
Rule-based hardware-configurable static analysis for
quantum programs

Yi-Ting Chen∗‡, Lauren Capelluto∗, Ryan Shaffer∗, Jeffrey Heckey†

∗AWS Quantum Technologies, New York City, USA
†AWS Quantum Technologies, Seattle, USA

‡yitchen@amazon.com

Abstract—The rapid evolution of quantum hardware neces-
sitates an adaptable static analysis framework for validating
quantum programs. In this work, we introduce SHARP, a
rule-based static analysis framework designed for OpenQASM
that decouples hardware-specific constraints from the validation
engine. By employing a rule-based approach, SHARP allows
quantum computing services to validate programs against evolv-
ing instruction set architectures (ISAs) without having to modify
the core analysis engine. SHARP achieves this by ingesting ISA
descriptions as standalone data, making the validation engine
resilient to hardware updates. Furthermore, the framework
employs an analysis-driven validation mechanism that enables
multi-stage validation, simplifying rule construction and en-
hancing extensibility. We demonstrate how SHARP supports
hardware-specific validation tasks and discuss its impact on
quantum software development, including language decoupling,
program-level constraint validation, and feature access control.
Our findings suggest that SHARP provides a path toward a
scalable and maintainable programming interface for quantum
computing.

Index Terms—quantum computing service, static analysis,
hardware-configurable validation, rule-based system, quantum
software

I. INTRODUCTION

Quantum computing hardware has evolved rapidly. Various
architectures are actively being developed, including super-
conducting qubits [1]–[4], trapped ions [5]–[7], neutral atoms
[8], [9], and photonic chips [10], each with unique opera-
tional characteristics and challenges [11], [12]. Furthermore,
some devices expose low-level control of quantum hardware
through pulse-programming [13], [14] which provides fine-
grained control over the qubit state [15], [16]. Additionally,
more advanced features such as mid-circuit measurement [17],
classical feed-forward control [18], [19], error detection, and
error mitigation are gaining support on more devices.

To innovate quantum applications, it is common for quan-
tum program developers to directly program instructions spe-
cific to a particular device, using only the operations natively
supported on that device, a type of quantum programming
known as verbatim programming or native programming.
Taking the native operations as the device’s instruction set
architecture (ISA), we can draw a comparison to classical
computing. Unlike classical computing, where ISAs such as
x86, ARM, and RISC-V have matured and stabilized [20]–
[22], those for quantum hardware are undergoing rapid evo-

lution. Each new generation may introduce novel instructions
or even new data types, modify existing ones, or deprecate
outdated operations, making it challenging to maintain a
consistent static analysis framework. Furthermore, a quantum
computing cloud service like Amazon Braket [23] can host
access to diverse hardware. Compatibility issues may arise
when software must support multiple ISAs simultaneously
[24], [25].

In this work, we propose a framework that is stable and
resilient against the rapid evolution of quantum ISAs. The
framework performs the validation step of static analysis.
We call this framework Static Hardware-configurable Analysis
with a Rule-based Protocol or SHARP. Although the idea
behind SHARP applies to any program representation, we
focus on OpenQASM [26], [27] in this work. As shown
in Fig. 1a, SHARP decouples the ISA description from the
static analysis engine. The engine itself has no knowledge
of specific hardware; instead, it consumes and processes the
hardware description as a standalone piece of data at the
time of validation, alongside the program being validated.
When a device’s existing ISA is modified or new features
are supported, no changes are required in the static analysis
engine. The onboarding of the feature is done by updating the
standalone ISA description. SHARP simplifies the process of
onboarding new features, not only reducing the overhead and
effort required for implementation, but also making the static
analysis layer of the compiler more stable.

Fig. 1. Workflow of a service that uses SHARP. When a user submits a
quantum task, which includes the quantum program and metadata such as
the hardware they want to execute the program on, SHARP finds the ISA
description of the hardware and feeds it to the static analysis engine. When
adding a new feature, only the ISA description needs to be updated (colored
red), while the engine (colored green) does not need to change with each
feature addition.

The main contributions of this work are as follows:
• SHARP is a framework for static analysis of quantum

programs that gains resiliency to changes in the quantum
ISA by separating the ISA description from the core
mechanism of static analysis.

• An ISA description is expressed by a rule-based system.
The rules are evaluated by an inference engine against
program elements when performing static analysis.

• The design decouples the language of the quantum pro-
gram from the core logic of static analysis and the rule-
based system in SHARP. An adapter plugin can be used
to support new quantum programming languages, without
re-implementing the framework.

II. BACKGROUND

A. Static analysis against hardware constraints

Static analysis plays a crucial role in quantum computing
services by ensuring program correctness before execution on
quantum hardware [28], [29]. Given the scarcity and limited
availability of quantum processors, early detection of program
errors through static analysis enhances the user experience
by preventing runtime failures [30]. Developers receive im-
mediate feedback, reducing debugging time and improving
efficiency [31], [32]. Moreover, static analysis serves as a
safeguard, preventing unreasonable usage that could pose
security risks [33], [34] or violate hardware constraints [35].

In the context of quantum computing, users can compose an
abstract program and use a compiler to convert the program
to a hardware ISA. At times, users program specifically to an
ISA to have better control over how their programs are run.
Therefore, for quantum programs, static analysis must validate
not only the syntax and semantics of the input program, but
also the hardware-specific constraints. For example,

rx(angle) qubit;

is an OpenQASM program instruction. The gate, rx, takes an
angle as input and applies to a qubit. Given the definition of
the valid data types for angle and qubit, validations for rx
fit perfectly into grammar-based syntax checkers. However,
a hardware ISA may impose additional constraints, such as
the acceptable range of angles for each qubit, which is not
normally captured by grammars. Therefore, a static analysis
framework needs to be hardware-aware, by either hard-coding
hardware restrictions or consuming them as input. The latter
option makes the framework more flexible.

While quantum compilers like the Qiskit transpiler rely
on predefined target data, such as qubit connectivity, it does
not handle novel operations beyond its predefined scope [36],
[37]. Similarly, Q# provides a “target profile” for compiling
quantum programs to Quantum Intermediate Representation
(QIR) [38], but its predefined selection of profiles limits
flexibility, preventing developers from specifying arbitrary
hardware constraints. For quantum static analysis, the target
configurability needs to be generalized beyond a few fixed
families of ISAs to accommodate the dynamic and evolving
capabilities of quantum hardware.

B. Rule-based software systems

Rule-based systems have long been recognized as a pow-
erful approach in software design [39], [40], particularly for
tasks involving decision-making [41], validation [42], and ex-
pert knowledge representation [43]–[45]. The transparency and
explainability of rule-based systems make them particularly
suitable for applications where clear reasoning and consistent
validation against the rules are required [41], [45].

In the context of program validation, a rule-based approach
offers several advantages. By encoding the legal instructions
for various ISAs as rules, the system can effectively validate
user programs against these predefined criteria [46]. This
design allows for extensibility by simply adding or modifying
rules [43], making it suitable for supporting iterations of
quantum hardware innovation.

Modern rule-based systems in classical programming fur-
ther highlight the practicality of this paradigm. One promi-
nent example is ESLint [47], a static code analysis tool
for JavaScript. ESLint enables developers to define custom
linting rules for enforcing code conventions and detecting
issues, and its rules can be bundled into configurations and
interpreted dynamically. Other systems such as Clang-Tidy for
C++ [48] and Error Prone for Java [49] also utilize rule-based
mechanisms for static analysis. These tools analyze abstract
syntax trees (ASTs) and apply rules that flag violations or
potential issues in source code. The success of these rule-based
static analyzers in classical domains reinforces the viability of
a similar design in quantum programming.

III. RULE-BASED STATIC ANALYSIS

To address the challenges of constantly evolving hardware
ISAs, SHARP performs ISA-aware static analysis with a rule-
based system. Rules define constraints on program elements
under an ISA, and the rules are targeted by a pass sequencing
mechanism. The mechanism performs analysis passes before
the main validation passes. Pass sequencing allows for the
extensible and modular passes. It has been demonstrated to
improve performance in code generation [50] and code opti-
mization [51], [52]. In SHARP, pass sequencing enables multi-
stage validation and allows for expressing complex validation
logic with simple rules.

In the following, we use an example to introduce the
working principles of SHARP. We conceptualize a quantum
computer “QC1” whose ISA includes a single instruction
that is complex enough to demonstrate the expressiveness
of SHARP. Real-world hardware that inspires QC1 includes
quantum systems from Rigetti and IBM. In this example, we
want to validate the OpenQASM snippet below against the
ISA of QC1.

// Example OpenQASM program
OPENQASM 3.0;
valid_gate1 $1;
raw_measure(R1) $1;

In this example program, we have one gate valid_gate1
which is already supported by the system. The instruction,
raw_measure, is a novel instruction. We will explore how
SHARP performs validation on raw_measure in two steps:

1) An analysis pass traverses the AST of the program and
annotates a node if it corresponds to a raw_measure
instruction.

2) A validation pass enforces the ISA constraints for those
nodes annotated as raw_measure while traversing the
AST.

In the subsections below, we explain how to construct the
constraints from the hardware as rules and then we explain
how to sequence the rules and their corresponding actions to
validate the raw_measure instruction.

A. Hardware constraints as SHARP rules

The raw measurement instruction returns the raw in-
phase/quadrature (I/Q) readout values [53] on a qubit instead
of the binary readout classification result of 0 or 1. Assume
QC1 has the following specification for the raw_measure
instruction:

1) Constraint on qubits: It takes a qubit identifier as input.
Only qubits $1, $2, and $3 on QC1 support this
instruction.

2) Constraint on readout resonators: It takes a resonator
identifier as input. The two resonators on the device are
labeled R1 and R2. While $1 physically connects to R1
and $2 to R2, $3 connects to both R1 and R2.

3) Return value type: It returns two real numbers for the
I/Q readout values.

We will create a rule to represent this instruction specifica-
tion. First, we define the Rule object, which is constructed
with “attribute” and “kernel” arguments. We use the following
pseudo-code syntax to express a Rule object. The same
pseudo-code syntax is used throughout this paper.

rule = Rule(
attribute=attribute,
kernel=kernel

)

The “attribute” argument is an abstract object that defines the
properties of a program element, such as the value of an input
to a gate, to check against. The “kernel” argument defines how
to check the attribute. For example, it may check whether an
attribute is equal to a target value or whether each element of
the attribute has specific types.

More complex constraints can be constructed by stacking
Rule objects. Common ways to stack rules include using
ALL, which returns true if all rules are true; ANY, which
returns true if one of the rules is true; and CONDITIONAL,
which evaluates the condition and then the rules if the con-
dition is evaluated to be true. For brevity, we will refer to a
Rule object and a stack of rules both as a “rule.” Below, we
construct a rule for each of the three constraints.

1) Constraint on qubits: The constraint on the qubits can
be expressed as the following rule:

qubit_rule = Rule(
attribute=Instruction.qubits,
kernel=Kernel.in([$1, $2, $3])

)

2) Constraint on readout resonators: The constraint for the
resonator is more complex, as it is a constraint between the
two input arguments. It can be expressed as follows:

resonator_rule = ANY(
AND(

Rule(
attribute=Instruction.qubits,
kernel=Kernel.equal($1)

),
Rule(

attribute=Instruction.inputs,
kernel=Kernel.equal(R1)

)
),
AND(

Rule(
attribute=Instruction.qubits,
kernel=Kernel.equal($2)

),
Rule(

attribute=Instruction.inputs,
kernel=Kernel.equal(R2)

)
),
AND(

Rule(
attribute=Instruction.qubits,
kernel=Kernel.equal($3)

),
Rule(

attribute=Instruction.inputs,
kernel=Kernel.in([R1, R2])

)
),

)

3) Return value type: The hardware specification tells us
what return type to expect. We can also represent this as a
constraint to assert that developers are handling the return type
correctly:

return_rule = ALL(
Rule(

attribute=Instruction.returns.length,
kernel=Kernel.equal(2)

),
Rule(

attribute=Instruction.returns.type,
kernel=Kernel.all_equal(FloatType)

)
)

The overall specification for the raw_measure feature can
be constructed by stacking the three rules that we have created,
denoted as val_rule below.

raw_measure_rule = ALL(
qubit_val_rule,
return_val_rule,
resonator_val_rule

)

B. Analysis-driven validation

Now we have a rule that can validate the raw_measure
instruction. However, it is not the only rule for the program.
Let’s assume each instruction of QC1, e.g., valid_gate1,
is subject to a rule. These rules should conditionally apply
to specific types of instructions. The conditions for applying
validation rules are also defined as rules. We call these condi-
tions “analysis rules” to distinguish them from validation rules.
Validation rules and analysis rules trigger different actions:
a validation rule throws an error if the rule fails, while an
analysis rule produces information about whether to apply a
validation. A Pass is a construct used to encapsulate the rule-
action pair, where the action only takes effect if the rules in
the pass are evaluated to True.

pass = Pass(
rule = rule,
action = action,

)

In order to chain an analysis pass to a validation pass, the
result of the analysis is stored in the AST nodes. The action
of an analysis pass reads from a node, performs analysis using
its rules, and then caches the analysis results back to the
node. The information in the node determines the behavior of
subsequent validation or analysis passes. On the other hand, a
validation pass checks its rule against an AST node and throws
an error if the node represents an invalid program element. A
node contains a collection of key-value pairs, taking the form
of:

ast_node_data = {
key1: value1,
key2: value2,
...
keyK: valueK

}

Below, we construct the analysis and validation passes to
validate raw_measure instructions.

1) Define the analysis rule: The validation rule we
constructed in Section III-A should only target the
raw_measure instructions. To construct the analysis pass
that implements rule targeting, we first create the analysis rule
which evaluates to True only for AST nodes that represent
raw_measure instructions.

analysis_rule = ALL(
Rule(

attribute=Instruction.name,
kernel=Kernel.equal("raw_measure")

)
)

2) Define the analysis pass: The analysis pass action sets
the is_raw_measure field in each AST node to True if the
node satisfies the analysis rule.

analysis_pass = Pass(
rule=ana_rule,
action=set(

ast_node_data,
key="is_raw_measure",
value=True

)
)

3) Define the validation pass: We construct the validation
pass conditioned on the truth values of is_raw_measure
and raw_measure_rule. The first check is expressed as a
rule:

condition_rule = Rule(
attribute=ast_node_data.get("is_raw_measure"),
kernel=Kernel.equal(True)

)

Together, the validation pass is

validation_pass = Pass(
rule=CONDITIONAL(

condition=condition_rule,
rule=raw_measure_rule

),
else_action=throw_exception

)

When an error is thrown, the error message from
the triggered validation rule (e.g., optionally defined as
a part of qubit_val_rule, return_val_rule and
resonator_val_rule) can be included as part of the
error, providing users with actionable information to modify
their programs.

C. Apply passes to programs
A PassSequence is a construct that consists of passes in

the form of:

pass_sequence = PassSequence(
passes=[analysis_pass, validation_pass]

)

The pass_sequence defined above is a piece of data
representing the validation of raw_measure. When applying
pass_sequence, the inference engine in SHARP traverses
the program AST and applies all the passes in the pass
sequence sequentially to each visited node. Upon evaluating
the rules in a pass sequence, the attribute and kernel
arguments of the rules allow the inference engine to validate a
specific constraint. The inference engine gathers information
from the AST based on the attribute and applies checks
on the attribute values based on the kernel. The results of
the rules are then combined through the rule stacking structure
into a final outcome of True or False. The outcome of the rules
then triggers actions in the passes to perform the validation.

D. Adding and updating the feature

To add support for raw_measure on QC1 to the quantum
computing service, we add pass_sequence as data to the
SHARP ISA description of QC1.

Consider a case where, months later, the manufacturer of
QC1 updates the hardware system and removes the resonator
input variable (e.g., defaults $3 to use R1 and disallows user
selection). In such a case, the SHARP framework only requires
that the existing rule object raw_measure_rule is replaced
with the object raw_measure_rule_v2, defined below.

raw_measure_rule_v2 = ALL(
qubit_val_rule,
return_val_rule

)

IV. DISCUSSION

A. Language decoupling

In order to apply the kernel of a rule against an attribute of
a program element, SHARP first needs to extract the attributes
from the program element. This requires parsing the program
and retrieving values from the properties of AST nodes. As
a consequence, the overall workflow of SHARP must be
dependent on the particular language in which the program
is written.

In SHARP, the language dependency is decoupled by an
attribute extraction layer, as illustrated in Fig. 2. All the
dependencies on the language, such as the parser and the AST
implementation, are confined to the attribute extraction layer.
The extraction layer has a list of members, each representing
the attributes we may want to validate. Each of them is
associated with an extractor. When an extractor is applied,
the extracted information is sent back to the rule, which then
triggers the kernel to evaluate.

Fig. 2. Decoupling from the language and AST implementation.

For example, OpenQASM [27] supports a Python imple-
mentation of AST. The AST node for quantum gate calls is

@dataclass
class QuantumGate(QuantumStatement):

modifiers: List[QuantumGateModifier]
name: Identifier
arguments: List[Expression]
qubits: List[

Union[IndexedIdentifier, Identifier]
]
duration: Optional[Expression] = None

OpenQASM and QIR [38] may also implement parsers and
ASTs in C++ which may have different names and types for
the node and its attributes. Each attribute extraction layer maps
attributes from a specific AST implementation to fields in
SHARP based on their semantic meaning, such as mapping the
arguments attribute in the above AST node implementation
to Instruction.inputs in SHARP.

The part of the framework behind the extraction layer (i.e.,
rules, rule stacks, and passes) is language-agnostic. When
targeting a different language or replacing the AST or the
parser, we only need to implement a new attribute extraction
layer. The rest of the framework can remain unchanged.

B. Program-level constraints

In Section III, we showed an example of applying SHARP
to support a raw_measure instruction. The constraints for
raw_measure are at the instruction level, and the validation
is based on information from a single program element. In
fact, SHARP can support constraints beyond the instruction
level. In order to use program-level information for validation,
SHARP stores program-level results of analysis passes. In
Section III-B, the AST node data is introduced to contain
information that is only accessible when visiting the node. In
SHARP, there are two more data storage objects, differing in
their life cycle and scope: (1) a global key-value table that is
accessible by all passes and persists throughout the validation
process, and (2) a pass key-value table that is only accessible
to one pass and persists from the start to the end of the pass.

Below, we describe two examples of program-level con-
straints and explain how SHARP can support them.

1) Instruction count: In quantum hardware, a measure
instruction typically takes a significantly longer time to execute
compared to quantum gate instructions [54], [55]. If there are
too many mid-circuit measure instructions in a program,
qubits will decohere, and there will be no meaningful results.
Therefore, a quantum computer can set a limit on the maxi-
mum number of measure instructions. Assume this limit is
M.

This constraint can be supported by a pass sequence with
two passes.

• An analysis pass that checks if an AST node corresponds
to a measure instruction. If so, it increments the value in
the measurement_count field of the pass key-value
table by 1.

• A validation pass that checks if the value in the
measurement_count field is greater than M. If so,
it throws an error.

2) Order between instructions: Some instructions may only
be used when another instruction already exists. For example,
an instruction classical_control may only be valid
if the control predicate is evaluated by a mid-circuit mea-
surement, mcm. In such an example, a mcm instruction must
precede a classical_control instruction.

This constraint can be supported by a pass sequence with
two passes.

• An analysis pass that checks if an AST node correspond-
ing to a mcm instruction with a specific predicate has been
seen by the pass. If so, it sets the value in the seen_mcm
field of the pass key-value table to True.

• A validation pass that checks if an AST node corresponds
to a classical_control with the specific predicate.
If it does, and if seen_mcm is False, it throws an error.

C. Feature access control

A quantum computing service can support feature access
control at the account level, ensuring that access to specific
devices or features is granted based on user roles. For example,
experimental features can be restricted to users who opt

into beta programs. These users gain early access to new
functionalities with the understanding that the features may
be unstable, helping collect valuable feedback and enabling
rapid iteration. In the framework of SHARP, because ISA
descriptions are stored as standalone data, the management
of feature access control is the management of data. When
new access levels are added, they do not require adding logic
or managing code paths in the underlying service components.
SHARP enables a data-driven mechanism to regulate feature
availability.

D. Performance and scalability

Quantum hardware typically supports a small set of native
gates. For example, Rigetti Ankaa-3 supports three native gate
types (Rx, Rz, and ISWAP), IQM Garnet supports two (PRx
and CZ), and IonQ Aria-1 supports three (GPi, GPi2 and
MS). Hardware constraints are generally tied to these native
gates and a constant number of additional rules for control
flow or device-level constraints. Thus, the number of rules
grows linearly with the number of native gates, Ng . Given a
quantum program with NL lines of code, the inference engine
in SHARP applies rule stacks to each relevant AST node.
The resulting validation complexity is O(NgNL), as each line
may be associated with one or more rules, depending on its
instruction type.

To evaluate performance in practice, we benchmarked a
Python implementation of SHARP on a MacBook M1. We
used a rule stack representing the ISA of Rigetti Ankaa-2
which supports four native gate types (Rx, Rz, ISWAP, CZ).
Each gate is associated with 3 to 5 constraints, totaling 15
leaf rules. SHARP validated OpenQASM programs at a rate
of approximately 30 microseconds per line. In comparison,
parsing the same set of programs on the same compute
environment took roughly 200 microseconds per line, using
the default parser of OpenQASM [27]. This indicates that rule-
based validation introduces only a modest overhead relative to
other stages.

Looking ahead, as programs grow beyond several hundred
lines or rule sets become more complex, further optimization
may be required. Several approaches are available to improve
scalability:

1) High-performance implementation: SHARP is cur-
rently implemented in Python for flexibility. Rewriting
performance-critical components in a compiled language
such as C++ or Rust could significantly reduce runtime.

2) Rule stack compilation for solver-based inference: For
very complex or interdependent constraints, the rule
stack could be translated into logical formulas and
validated using SAT or SMT solvers. This would allow
SHARP to scale beyond simple pattern checks into
formal constraint verification.

3) Pipelining and parallelization: Multiple quantum pro-
grams can be validated concurrently across threads
or distributed systems. Furthermore, pipelining allows
stages such as program ingestion, validation, QPU exe-

cution and result processing to overlap between different
programs.

E. Applicability to fault-tolerant quantum computing

While SHARP is motivated by near-term quantum hardware
with rapidly evolving ISAs, the framework is also applicable
to fault-tolerant quantum computing (FTQC) systems. FTQC
platforms are expected to implement logical operations over
error-corrected qubits, often within a constrained set of fault-
tolerant gate primitives (e.g., Clifford+T [56] or lattice surgery
[57]). These logical-level constraints can vary depending on
the underlying code (e.g., surface code, color code) or the
architectural layout, and SHARP can encode such constraints
as rules. Furthermore, as fault-tolerant protocols evolve to sup-
port more efficient logical operations or alternative decoding
strategies, SHARP’s rule-based mechanism allows validation
logic to adapt without modifying the core engine. For example,
enforcing distance-based scheduling rules, T-count limitations,
or logical qubit layout constraints can be implemented as ISA
rules, providing early validation of FTQC program suitability.

V. CONCLUSION

In this work, we introduced SHARP, a rule-based, hardware-
configurable static analysis framework designed for quantum
computing services. By decoupling hardware-specific valida-
tion from core static analysis functionalities, SHARP enables
support for evolving quantum hardware without requiring
extensive code modifications. Through a rule-based validation
mechanism, the framework enforces program constraints while
maintaining adaptability across different quantum ISAs.

Through its modular and analysis-driven architecture,
SHARP supports instruction- and program-level validations
and feature access control. The framework’s design not only
streamlines the onboarding of new hardware features but also
promotes maintainability and extensibility for future quantum
programming paradigms, including fault-tolerant systems. Ad-
ditionally, the language-agnostic design of SHARP ensures
compatibility across various quantum programming interfaces,
thereby broadening its applicability within the quantum com-
puting ecosystem.

ACKNOWLEDGMENT

The authors thank Abe Coull, Daniela Becker, Gandhi
Ramu, Jacob Feldman, Cody Wang, Ramanathan Ramanathan,
Shobhit Srivastava, Vivek Dwivedi and Yunong Shi for fruitful
discussions.

REFERENCES

[1] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, pp. 505–510, 10 2019.

[2] S. Storz et al., “Loophole-free Bell inequality violation with supercon-
ducting circuits,” Nature, vol. 617, pp. 265–270, 5 2023.

[3] E. A. Sete, W. J. Zeng, and C. T. Rigetti, “A functional architecture for
scalable quantum computing,” in 2016 IEEE International Conference
on Rebooting Computing (ICRC). IEEE, 10 2016, pp. 1–6.

[4] L. Abdurakhimov et al., “Technology and performance bench-
marks of IQM’s 20-qubit quantum computer,” arXiv e-prints, p.
arXiv:2408.12433, 8 2024.

[5] K. Wright et al., “Benchmarking an 11-qubit quantum computer,” Nature
Communications, vol. 10, p. 5464, 11 2019.

[6] J. M. Pino et al., “Demonstration of the trapped-ion quantum CCD
computer architecture,” Nature, vol. 592, pp. 209–213, 4 2021.

[7] I. Pogorelov et al., “Compact ion-trap quantum computing demonstra-
tor,” PRX Quantum, vol. 2, p. 020343, 6 2021.

[8] J. Wurtz et al., “Aquila: QuEra’s 256-qubit neutral-atom quantum
computer,” arXiv e-prints, p. arXiv:2306.11727, 6 2023.

[9] L. Henriet et al., “Quantum computing with neutral atoms,” Quantum,
vol. 4, p. 327, 9 2020.

[10] M. AbuGhanem, “Photonic quantum computers,” arXiv e-prints, p.
arXiv:2409.08229, 9 2024.

[11] N. M. Linke et al., “Experimental comparison of two quantum com-
puting architectures,” Proceedings of the National Academy of Sciences,
vol. 114, pp. 3305–3310, 3 2017.

[12] S. Blinov, B. Wu, and C. Monroe, “Comparison of cloud-based ion trap
and superconducting quantum computer architectures,” AVS Quantum
Science, vol. 3, 9 2021.

[13] T. Alexander et al., “Qiskit pulse: programming quantum computers
through the cloud with pulses,” Quantum Science and Technology, vol. 5,
p. 044006, 8 2020.

[14] K. N. Smith et al., “Programming physical quantum systems with pulse-
level control,” Frontiers in Physics, vol. 10, 8 2022.

[15] M. Kuzmanović, I. Björkman, J. J. McCord, S. Dogra, and G. S.
Paraoanu, “High-fidelity robust qubit control by phase-modulated
pulses,” Physical Review Research, vol. 6, p. 013188, 2 2024.

[16] R. de Keijzer, O. Tse, and S. Kokkelmans, “Pulse based variational
quantum optimal control for hybrid quantum computing,” Quantum,
vol. 7, p. 908, 1 2023.

[17] J. P. T. Stenger, C. S. Hellberg, and D. Gunlycke, “Preparing quantum
statistical ensembles using mid-circuit measurements,” Quantum Infor-
mation Processing, vol. 23, p. 219, 5 2024.

[18] M. DeCross, E. Chertkov, M. Kohagen, and M. Foss-Feig, “Qubit-reuse
compilation with mid-circuit measurement and reset,” Physical Review
X, vol. 13, p. 041057, 12 2023.

[19] M. Foss-Feig et al., “Experimental demonstration of the advantage of
adaptive quantum circuits,” arXiv e-prints, p. arXiv:2302.03029, 2 2023.

[20] A. Waterman, “Design of the RISC-V instruction set architecture,” 2016.
[Online]. Available: https://api.semanticscholar.org/CorpusID:63861396

[21] B. W. Mezger, D. A. Santos, L. Dilillo, C. A. Zeferino, and D. R. Melo,
“A survey of the RISC-V architecture software support,” IEEE Access,
vol. 10, pp. 51 394–51 411, 2022.

[22] W. Ali, “Exploring instruction set architectural variations: x86, ARM,
and RISC-V in compute-intensive applications,” 8 2023.

[23] Braket contributors, “Amazon Braket: a fully managed quantum
computing service provided by AWS,” 2019. [Online]. Available:
https://aws.amazon.com/braket

[24] L. Huang, J. Zhang, L. Yang, S. Ma, Y. Wang, and Y. Cheng, “RVAM16:
a low-cost multiple-ISA processor based on RISC-V and ARM Thumb,”
Frontiers of Computer Science, vol. 19, p. 191103, 1 2025.

[25] Y. Cheng, L. Huang, Y. Cui, and Y. Wang, “Efficient multiple-ISA
embedded processor core design based on RISC-V,” 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:252082856

[26] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv e-prints, p. arXiv:1707.03429, 7
2017.

[27] A. Cross et al., “OpenQASM 3: a broader and deeper quantum assembly
language,” ACM Transactions on Quantum Computing, vol. 3, pp. 1–50,
9 2022.

[28] M. Paltenghi and M. Pradel, “Analyzing quantum programs with LintQ:
a static analysis framework for Qiskit,” Proceedings of the ACM on
Software Engineering, vol. 1, pp. 2144–2166, 7 2024.

[29] S. Ali, T. Yue, and R. Abreu, “When software engineering meets
quantum computing,” Communications of the ACM, vol. 65, pp. 84–88,
4 2022.

[30] M. Roberson and C. Boyapati, “A static analysis for automatic detection
of atomicity violations in Java programs,” 2 2010.

[31] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,” in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. ACM, 6 2007, pp. 1–8.

[32] F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of auto-
mated static analysis tools for fault detection and refactoring prediction,”

in 2009 International Conference on Software Testing Verification and
Validation. IEEE, 4 2009, pp. 141–150.

[33] W. Charoenwet, P. Thongtanunam, V.-T. Pham, and C. Treude, “An
empirical study of static analysis tools for secure code review,” in
Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, 9 2024, pp. 691–703.

[34] J. Zhu, J. Xie, H. R. Lipford, and B. Chu, “Supporting secure program-
ming in web applications through interactive static analysis,” Journal of
Advanced Research, vol. 5, pp. 449–462, 7 2014.

[35] J. McMahan, M. Christensen, K. Dewey, B. Hardekopf, and T. Sher-
wood, “Bouncer: static program analysis in hardware,” in 2019
ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA), 2019, pp. 711–722.

[36] A. Javadi-Abhari et al., “Quantum computing with Qiskit,” 2024.
[37] M. D. Stefano, D. D. Nucci, F. Palomba, and A. D. Lucia, “An

empirical study into the effects of transpilation on quantum circuit
smells,” Empirical Software Engineering, vol. 29, p. 61, 5 2024.

[38] K. Svore et al., “Q#: enabling scalable quantum computing and
development with a high-level DSL,” in Proceedings of the Real World
Domain Specific Languages Workshop 2018. ACM, 2 2018. [Online].
Available: http://dx.doi.org/10.1145/3183895.3183901

[39] F. Hayes-Roth, “Rule-based systems,” Communications of the ACM,
vol. 28, pp. 921–932, 9 1985.

[40] A. Ligêza, Logical Foundations for Rule-Based Systems. Springer
Berlin Heidelberg, 2006, vol. 11.

[41] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, 2 2019.

[42] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Transactions on Software
Engineering, vol. 30, pp. 859–872, 12 2004.

[43] P. Jackson, Introduction to expert systems, 3rd ed. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[44] J. C. Giarratano and G. D. Riley, Expert systems: principles and
programming. Brooks/Cole Publishing Co., 2005.

[45] B. Buchanan and E. Shortliffe, Rule-based expert system – the MYCIN
experiments of the Stanford Heuristic Programming Project. Addison-
Wesley, 2 1984.

[46] A. Moller and M. I. Schwartzbach, “Static program analysis,” 10 2018.
[47] N. C. Zakas, “ESLint: pluggable JavaScript linter,” 2013. [Online].

Available: https://eslint.org
[48] LLVM Project, “Clang-tidy: a clang-based c++ “linter” tool,” 2025.

[Online]. Available: https://clang.llvm.org/extra/clang-tidy/
[49] Google, “Error Prone: a static analysis tool for Java,” 2015. [Online].

Available: https://github.com/google/error-prone
[50] M. Kahla, “Automatic source to source code transformation to pass

compiler optimization,” Ph.D. dissertation, 2023.
[51] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers, “DyC:

an expressive annotation-directed dynamic compiler for C,” Theoretical
Computer Science, vol. 248, pp. 147–199, 10 2000.

[52] S. Abeysinghe, A. Xhebraj, and T. Rompf, “Flan: an expressive and
efficient Datalog compiler for program analysis,” Proceedings of the
ACM on Programming Languages, vol. 8, pp. 2577–2609, 1 2024.

[53] J. Heinsoo et al., “Rapid high-fidelity multiplexed readout of supercon-
ducting qubits,” Physical Review Applied, vol. 10, p. 034040, 9 2018.

[54] M. Dupont, T. Oberoi, and B. Sundar, “Optimization via quantum
preconditioning,” arXiv e-prints, p. arXiv:2502.18570, 2 2025.

[55] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva,
and R. S. Smith, “A quantum-classical cloud platform optimized for
variational hybrid algorithms,” Quantum Science and Technology, vol. 5,
p. 024003, 4 2020.

[56] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
Clifford gates and noisy ancillas,” Physical Review A, vol. 71, no. 2, p.
022316, 2005.

[57] D. Litinski, “A game of surface codes: large-scale quantum computing
with lattice surgery,” Quantum, vol. 3, p. 128, 2019.

