 4.10 25.33 16.91 38.78
RL - 24.72 31.17 39.58 40.51
RL w/o persona 26.27 31.20 41.13 32.46
RL w/o rationale 12.64 31.20 20.84 44.25
SFT - 35.14 75.28 56.43 75.85
SFT w/o persona 35.37 64.22 57.43 60.95
SFT w/o rationale 32.04 67.93 52.22 71.38
SFT+RL - 39.58 78.50 61.20 79.45
SFT+RL w/o persona 37.80 66.67 59.42 59.73
SFT+RL w/o rationale 34.15 73.15 53.99 67.37

the extra input may act as noise. However, Outcome F1 often degrades (e.g., Zero-shot 41.11→35.88,
RL 40.51→32.46), suggesting that ignoring persona compromises user-level intent. In SFT, Next
Action Generation Accuracy is similar with or without persona (35.14 vs. 35.37), but Macro-F1
and Outcome already show clear gains with persona (64.22 →75.28 and 60.95→75.85), implying
that persona mainly helps general type balance and end-of-session decisions. Across all regimes,
removing rationale is harmful, confirming that rationales act as a scaffold tying local page context to
the chosen action.

4.6 Effect of Model Size and Context Length

We further experiment with a smaller backbone model (Qwen2.5-3B-Instruct) and compare two
context length settings (40k vs. 65k tokens) under the reinforcement learning setup. As shown in
Table 6, we observe clear performance improvements when increasing the context length for the 7B
model. Specifically, action generation accuracy rises from 18.85% to 24.72%, and fine-grained type
accuracy improves from 28.60% to 39.58%. Although the session outcome metric slightly decreases,
this is primarily due to the 40k context model overfitting on the “click on purchase button” action,
leading to inflated outcome predictions. The longer context window provides more examples of how
a user would react to certain context and helps the model better retain earlier user intents, which is
crucial for accurate simulation of behavior. In addition, the 3B model performs significantly worse
across all metrics. Its action generation accuracy drops to 18.07%, and most notably, the outcome F1
score falls sharply to just 3.97%. This indicates that the smaller model fails to capture user intent.

Table 6: Ablation results showing the effect of model size, context length. ‘Action Gen.’: Next Action
Generation. ‘Outcome’: ‘Session Outcome’. All metrics are reported as percentages (%).

Model Size Context Action Gen.
(Accuracy)

Action Type
(Macro-F1)

Fine-grained Type
(Accuracy)

Outcome
(Weighted-F1)

Qwen2.5-7B 65k 24.72 31.17 39.58 40.51
Qwen2.5-7B 40k 18.85 31.14 28.60 41.41
Qwen2.5-3B 65k 18.07 31.30 38.91 3.97
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4.7 Analysis

We further analyze the model’s error patterns under different training regimes to understand its
behavior and limitations.

From Reward Hacking to Balance with SFT Init. Without supervised grounding, the RL-only
model learns to exploit the reward by favoring frequent, simple moves. As Table 7 shows, the model
mostly predicts click action type and never predicts input or terminate.

Moreover, we noticed that under RL-only setting, the model over-selects subtypes with strong surface
cues (e.g., purchase, review, search). While these predictions result in superficially high reward,
they fail to reflect the diversity of real user behavior. This highlights a core limitation of naive
reward-driven optimization: the learned policy may appear effective but lacks true generalization
capability.

In contrast, initializing RL from a SFT checkpoint breaks this shortcut. The SFT policy already
assigns non-trivial probability to rare actions, so RL can refine a balanced policy instead of relearning
from scratch. The model shows a more balanced action prediction distribution and recovery of
underrepresented actions (e.g., terminate) (Detail action distribution can be found in Appendix A).

Table 7: RL-only action type distribution and accuracy. The model ignores input/terminate and
produces spurious other actions.

Action Type Ground Truth Predicted Correct Accuracy
Click 786 831 739 94.0%
Terminate 40 0 0 0.0%
Input 76 4 1 1.3%
Other 0 67 0 0.0%

Persona Guides How to Act and When to Stop. Within SFT+RL, real-person personas provide
user-level priors (e.g., price sensitivity, brand loyalty) that resolve ties when page evidence alone
is ambiguous. Removing persona destabilizes action type prediction and weakens end-of-session
decisions. Specifically, the model shows a drift with fewer correct purchase and terminate
predictions (Appendix A). In addition, Table 8 shows the results after shuffling the persona in
the input information. Breaking the alignment between the user and their profile causes large
drops across all metrics: Next Action Generation Accuracy 39.58→28.94, Action Type Macro-
F1 78.50→38.88, Fine-grained Type Accuracy 61.20→40.35, and Session Outcome Weighted-F1
79.45→48.41. Moreover, persona information increases recall of rare but consequential actions
(especially terminate) and improves calibration across types, yielding higher overall performance.

All these results demonstrates that persona information shifts the model policy from an average user
heuristic to this specific user’s behavior, deciding which element this user would act on and whether
this user would stop.

Table 8: Model performance after shuffle the persona.’Zero-shot’: Zero-shot Inference. ‘Action Gen.’:
Next Action Generation. ‘Outcome’: ‘Session Outcome’. All metrics are reported as percentages
(%).

Method Setting Action Gen.
(Accuracy)

Action Type
(Macro-F1)

Fine-grained Type
(Accuracy)

Outcome
(Weighted-F1)

SFT+RL persona 39.58 78.50 61.20 79.45
SFT+RL shuffle 28.94 38.88 40.35 48.41

5 Conclusion

We introduced CUSTOMER-R1, a reinforcement learning method for step-wise, personalized user
behavior simulation in online shopping. By conditioning the policy on explicit persona information
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and optimizing a tailored reward that favors action correctness, the model achieves superior next-
action prediction accuracy on the OPeRA dataset and stronger personalization than prompting
and SFT baselines. Comprehensive ablations and analysis show that persona and rationale make
complementary contributions: persona supplies user-level priors that guide action selection under
ambiguous page states, while rationale supports more stable credit assignment during RL. This
combination improves calibration across action types and increases recall of rare but consequential
actions such as terminate, leading to better end-of-session decisions and overall performance.
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A Action Distribution

Figure 3 shows the fine-grained action type distribution of ground truth actions, predicted actions, and
correctly predicted actions (i.e. Exact Match) among three training regimes: a) RL-only, b) SFT+RL,
c) SFT+RL without persona information. We observe that, with RL-only method, the model tends
to predict mostly purchase and review and search action. In contrast, under SFT+RL setting, the
policy shows a balanced predicted action distribution, while removing the persona would make the
performance on predicting termination to drop.

a)

b)

c)

Figure 3: Fine-grained action distribution. a) Model trained using RL only. b) Model trained using
SFT+RL. c) Model trained using SFT+RL without persona

B Experiment Prompt Design

Below are the two prompts for action prediction task and joint rationale and action generation task:

<IMPORTANT>
Your task is to predict the immediate next action of a shopper.
You need to pretend that you are a real user shopping on amazon.com.
The history action, rationale, context and the user persona will be provided to you.
Ensure your prediction follows natural behavior sequences (e.g., users may click a

↪→ search box before typing, type a query before clicking search)
</IMPORTANT>
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# Action Space

An action is represented in JSON format, and there are four primary types of
↪→ actions:

#### 1. ‘input‘:
Type text into an input field. The input field is identified by ‘name‘.
{

"type": "input",
"name": "input_name",
"text": "input_text"

}

#### 2. ‘click‘:
Click on a button or clickable element identified by ‘name‘.
{

"type": "click",
"name": "clickable_name",

}

#### 3. ‘terminate‘:
When you are unsatisfied with the current search result and you don’t want to buy

↪→ anything, use ‘terminate‘ to indicate that you want to close the browser
↪→ window and terminate the task.

{
"type": "terminate"

}

# Rationale
Rationale is the reason why the user takes the action. Some of the rationale is

↪→ provided to you.

# Context
Your context will be the HTML of the amazon page you are looking at. Some

↪→ interactable elements will be added a unique "name" attribute, which you
↪→ can use to identify the element to interact with (click or input).

# Persona
The user persona reflects the user’s demographics, personality, and shopping

↪→ preference. First identify which aspects of the persona might be relevant
↪→ to the current shopping context, then consider them only if they naturally
↪→ align with the ongoing shopping journey. DO NOT RELY ON IT.

# Output Format
You need to predict the rationale AND the corresponding next action. Your output

↪→ should follow a strict JSON format:

{
"rationale": "<rationale>", // rationale goes here, a string
"action": {

"type": "<type>",
...

}// action goes here, a dictionary
}

<IMPORTANT>
OUTPUT A SINGLE JSON OBJECT, NOTHING ELSE.
</IMPORTANT>
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