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ABSTRACT
Personalization in multi-turn dialogs has been a long standing

challenge for end-to-end automatic speech recognition (E2E ASR)
models. Recent work on contextual adapters has tackled rare word
recognition using user catalogs. This adaptation, however, does not
incorporate an important cue, the dialog act, which is available in
a multi-turn dialog scenario. In this work, we propose a dialog act
guided contextual adapter network. Specifically, it leverages dialog
acts to select the most relevant user catalogs and creates queries based
on both – the audio as well as the semantic relationship between the
carrier phrase and user catalogs to better guide the contextual biasing.
On industrial voice assistant datasets, our model outperforms both
the baselines - dialog act encoder-only model, and the contextual
adaptation, leading to the most improvement over the no-context
model: 58% average relative word error rate reduction (WERR) in the
multi-turn dialog scenario, in comparison to the prior-art contextual
adapter, which has achieved 39% WERR over the no-context model.

Index Terms— Contextual adapter, personalized speech recogni-
tion, RNN-T, dialog act, early-late fusion

1. INTRODUCTION

Personalized speech recognition has gained considerable attention in
recent years as industrial voice assistants (IVAs) rise in popularity.
To provide the best customer experience, an IVA should be able to
recognize personalized requests correctly. For example, “drop in on
[Proper Name]”, where the name could be user defined words.

End-to-end deep neural networks have become the mainstream
approach for ASR in IVAs, due to their great capacity to learn the
audio-to-text mapping without the alignment information between the
audio and text transcript [1]. These systems include the Connectionist
Temporal Classification (CTC) [2], Listen-Attend-Spell (LAS) [3],
Recurrent Neural Network Transducer (RNN-T) [4], and the trans-
former network [5]. However, E2E ASR models face challenges in
generalizing to recognize user-specific rare words, such as contact
names, proper nouns, and named entities due to the scarcity of paired
audio-to-text training data [6–10].

Prior works have explored various types of contextual informa-
tion to improve personalized speech recognition [8, 11–18]: The
weighted finite state transducers (WFSTs) [11] on the rare words
[12]; Domain-aware neural language models [13]; Text metadata of
video [14, 15], and the catalogs [16, 17] provided by speakers such as
contact names and device names. The contexts are incorporated to
the model either with the shallow fusion [18,19] or the neural biasing
approaches [8, 10, 16, 17, 20]. The neural solutions have been shown
outperforming the use of grammars or dynamic WFSTs in the shallow
fusion. In [16, 17], the catalog entities are encoded by BiLSTM or
BERT based encoders, and then integrated with the audio encoder via

“Drop in on John”

VA
“Do you mean John 
Lennon or John Legend?”  

“I mean … call John Lennon”

VA “OK, call John Lennon now”  

Fig. 1. A high-level diagram illustrating our idea to leverage both
dialog act and user catalogs to help a voice assistant (VA) recogniz-
ing proper nouns in a multi-turn dialog. Note that prior contextual
adapters [16, 17] consider only user catalogs for contextual biasing.

a multi-head attention based contextual biasing network. The model is
taught to leverage user-specific contexts to improve the recognition of
rare words. The performance of this biasing approach, however, may
be hindered when irrelevant user catalogs or/and wrongly predicted
carrier phrases bias the next predictions towards a wrong token.

To address the above issues, we propose to leverage both dialog
act and user catalogs for the contextual biasing (Fig. 1) and introduce
a dialog act guided contextual adapter network (Fig. 2). The dialog
acts (DA) are used to identify the action and the slot value of spoken
utterances in multi-turn dialogues (Fig. 1). An example of DA is
SlotValueElicitation(ProperName), which is associated with a dialog
when a user tries to call someone. The DA can help the VA to elicit
a contact name from the user catalog for the next turn, usually to
clarify or confirm the entity. Given the semantic relationship between
“drop in on” or “call” versus “SlotValueElicitation", DAs can help
improve the prediction of the carrier phrases. We then use an attention
based contextual adapter to bias the predictions towards the tokens
in the user’s [Contact Name] catalog. Note that prior work with
DAs [21–24] primarily focus on the generic multi-turn utterance
improvements, while the contextual biasing approaches [16, 17] were
mainly dedicated to the single-turn named entity improvement. With
the proposed network, we can bridge the gap between a single turn
and multi-turn personalization in ASR.

Our contributions are summarized as follows. First, we present
the dialog act (DA) encoder (Section 3.1) and the fusion networks
(Section 3.2) to integrate the dialog act context with both the low level
and high level acoustic representations, and improve the queries for
the biasing network. Second, we use dialog acts to select the most rel-
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Fig. 2. The proposed DA guided contextual adapter. The DAs are used for catalog selection and are fused with different levels of audio
representations to build better queries for the biasing network.

evant catalogs (Section 3.3), which directly influence the keys/values
used in the biasing network. Third, we introduce a DA-aware biasing
network, which takes the improved queries and keys/values above
to bias toward the right catalog entities (Section 3.4). Finally, we
propose a two-stage adapter training and investigate the impacts of
freezing and unfreezing DA encoder and fusion networks during the
contextual biasing stage (Section 3.5).

2. CONTEXTUAL ADAPTER

The contextual adapter used in this work, [17], is built upon a type of
streaming E2E ASR, RNN-T [4], which consists of an RNN based
encoder, an RNN based prediction network, and a joint network. The
encoder network produces high-level representations henc

t for the
audio frames, while the prediction network encodes the previously
predicted word-pieces and produces the output hpre

u . The joint net-
work fuses henc

t and hpre
u via the join operation followed by a series

of dense layers with activations and a softmax function to obtain
the probability distribution over word-pieces plus a blank symbol.
In [17], a catalog encoder is introduced to embed the user catalogs
and types. In addition, a multi-head attention based biasing network
is introduced to measure the relevance of the user catalog context
using the encoder network outputs as queries.

3. DIALOG ACT GUIDED CONTEXTUAL ADAPTER

In order to leverage DAs to guide the contextual adapter learning, we
introduce four new components as shown in Fig. 2: (1) DA Encoder,
(2) DA Fusion Networks, (3) Catalog selection with DAs, and (4) DA
aware Biasing Network, along with the two stage adapter training.

3.1. DA Encoder

Each DA string, di, contains the action string ai and the slot string
si, in the form of ai(si), e.g. SlotValueElicitation(ProperName), as
shown in Figure 3(a). Motivated by [21], we convert ai and si by
two embedding matrices into the action embeddings ha

i and slot
embeddings hs

i , with the same embedding size. Both embeddings are
then fused via an element-wise addition followed by a Feed Forward
Network (FFN) and the ReLU activation, denoted as σ, to produce
the fixed dimensional DA embedding, hDAE

i ∈ R1×dda :
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Fig. 3. The DA encoder and fusion networks. (a) DA encoder, (b)
DA early fusion network, and (c) DA late fusion network

hDAE
i = σ(FFN(ha

i + hs
i )) (1)

3.2. Fusion of DAs and Multi-level Audio Embeddings

After we obtain the DA embedding, hDAE
i , it is combined with two

levels of the audio representations using one of the three approaches
presented below:

Early Fusion: We simply concatenate hDAE
i with the input

audio features per frame, xt, see Figure 3(b).

hEF
t = Concat(xt,h

DAE
i ) (2)

Late Fusion: The encoder network output, henc
t is first concate-

nated with hDAE
i . The concatenated output is then transformed by a

FFN with the ReLU activation, denoted as σ. See Figure 3(c).

hLF
t = σ(FFN(Concat(henc

t ,hDAE
i ))) (3)

Early-Late Fusion: In this approach, we inject hDAE
i jointly

with the input audio (Equation 2) and with the encoder output (Equa-
tion 3) as shown in Figure 2. Note that the DA encoder is shared in
this approach.

3.3. Catalog Selection with DAs

In addition to fusing the DA embeddings with the audio represen-
tations (Section 3.2), we also investigate the selection of catalogs
based on the DA string di = ai(si), during training. Specifically, the



slot string si in di is used for selecting the catalog for biasing. We
consider three types of catalogs in this work: contact names, device
names, and device locations. By matching si with the catalog type,
we can summarize the selection rule as follows:

{c1, ...cK} ∈


proper names catalog, if si = ProperName
device names catalog, if si = DeviceName
device locations catalog, if si = DeviceLocation
all three catalogs, otherwise

Using this approach, we can prevent irrelevant catalogs from
deteriorating biasing network training.

3.4. DA Aware Biasing Network

The biasing network learns which catalog entities to bias toward.
Inspired by [16, 17], we employ cross-attention to attend over the
catalog embedding matrix Ce ∈ RK×Dc based on the input query
q, which comes from the DA late fusion network, hLF

t ∈ R1×Da

(Equation 3). Here K, Dc, Da are the total number of catalog
entities, the catalog embedding size, and the audio embedding size
respectively. This query intuitively encodes both the audio and the DA
information – the semantic relationship between the carrier phrase
and the user catalogs.

The query and the catalog entity embeddings are first projected
via W q ∈ RDa×d and W k ∈ RDc×d to dimension d. An attention
score vector αt for catalog entity embeddings is computed by the
scaled dot product attention mechanism [25] as follows:

αt = Softmax
(
(CeW k)(hLF

t W q)T√
d

)
(4)

where αt ∈ RK×1. The biasing vector benc
t is then computed

as benc
t = (αt)

T (CeW v) ∈ R1×Da , where W v ∈ RDc×Da .
The biasing vector benc

t is then combined with the hLF
t : ĥenc

t =
hLF
t ⊕ benc

t .
While the audio representation enables the biasing network to

bias towards entities based on acoustic similarity, the DA helps the
biasing network attend over the right type of entity. For instance, if
the DA is SlotValueElicitation(DeviceName), the biasing network can
be guided to bias towards entities that are of type DeviceName.

3.5. Two-Stage Training: DA-Aware RNN-T Training followed
by Contextual Adaptation

While improving user-specific word recognition, a desirable E2E
ASR should be able to maintain the performance on general speech
recognition. To this end, we adopt the two-stage training similar
to [17]. We first pre-train the DA-Aware RNN-T, i.e. RNN-T (the
encoder network, prediction network, joint network, dense layer)
augmented with the DA encoder and DA fusion networks on the
live IVA distribution of utterances. In the second stage of contextual
adaptation on user catalogs, we keep the RNN-T weights frozen while
training the catalog encoder and the biasing network on upsampled
personalized data mixed with the original general data under two
conditions: (1) Freeze the DA encoder (DA Enc.) and fusion network
(FN), (2) Unfreeze/ keep finetuning the DA Enc. and FN.

4. EXPERIMENTS

4.1. Datasets and Evaluation Metrics

We use in-house IVA datasets where audio to transcription paired
utterances are de-identified and randomly sampled from more than

20 domains such as Global, Communications, SmartHome, Weather,
and Music. We consider the top 49 frequently occurring DAs in the
IVA data sets including the DefaultDialogAct (usually associated
with the first-turn utterances) and the non-default DAs (associated
with more follow-up turns)1. 114k hours of data are used to pre-
train the DA-Aware RNN-T. For training the catalog encoder and the
biasing network, we use approximately 290 hours of data, containing
a mix of user-specific and general training data with the ratio of
1.5:1 as suggested in [17]. User-specific datasets contain utterances
with contact names, device names, and/or device locations. General
utterances are sampled from the original training data distribution. We
evaluate the models and report results on multiple test sets including
a 20 hour User-specific dataset and a 75 hour General dataset. The
User-specific test set is further split into the default DA and non-
default DA set for further comparisons. To evaluate our model on
individual turns of a dialog, we further created turn-wise test sets,
which contain user-specific and non-default DA utterances from the
first turn (turn 1), the second turn (turn 2) and the third turn (turn 3).

The relative word error rate reduction (WERR) is used throughout
the experiments to summarize the overall, slot-type-wise, or turn-wise
ASR performances. Given a model A’s WER (WERA) and a baseline
B’s WER (WERB), the WERR of A over B can be computed by
(WERB −WERA)/WERB ; a higher WERR indicates a better WER.
We use three types of catalogs (Section 3.3). The maximum number
of catalog entities fed into the catalog encoder is set to K = 500, and
contains the correct user-specific entities.

4.2. Experimental Setup

4.2.1. Model Configurations

The DA guided contextual adapter has the following configuration.
The encoder network has 5 LSTM layers and the prediction network
is composed of 2 LSTM layers, both with 736 units followed by
a feed-forward network of 512 units. The joint network is a fully-
connected feed-forward component with one hidden layer followed
by a tanh activation function. The DA encoder contains a 49-dim
embedding layer followed by a feed-forward network of 64 units
(i.e., dda = 64). The DA late fusion network has a feed-forward
network of 512 units. The catalog encoder is a BiLSTM layer with
128 units (each for forward and backward LSTMs) with input size
64. The final output from the catalog encoder is projected to 64-dim
(i.e., Dc = 64). The biasing network projects the query, key and
values to 64-dimensions (i.e., d = 64). The resulting biasing vector
is then projected to the same size as the encoder output, 512-dim (i.e.,
Da = 512).

We compare our model to the following baselines: (1) No Con-
text: This is a vanilla RNN-T [4]. (2) DA only: This is an RNN-T
using only DAs integrated with the input audio features [21], and
(3) CA: This is an RNN-T based Contextual Adapter (CA) using
only user catalogs [17]. All the models including the proposed one
contain ∼ 35 million parameters.

4.2.2. Input, Output, and Learning Rate Configurations

The input audio features consists of 64-dim LFBE features, which
are extracted every 10 ms with a window size of 25 ms from audio
samples. The features of each frame are then stacked with the left two
frames, followed by a downsampling of factor 3 to achieve low frame
rate, resulting in 192 feature dimensions. The subword tokenizer

1There does not exist an equivalent, publicly available contextual dataset
containing both user catalogs and dialog acts in multi-turn dialogue scenario.



Table 1. WERRs (%) over No-context baseline [4]: Comparisons for
DA guided CA, DA only, and CA models on IVA User-specific and
General test sets. A higher number indicates a better WER.

Model DA Fusion DA Enc.&FN User-Specific General

No context [4] N/A N/A baseline baseline
DA Only [21] N/A N/A 1.49 -0.95

CA [17] N/A N/A 28.23 -0.59

DA guided CA (Ours)

Early Fusion freeze 29.72 -1.02
un-freeze 28.83 -0.66

Late Fusion freeze 28.75 -1.31
un-freeze 30.61 -2.58

Early-Late Fusion freeze 30.53 -2.3
un-freeze 32.39 -2.5

Table 2. WERRs (%) over No-context baseline [4] on Non-
Default/Default DA splits of the User-specific test set. A higher
number indicates a better WER.

Model DA Fusion DA Enc.&FN Non-Default DA Default DA

No context [4] N/A N/A baseline baseline
DA Only [21] N/A N/A 13.81 -1.27

CA [17] N/A N/A 29.91 27.85

DA guided CA (Ours)

Early Fusion freeze 40.35 27.77
un-freeze 39.71 26.84

Late Fusion freeze 39.01 27.00
un-freeze 39.54 29.03

Early-Late Fusion freeze 40.04 28.69
un-freeze 41.56 30.46

[26, 27] is used to create tokens from the transcriptions; we use 4000
tokens in total. We trained the RNN-T, the DA encoder, and the DA
fusion network by minimizing the RNN-T loss [4] using the Adam
optimizer [28], and varied the learning rate following [5, 25].with the
starting LR = 1.5e-7 and ramping up for 3000 steps to reach LR =
4e-4. The LR is then held constant for 150K steps after which there
is an exponential decay. For training the catalog encoder and biasing
network in the CA stage, we use the Adam optimizer with LR = 1e-3
trained to convergence with early stopping.

4.3. Results

Table 1 presents the WERRs of the DA guided CA and baseline
approaches over the no-context model for the User-specific and Gen-
eral test sets. The DA guided CA outperforms the no-context model
by 32.39% relative improvement, while the DA only model and
CA achieve 1.49%, and 28.90% WERRs respectively on the User-
specific set. While unfreezing the DA Enc. and FN boosts the perfor-
mance on the User-specific sets, it is more prone to overbiasing, re-
sulting in more degradations on the General set compared to freezing
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Fig. 5. Turn-wise WERRs (%) over No-context baseline [4] on the
IVA User-specific multi-turn test set.

their weights: -1.31% WERR (freeze) vs. -2.58% WERR (unfreeze)
for the late dialog act fusion, and -2.3% WERR (freeze) vs. -2.5%
WERR (unfreeze) for the early-late dialog act fusion in Table 1. We
also observe that bypassing the catalog selection with DAs on the best
performing DA guided CA, the WERR over No-Context model drops
from 32.39% to 31.43%, which indicates selecting catalogs and fil-
tering catalog embeddings, i.e. keys/values, to the most relevant ones,
leads to better biasing.

In Table 2, we show the WERRs on non-default DA and default
DA splits. The DA guided CA, again, improves WER over the No-
Context model the most (41.56%), compared to the WERRs achieved
by the DA only (13.81%) and CA (29.91%) on the non-default DA
split. The huge improvements seen in the non-default DA split can
be explained by the fact that the user-specific utterances are usually
associated with non-default DA.

We further compute the slot WERRs on three major user-specific
slots in Fig. 4 along with the overall performances across all 131 slots.
The DA guided CA model shows the most relative improvements in
terms of Overall Slot WER against the No-Context model (33.08%),
compared to the WERRs of DA Only (1.5%), and CA (28.57%)
respectively. Here, we can see the improvements on the contact
name slot are the highest across all models. The proposed model
achieves the most improvement (45.21% relative). Notably, although
DA Only model performs slightly worse than the No-Context model
for the device name and device location slots (−0.38% and −1.82%
WERRs), DA guided CA still leads to better relative improvement
over No-Context model, compared to the CA’s improvement for the
device name (38.55% vs. 34.73%) and device location slots (36.36%
vs. 34.55%) respectively.

Finally, we report the results on the turn-wise test sets in Fig. 5.
The average of WERRs across turns are presented as well. While the
DA Only model and CA have significant improvements, DA guided
CA leads to the best improvements on average (58%), turn 1 (56.5%),
turn 2 (57.3%), and turn 3 (59.8%) over the No-Context model.
This shows that the DA guided CA model significantly improves
performances for multi-turn personalized ASR over the baselines.

5. CONCLUSION

We proposed a dialog act guided contextual adapter approach to
address personalized ASR in multi-turn dialogs. We leverage DAs
to short list the most relevant catalogs and create better queries to
guide the biasing network. The experimental results on IVA test
sets show that the DA guided CA achieves on average 58% WER
relative improvements over the no-context model on the user-specific
multi-turn test set, in comparison to the prior-art contextual adapter
model which achieved 39% over the no-context model.
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