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Abstract
In today’s fast-paced world, customers increasingly value quick

and reliable delivery services, with many prioritizing speed as a de-

cisive factor in their purchasing decisions. E-commerce stores serve

customers through specialized programs ensuring delivery within

same day. Facilitated by strategically placed delivery networks, this

provides an ultra-fast delivery experience to the end customers

enabling them to receive their orders within the same day in a

chosen fixed size window. While intra-day deliveries conclusively

improve the customer experience, in the age of quick commerce,

customers want the orders faster, and many scenarios (for e.g. pe-

riods of the day when customers would be traveling to school or

work) make long static windows inconvenient for customers. How-

ever, faster deliveries increase the cost of shipping. In this work,

we leverage the observation that in many instances orders reach

ahead of time because of the geographical proximity of the shipping

address and the order density in the neighborhood. This presents

an opportunity to improve the delivery experience of customers

without incurring any additional costs for customer or the seller.

We present a framework to recommend dynamic, faster delivery
time slots to customers. We create multiple heterogeneous views

of order-to-delivery data capturing the spatial and spatio-temporal

aspects of the data, and leverage a novel deep view interaction

network which computes the higher order interactions among the

views. The proposed model outperforms multiple representative

baselines and allows us to predict narrower slots for 60%+ eligible

orders for the locale under experimentation. During a 21 day online

A/B test, the treatment recorded a significant gain of +17 bps in

units, +21 bps for views and +19 bps increase in search interactions,

establishing the efficacy of the framework.

CCS Concepts
• Computing methodologies→Multi-task learning; Neural
networks; • Applied computing→ Forecasting.

Keywords
Location business intelligence, Spatio-temporal analysis, E-commerce,

Delivery Time Estimation, Forecasting, Deep Neural Networks

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

SIGSPATIAL ’25, Minneapolis, MN, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2086-4/2025/11

https://doi.org/10.1145/3748636.3764604

ACM Reference Format:
Arindam Sarkar and Prakash Mandayam Comar. 2025. SPEEDY: Framework

for Sharpening Promise Time Estimates in Sub-Same Day Delivery. In The
33rd ACM International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’25), November 3–6, 2025, Minneapolis, MN, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3748636.3764604

1 Introduction
Online stores today offer ultra fast delivery experience to the cus-

tomers allowing them to receive their orders by a certain time

within the same day if the orders are placed by a specific time

window. Faster delivery is known to improve customer satisfaction

resulting in better engagement and retention [3, 23, 27]. Customers

who are located in the respective servicable zones amenable to

fast delivery services are provided the option to choose between

the preferred delivery slot among evenly distributed slots start-

ing at 6AM, and ending at 11PM. In this work we refer to these

as ‘promise’ slots. The quickest slot presented to the customer is

contingent on the on-ground delivery capacity for the remaining

slots of the day. A common practice in these delivery systems is to

pool orders that arrive within a predefined pooling window, and

optimize shipments for timely dispatch and efficient route plan-

ning. Due to the inherent uncertainty in predicting which other

addresses will place orders in the same window as a given customer,

fixed-size promise windows are typically configured to standardize

fulfillment planning and ensure operational reliability. However,

in this age of quick commerce, customers want faster speeds. This

is achievable by supplementing the delivery capacities to enable

shorter delivery promise windows. But this reduces the delivery

density (delivery/hour), and thus is detrimental to the existing cost

structures associated with the shipping logistics. Another crucial

problem with static slots is that these introduce an ambiguity for

customers ordering in the peak slots. For e.g., a morning slot of

6-10AM, or 8AM-12PM or an evening slot of 4PM-9PMmay overlap

with travel to/from office/school and hence might not appeal to

these set of customers. This is especially important for high value

purchases/exchanges/setup, where the customer might want to be

present in person. Even in the same fixed slot, some customers re-

ceive orders before others due to the way delivery executives batch

orders for delivery, resulting in shorter effective delivery times for

some of the customers. This motivates us to explore data driven

approaches to sharpen the promise time windows presented to the

customers by predicting shorter dynamic windows on the fly, while

incurring no additional investments towards the logistics.

Predicting delivery estimates at (address, slot) level is a chal-

lenging problem as (1) demand distribution at individual address

level is often sparse, (2) last mile delivery time is contingent on

multiple factors like nearby addresses placing order for the same
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slot, on-ground capacity deployed, traffic conditions and so on. The

high sparsity of order events (in terms of the possible day, slot

combinations) makes the task of predictive modelling on the basis

of locality identifier alone difficult. This is complicated by the fact

that the sub-same day windows are made available to customers

for windows spread over upto 2 days (observed across multiple

online stores) to allow for flexibility, and hence, the order data

has an latency of roughly 48 hours, which implies that when the

customer is searching for a product, or placing the order, there is

little to no information available on the other orders which will

placed in the same time window or the available delivery capacity

of the station (the nodal points which are established in the vicin-

ity of fulfillment-centers for direct delivery to the end customer).

As such, our problem is different from origin-destination based

shipping time estimation, since in a sub-same day delivery setting,

customers usually receive shipments from a local hub within the

same city; in our case local factors like neighborhood orders and

station-address delivery time spread are more important, and usu-

ally there is little control over the route a delivery executive is likely

to take. Due to the pooling of orders, our setting is also different

from real time delivery prediction/tracking wherein real time lo-

cation and capacity of delivery executives are present. Rather our

goal is to opportunistically create high precision dynamic windows
offering faster delivery to the customer.

To tackle the unique challenges for our problem, we leverage a

few key observations - (1) delivery executives tend to visit nearby

addresses in same sub-interval of time window, and are more likely

to visit clusters which are closer to the delivery station first (delivery

time is negatively correlated with the distance of the address from

the station), and (2) while the temporal information at smaller

locality levels is sparse, the coarser view of the data (combining

multiple localities) is more amenable to predictive modelling. Based

on these observations, we propose SPEEDY, a deep learning based

framework for sharpening promise time estimates for sub-same day

delivery, which leverages hierarchical multi-view features across

multiple geo-spatial resolutions, and efficiently computes higher

order interactions of the hierarchical views of data via deep late

stage fusion. Our key contributions in this work are as follows:

(1) We create multiple views from delivery data to capture the

distribution of delivery times. For instance, to capture deliv-

ery distribution in the neighborhood of an address, we create

efficient multi-resolution, hierarchical grids summarizing de-

mand and delivery time information at multiple granularities,

while, to efficiently leverage the spatio-temporal nature of

the order delivery data, we leverage a deep Convolutional

LSTM [21] based neural network.

(2) To model the heterogenous views of data, we present a deep

multi-task (MTL) model [19, 33] which fuses multi-view geo-

spatial features via explicit higher order interactions [20, 29].
(3) Finally, we demonstrate the effectiveness of our proposed

approach by carefully chosen quantitative/ablation studies,

as well as an online A/B test spanning across 3 weeks.

2 Related Work
Our problem is closely related to that of delivery time prediction

in the last mile delivery networks. However a key distinction from

recent works like [6], where the authors deal with the problem of

route planning and delivery time estimation for delivering multiple

orders to different addresses in a quick delivery, we have multiple

orders (per executive) to be delivered in a multi-hour window,

and estimates need to be generated upto 48 hours in advance. In

[4], authors solve the problem of parcel delivery time prediction

and experiment with multiple deep Convolutional Neural Network

(CNN) [14] based approaches, and find that CNNs can effectively

model spatio-temporal dependencies. Compared to the broader

problem of origin-destination delivery time estimation [4, 17, 34],

in our case, station to customer addresses distances already fall

within a serviceable area, and we rather need to model the how

the delivery dynamics within a locality will affect the delivery

time to a particular address in a given slot. Somewhat related is

the task of traffic congestion prediction in urban setup, in which

given the routes of a region, task is to predict traffic at different

traffic intersections, and this heavily influence our model design

wherein we leverage the spatio-temporal modelling capabilties

demonstrated by CNN + LSTM based models in [30–32]. In [32]

authors present a meta-learning based approach and use CNN +

LSTM based architecture to model spatio-temporal patterns, in [31],

authors propose a deep spatio temporal ResNet based architecture

to forecast inflow/outflow of crowds, and in [30], authors propose

the use of Convolutional LSTM network for predictive modelling

of crashes for accident prevention.

3 Proposed Approach
In this section, we introduce the preliminaries, describe the prob-

lem formulation, and present our solution approach for predicting

dynamic promise slots for sub-same day delivery.

3.1 Problem Formulation
In a typical e-commerce store, when a customer arrives at the prod-

uct listing on search page or is checking out the product details

on the detail page (DP), multiple services come into play to fetch

information on customer’s active address, and possible delivery op-

tions (promise times) to be surfaced to the customer. If the product

is eligible for fast delivery at the customer’s shipping address, the

earliest delivery option is shown to the customer on search and

DP, and all the available slots are shown when the customer is on

checkout page. For a given shipment, we define the early delivery

delta as the difference between promise time and the delivery time:

𝑡Δ = 𝑡𝑝𝑟𝑜𝑚𝑖𝑠𝑒_𝑒𝑛𝑑 − 𝑡𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 . As such, our objective to estimate for

the available promise time slots for a given order, how much can

the slot be narrowed down to by tapering the end time of the slot.

Thus the central problem here is to predict if the shipment will be

delivered to the customer M minutes ahead of the static promise

end time for multiple values of M:

argmax

𝑀

𝑃 (𝑡Δ = 𝑀 |𝑎𝑑𝑑𝑟𝑐 ,C), 𝑀 ∈ Z+ (1)

where C is the additional context like date/time of order, historical

shipping data etc. For fixed slots like 6-10AM, this in effect allows

offering narrower dynamic slots like 6-8AM, 6-9AM and so on. In

this work, we pose this as a classification problem, in which for

given (𝑎𝑑𝑑𝑟𝑐 ,C), we estimate the probability in eq. 1 for multiple
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values of M, where the target values of M are chosen in accordance

to the product/UX considerations.

3.2 Preliminary Data Analysis
We performed extensive data analysis to understand the nature of

the problem, and the data characteristics. We used 12 months of

anonymized order data (X𝑁
𝑖=1

), where ground-truth was derived

based on the promise window selected at the checkout, and the

delivery time was as registered by the delivery executive. One of

the key findings was that at small locality levels, there is lack of

repeatability of outcomes in terms of same localities receiving or-

ders early or late. For instance, in the sample proprietary data we

observed less than 10% overlap of localities with early delivery be-

tween consecutive days. This can be attributed to the fact that every

day, different set of customers from different neighborhoods (small

localities) place orders in an online store. As expected, repeata-

bility improves as we increase the locality size, but the precision

inevitably goes down as all addresses in a larger neighborhood will

not necessarily receive the orders in the same time sub-window.

Moreover we found that distance of an address from the deliv-

ery has a weak negative monotonic relationship with 𝑡Δ. While

intuitively, one may expect a strong correlation, usually delivery

hubs are strategically located to guarantee timely deliveries for

all addresses in the covered regions. This makes it important to

effectively encode the spatio-temporal dynamics for our task.

3.3 Constructing Multiple Views of Data
Hierarchical locality based spatial views (Xh): As we go from

smaller to larger localities, the historical order data becomes less

sparse (making it easier to train a predictive model), however, this

also causes loss of precision, as not all addresses which fall in the

same locality will get the orders delivered equally early or late since

they will share a small subset of delivery executives. Faced with this

trade-off, we propose creating hierarchical views of data to aggre-

gate features at multiple resolutions. Specifically, we hierarchically

partition the address space R = {addr𝑐 }, where shipping address 𝑐

is composed of the (latitude, longitude) pairs, into uniform (square)

grid based segments [32], 𝑟
𝑚,𝑛
𝐺𝑘

where 𝐺𝑘 represents a grid with

fixed dimensions (𝑤𝐺𝑘
×𝑤𝐺𝑘

) at level 𝑘 . The conversion logic from

coordinates to grid cell is outlined in Algorithm 1. We create grids

of size𝑤𝐺𝑘
= [50m, 100m, 200m, 500m]. Intuitively, smaller grids

capture the more specific properties of the address/locality, whereas

larger grids enable efficient neighborhood aggregation for each ad-

dress. Note that these grids have higher resolution compared to

the existing pre-defined hierarchy defined by postal-code, station,

fulfilment-center, city level identifiers in the addressing system.

Finally, both the pre-defined and the newly introduced grid-based

hierarchy is used to aggregate historical distributions of order vol-

ume, fraction of early deliveries, etc. Following the observation that

delivery executives tend to traverse nearby addresses in certain

precedence, for the grids, we additionally compute the average rank

in which the address was served among other addresses receiving

order in the same time window.

Spatio-temporal views (Xst):While the spatial view captures

aggregate level features at multiple resolutions, it does not capture

how the distribution of 𝑡Δ for a given locality changes over time.

Algorithm 1 Coordinate-to-Grid Mapping for Hierarchical Region

Partitioning

1: Input: Set of delivery coordinates D
coord

= {(𝑙𝑎𝑡𝑖 , 𝑙𝑛𝑔𝑖 )}𝑁𝑖=1
2: Output: Assigned grid cell 𝑟

𝑚,𝑛
𝐺𝑘

for each address 𝑐 ∈ R

3: 𝑀
lat
← 111,000 ⊲ Approximate meters per degree latitude

4: 𝑙𝑎𝑡min ← min

(𝑙𝑎𝑡,· ) ∈Dcoord

𝑙𝑎𝑡

5: 𝑙𝑛𝑔min ← min

( ·,𝑙𝑛𝑔) ∈Dcoord

𝑙𝑛𝑔

6: function CoordToGridCell((𝑙𝑎𝑡, 𝑙𝑛𝑔),𝐺𝑘 )

7: Δ
lat
←

𝑤𝐺𝑘

𝑀
lat

8: Δ
lng
←

𝑤𝐺𝑘

𝑀
lat
· cos(radians(𝑙𝑎𝑡min))

9: 𝑚 ←
⌊
𝑙𝑎𝑡 − 𝑙𝑎𝑡min

Δ
lat

⌋
10: 𝑛 ←

⌊
𝑙𝑛𝑔 − 𝑙𝑛𝑔min

Δ
lng

⌋
11: return 𝑟

𝑚,𝑛
𝐺𝑘

12: end function

13: for𝐺𝑘 ∈ G do ⊲ G is the set of grid configurations at different

levels

14: for (𝑙𝑎𝑡, 𝑙𝑛𝑔) ∈ D
coord

do
15: Assign 𝑟

𝑚,𝑛
𝐺𝑘
← CoordToGridCell(𝑙𝑎𝑡, 𝑙𝑛𝑔,𝐺𝑘 )

16: end for
17: end for

We adapt the Convolutional LSTM architecture [21] to model the

spatio-temporal view of the localities, and create distinct views for

each classification task corresponding to prediction of early deliv-

ery by 𝑀 minutes. For brevity, we drop the task indicator in this

discussion. We therefore adapt the Convolutional LSTM (ConvL-

STM) architecture to obtain a sequence of latent maps {H𝑡 }𝑇𝑡=1 that
capture local, short-range interactions in both space and time. Al-

though newer visual representation backbones such as pre-trained

Vision Transformers (ViT) [5] could be plugged in as well, two con-

siderations motivate our deliberately conservative choice: (1) local

inductive bias: convolutional kernels are well suited for dense fields

in which neighbouring cells exhibit the strongest dependence (2)

data efficiency: ViTs (and transformer models in general) are known

to be data-hungry [15], and as such ConvLSTM remains a practical

baseline for usecases like spatio-temporal forecasting [22]. Given

that our inputs are intensity maps and not complex visual objects,

the ConvLSTM’s local spatial bias and proven robustness make it

a pragmatic choice for learning the dynamics of spatio-temporal

relationships for our task.

For a given region (e.g., grid/city) r ⊆ R, we denote the temporal

snapshot at time 𝑡 as 𝐴
(𝑡 )
𝑟 ∈ R𝑊𝑟 ×𝐻𝑟 ×3

. To form the snapshot, we

start from the smallest sized grids (50×50𝑚2
in this work), where

𝑊𝑟 and 𝐻𝑟 are sides of the rectangular box which bounds all the

grids in the region 𝑟 . We assign grid at the bottom left corner of the

box as the origin for the region, and shift the other grid coordinates

relative to this, thereby mapping the bottom left corner to (0, 0).

For rest of the discussion, we use Φ𝑟 (𝑎𝑑𝑑𝑟𝑐 ) = (𝑚,𝑛) to denote the

operator which maps an address to a position in Ar. For a grid cell
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(a) Vis. of spatial hierarchy of localities (b) Observed capacity-fill rate over time. (c) Predicted fill-rate at different query times.

Figure 1: (a)–(c): Visualizations from SPEEDY for hierarchical locality-based view of delivery address segments, and estimated
fill-rates as a function of time before promise slot end.

(𝑚,𝑛) in the shifted space, let the fraction of orders which were

delivered before M minutes to end of promise time be 𝜌 (𝑡 ) (𝑚,𝑛),
then a 3-dimensional vector is assigned to each grid forming the

individual entries:

𝐴
(𝑡 )
𝑟 (𝑚,𝑛) =


[0, 0, 0], if no order was placed

[0, 1, 0], 𝜌𝑟 (𝑚,𝑛) ≥ 𝜌𝑡ℎ𝑟𝑒𝑠ℎ𝑟

[0, 0, 1], 𝜌𝑟 (𝑚,𝑛) < 𝜌𝑡ℎ𝑟𝑒𝑠ℎ𝑟

(2)

Given a sequence of 𝐷ℎ𝑖𝑠𝑡 temporal snapshots [A(𝑡 )𝑟 , ..,A(𝑡+𝐷ℎ𝑖𝑠𝑡 )
𝑟 ]

for a region 𝑟 , predictive saptio-temporal representation at a future

time horizon +𝐷ℎ𝑧 is generated, forming spatio-temporal views

of data. In Here we have used day-level snapshots aggregating

delivery events throughout the day.

Static view (Xs): Apart from these, multiple static features are

created to represent the shipment data: date/time features, distance

of the location from the station, event indicators (e.g., High Velocity

Events like Prime Day), promise-slot etc. A vital factor which deter-

mines how crowded a promised delivery slot will be is the number

of orders which will be placed in the slot. However this data is not

available during the inference. So, we approximate the percentage

capacity that is already filled at the serving station at the time of

ordering (fig. 1). This is modelled by a lightweight GBDT model

[2, 11], predicting the remaining-capacity as a function of (station,

promise-time, request-time), where the request is triggered when

the user lands on search/detail/checkout page. This is modelled as

a function of (station, promise-time, request-time). Figure 1c shows

the fitted curve for a station on sample data.

𝜌𝑠𝑡𝑛,𝜏 = FGBDT

𝜃

(
𝑠𝑡𝑛, 𝜏, Δ𝑡

)
, Δ𝑡 = 𝜏 − 𝑡

ord

where 𝑠𝑡𝑛 denotes the station, 𝜏 = 𝑡
promise_end

is the end time of the

promised slot, 𝑡
ord

is the order timestamp, and 𝜌𝑠,𝜏 represents the

predicted fill-rate for station 𝑠 and slot 𝜏 . The mapping FGBDT

𝜃
(·)

is a gradient-boosted decision-tree model parameterised by 𝜃 .

3.4 Model Architecture
Modelling Spatio-temporal View: To model the complex intra-

region relationships with respect to the probability of early delivery

across the temporal dimension, we employ a deep sequential neural

network architecture which leverages Convolutional LSTM [21]

which determines the future state of a certain point in a region

by the current inputs and past states of the local neighbors. As

discussed in the last section, an address 𝑎𝑑𝑑𝑟𝑐 has multiple spatial

views, however the smaller localities usually have sparse order

events, and mapping of address to station/FC can also change over

time leading to noisy transitions. In this work, we model the spatio-

temporal dynamics at the city-level which have sufficient order

events, and are relatively free of mapping changes. Different cities

have varying sized snapshots (𝑊𝑟 ,𝑊ℎ). For processing the snap-

shots via a neural network model, we need the shapes of tensors

to be identical. Resizing is a popular operation for this purpose

in computer vision, but in this case, the change in aspect ratio

could lead to mis-representation of distance between two addresses.

Instead, first the tensors are padded to (𝑊𝑓 𝑖𝑚𝑔 ×𝑊𝑓 𝑖𝑚𝑔 × 3), s.t.,
𝑊𝑓 𝑖𝑚𝑔 ≤ 𝑚𝑎𝑥𝑟 (𝑊𝑟 , 𝐻𝑟 ). For our data𝑊𝑓 𝑖𝑚𝑔 = 1024 was selected.

After padding, the tensors are downsampled to (512 × 512 × 3)

using nearest-neighbor based interpolation for the efficiency of

computation. Starting with the downsampled historical snapshots

Ãr = [Ã(𝑡 )r , .., Ã(𝑡+𝐷ℎ𝑖𝑠𝑡 )
r ], we compute the future spatio-temporal

representation as:

Hr
(𝑡+𝐷ℎ𝑧 ) = Conv2d(Conv2dBlock(. . .

ConvLSTM2dBlock(. . . (Ãr))))),
Conv2dBlock(Z) = LeakyRelu(Drop(BNorm(Conv2d(Z)))),

ConvLSTM2dBlock(Z) = Drop(BNorm(ConvLSTM2d(Z))) (3)

Here Drop and BNorm represent the Dropout [26] and BatchNorm

[10] operations respectively. We use a variant of the original Con-

vLSTM architecture as implemented in Keras [12], with the final

hidden stateH (𝑡 ) as output (see details in A.1). Here ∗ represents
the convolution operator, ⊙ represents the Hadamard product, and

we set 𝐷ℎ𝑖𝑠𝑡 = 7, and 𝐷ℎ𝑧 = 2 to mimic the lag in data.

Higher Order View Fusion:Different views of the data capture
various important aspects of the dataset. The static view captures

intrinsic properties of a shipping address/order, the spatial view

captures the neighborhood characteristics at multiple resolutions,

and finally the spatio-temporal view captures how the spatial dy-
namics change over time. Apart from their individual importance,

the views also interact with each other to affect the delivery speed.

For instance, occurrence of an sales event like Prime Day (static
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Figure 2: Architecture of the proposed framework, illustrating the spatio-temporal view modelling and the deep view fusion
module which computes higher order interactions among the views.

view), Valentines Day, etc., should in principle affect the spatio-

temporal view as the order volumes and correspondingly delivery

capacities usually increase during these times. Similarly, if the dis-

tribution of orders which are delivered early in a smaller region

changes, it will affect the corresponding distribution in the regions

higher up in the hierarchy as well. To effectively combine these

heterogeneous views, we leverage the idea of computing the higher
order interactions via deep crossing networks [29]. Given the views

of the data for a given address, we propose modelling the early

arrival probability for a particular value of M as:

𝑃 (𝑡Δ = 𝑀 | 𝑎𝑑𝑑𝑟𝑐 ,C) = sigmoid

(
𝑓𝐷𝑉 𝐼𝑁 (Xh (𝑎𝑑𝑑𝑟𝑐 ));

Xst
(𝑡 ) (𝑎𝑑𝑑𝑟𝑐 | 𝑡); Xs (𝑎𝑑𝑑𝑟𝑐 )

)
(4)

Here, Xh (.) ∈ R𝑁×ℎℎ , Xs (.) ∈ R𝑁×ℎ𝑠 , and Xst (.) =[
I(qr)𝑚,𝑛

�� (𝑚,𝑛) = Φ𝑟 (𝑎𝑑𝑑𝑟𝑐 ) ∀𝑎𝑑𝑑𝑟𝑐
]
∈ R𝑁×1, where qr (𝑡 ) =

sigmoid

(
Conv2d

(
Hr
(𝑡 )

))
.I(.) is the interpolation operatorwhich

is used to resize qr (𝑡 ) ∈ R512×512×3 to original dimension of the

temporal snapshot (𝑊𝑟 ×𝐻𝑟 × 3). Note that the static view consists

of categorical features like the event indicator, day of week etc.,

which are projected to fixed size continuous embeddings via an em-

bedding layer. 𝑓𝐷𝑉 𝐼𝑁 represents the deep view interaction network

which performs explicit higher order interactions among the vari-

ous views in latent space. This is implemented via an adaptation

of deep cross networks [29] and is composed of multiple cross-

interaction layers. For input u(0) , representation at an intermediate

layer 𝑙 is given by:

u(𝑙 ) (u(0) ) = u(0) ⊙ (W(𝑙 )u(𝑙−1) + b(𝑙 ) ) + u(𝑙−1) (5)

Each of these layers explicitly increments the order of feature-

feature interaction relative to previous layer representation. We

will hereby use the shorthand DCN(.) to represent this construct.
With v(0) = [Xh (𝑎𝑑𝑑𝑟𝑐 ));Xst (𝑎𝑑𝑑𝑟𝑐 |𝑡);Xs (𝑎𝑑𝑑𝑟𝑐 )] ∈ D,

𝑓𝐷𝑉 𝐼𝑁 (.) = DCN( [v(𝐿𝑑 ) ; h(𝐿𝑟 )𝑛𝑛 ]),

v(𝑙 ) = DCN(v(0) ) (𝑙 = 1, . . . , 𝐿𝑑 ), and,

h(𝑙𝑟 )𝑛𝑛 = Drop

(
𝜎
(
BNorm

(
[v(0) ;Wr

(𝑙𝑟 )v(𝑙𝑟 −1) + b(𝑙𝑟 ) ]
) ) )

(6)

where 𝐿𝑑 is the number of interaction layers, 𝐿𝑟 is the number of

layers in the resnet-style [8] neural network component with output

h(𝐿𝑟 )𝑛𝑛 . For the choice of non-linearity 𝜎 , we found the Swish/SiLu

[18] activation function led to more stable training for our model

compared to the ReLU/Sigmoid.

As discussed before, for each value of M, probability of early

delivery (eq. 4) needs to be modelled. For our problem, probabilities

corresponding to the different values of M are related to each other,

and 𝑃 (𝑡Δ = 𝑀 + ℎ |.) ≤ 𝑃 (𝑡Δ = 𝑀 |.) ∀ℎ ≥ 0 . While we do not

enforce this constraint, we employ multi-task learning for better

information sharing across the tasks. All the layers except the final

deep crossing layer are shared between the tasks. For each task the

logits are given as:

𝑓
(𝑀 )
𝐷𝑉 𝐼𝑁

(.) = DCN(M) ( [v(𝐿𝑑 ) ; h(𝐿𝑟 )𝑛𝑛 ]) (7)
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Optimization: For modelling the spatio-temporal view, final

layer representation Hr
(𝑡+𝐷ℎ𝑧 )

is used to predict the future tempo-

ral snapshot Ã(𝑡+𝐷ℎ𝑧 )
r . Network parameters are learned by mini-

mizing the reconstruction-style loss:

L𝑠𝑡 = −
1

𝑁

∑︁
𝑁

1

𝜅𝑊 2

𝑓 𝑖𝑚𝑔

∑︁
(𝑚̃,𝑛̃,𝜅 )

𝑤 (𝑚̃,𝑛̃,𝜅 ) ·
(

Ãr𝑚̃,𝑛̃,𝜅
log(q𝑚̃,𝑛̃,𝜅 )

+
(
1 − Ãr𝑚̃,𝑛̃,𝜅

)
log(1 − q𝑚̃,𝑛̃,𝜅 )

)
(8)

Here𝑤 (𝑚̃,𝑛̃,𝜅 ) is used for down-weighting loss on snapshot patches

with no non-zero channel and 𝜅 represents the channel. We use the

Adam optimizer [13] with weight decay based regularization. The

final representations are frozen and used in the downstream deep

crossing network.

The parameters of the higher order fusion model are learned by

simultaneously predicting the early delivery probability for all M,

and minimizing the joint loss:

L𝑚𝑡𝑙 = −
1

𝑁𝑚𝑡

∑︁
1

𝑁

∑︁
v(0)
𝑖
∈D𝑡𝑟

𝑦
(𝑚𝑡 )
𝑖

log(𝑦 (𝑚𝑡 )
𝑖
)

+ (1 − 𝑦 (𝑚𝑡 )
𝑖
) log(1 − 𝑦 (𝑚𝑡 )

𝑖
) (9)

where 𝑦
(𝑚𝑡 )
𝑖

= 𝑓
(𝑚𝑡 )
𝐷𝑉 𝐼𝑁

(v(0)
𝑖
) (refer Eq. 7),𝑚𝑡 is the task identifier,

𝑁𝑚𝑡 represents the number of tasks, and D𝑡𝑟 represents the train-

ing dataset. For the deep view crossing network, we found that

AdamW optimizer [16] with weight decay worked slightly better

than the Adam optimizer and was used in our experiments. The

model architecture is illustrated in figure 2.

4 Evaluation
In this section we present the empirical results of evaluation of the

proposed model, and ablation studies to justify the design choices.

For the task of predicting if a shipment will reach early to the cus-

tomer, we compare the proposed model SPEEDY to the following

representative baselines:

• Gradient Boosted Decision Trees: We use LightGBM [11],

a fast and efficient GBDT implementation, and is a very

powerful baseline for tabular data.

• Deep Neural Network (DNN): A multilayer Feedforward

Neural Network [1], with Batch-Normalization [10] and

Dropout [26] is used.

• TabTransformer: Transformer based architecture proposed

in [9] for tabular data, in which the categorical features are

first transformed to embeddings, and are passed through a

stack of multiple Transformer [28] encoder layers. Finally the

categorical feature representation and numerical features are

concatenated and passed through a shallow neural network.

• FTTransformer: Proposed in [7], it is a transformer based

model for tabular data. The tokenizer component transforms

all features to tokens and passes the tokens via a stack of

transformer layers. A CLS token is prepended to the token

sequence, and the embedding of the CLS token is used for

prediction.

4.1 Experimental Setup
Dataset: The proprietary dataset is comprised of 19 months of

anonymized checkout/delivery data of sub-same day delivery or-

ders which consists of the promise slot chosen by the customer at

checkout, the actual delivery time when the order was delivered to

the customer, and various date/time related features. We discard

orders which were not delivered in the first attempt, as these are

late delivered due to reasons outside our control. We split the data

into 2 out-of-time splits (1) Train data consisting of 18 months, (2)

Test data comprises of data for following 1 month period. Validation

split is created by further partitioning the train set in 80:20 split.

The resulting train set has ∼30M, validation set ∼7.7M, and the test

set has ∼2.2M samples.

Metrics For our problem, we want to predict if an order can

be delivered M minutes before the end of a static N-hour promise

time window. For this binary classification problem (for each M),

we report two metrics (1) AUC-ROC, which summarizes the model

performance at varying thresholds, (2) Recall at 90% Precision (Re-

call@90P), since having a low precision w.r.t promised delivery time

erodes customer trust. All the results are reported in relative terms

to one of the baselines to preserve the anonymity of the internal

dataset.

Model SelectionWe perform careful parameter tuning by vary-

ing tree depth/number of leaves/number of trees for LightGBM

model. For the neural network based models, the no. of layers, hid-

den dimension size and number of heads (self-attention) are varied,

and the model with minimum validation loss is retained. These are

trained with binary cross entropy loss, with ADAM optimizer.

4.2 Discussion
Comparison with baselines: From table 1, it can be observed that

the the proposed model outperforms all the baselines models. The

top performing multi-task variant of SPEEDY gains upto 1.47%
on AUC, and 27.3% on the recall % metric (relative) compared to

the next best baseline across various tasks with access to two of

the views, and including the spatio-temporal view improves the

gain in performance to 2.34% on AUC, and 60.9% on recall. Note

that even the non-multitask base SPEEDY model (with two views)

gains 0.16% to 1.05% on AUC, and 17.3%-43.8% on the recall metric

compared to the next best baseline, improving over both the GBDT

and the specialized neural network based models for tabular data,

demonstrating the effectiveness of the presented architecture. This

can be attributed to the fact that by design our model explicitly
captures both weighted sum based non-linear interactions as well

as product style interactions (similar to conjunctive rules in deci-

sion tree based models), and by utilizing multiple layers of such

interactions, can readily models complex relationships among the

views. Apart from this, it can be noted that as hypothesized, multi-

task variants of SPEEDY improve upon the single task variants as

the label information results in constructive information sharing

in the multi-task setup [19, 33]. Among the baselines, GBDT out-

performs the vanilla neural network based models on most of the

metrics. Despite the advent of complex transformer based archi-

tectures for tabular data, GBDT based models tend to outperform

them or are still on par in general tabular data settings [24]. One



SPEEDY: Framework for Sharpening Promise Time Estimates in Sub-Same Day Delivery SIGSPATIAL ’25, November 3–6, 2025, Minneapolis, MN, USA

Table 1: Performance improvement (relative) of SPEEDY versus baselines, expressed as ±% change over the DNN baseline

M = 60 M = 120 M = 180

Views Model AUC Recall@90 AUC Recall@90 AUC Recall@90

[𝑋𝑠 ;𝑋ℎ] LightGBM +1.767% +6.736% +1.102% −1.085% −0.351% −1.579%
TabTransformer −0.483% +0.053% +0.318% −9.483% −1.8522% +24.967%

FTTransformer +0.106% +1.698% −0.126% – −0.7% –

SPEEDY +1.928% +7.045% +1.831% +17.375% +0.696% +49.775%

SPEEDY (multi-task) +2.377% +8.409% +2.242% +27.364% +1.116% +84.743%

SPEEDY +2.925% +10.211% +3.091% +43.889% +1.3650% +80.480%

[𝑋𝑠 ;𝑋ℎ ;𝑋𝑠𝑡 ] SPEEDY (multi-task) +3.780% +12.730% +3.370% +60.993% +1.985% +102.692%

Table 2: Ablation study showing the impact of various fea-
ture groups in terms of Recall @90% Precision. We use the
multi-task variant of SPEEDY as the base model. Results are
reported relative to Xs (w/o est. capacity).

SPEEDY Variant M = 60 M = 120 M = 180

Xs 0.022 8.938 3.899

+ Xh(Gk ) (grid IDs) 0.270 24.411 3.914

+ Xh(edb) (early del.) 0.415 37.523 6.904

+ Xh(vol) (vol distr.) 0.424 39.111 5.238

+ Xh(del_rank) 0.443 40.769 7.563

+ Xst (spatio-temporal) 0.480 49.211 7.734

trend we noticed was that neither TabTransformer or FTTrans-

former conclusively outperform the 5-layer DNN model. In fact,

for FTTransformer, for M = [120, 180], recall @90% precision was

close to 0 (and hence indicated with ‘-’ in the table). One reason

could be that these models are over-parameterized w.r.t our dataset,

hence increasing the generalization gap. In SPEEDY, we leverage

various task specific structures and inductive biases - for instance

the related-ness of the views, tasks and by explicitly modelling the

higher order interactions between the views, improving upon all

the baselines.

Analysis of feature groups: To understand the feature inter-

action induced by the view crossing layers, we plot the weights

of cross-layer (eq. 5). Since the input to the cross layer is embed-

ding of actual input features, we first group the input embeddings

corresponding to 6 feature groups: static features, spatial features

(grid IDs, aggregated early delivery distribution, agg. volume distri-

bution, and avg. delivery rank), and the spatio-temporal features.

Block matrices are constructed between the feature groups, and

Frobenius norm of each block is computed to get the interaction

strength between each pair (fig. 3). As expected the view cross-

ing layers effectively learn strong interactions between the feature

groups. Further we perform an ablation study to understand the

incremental contribution of each view/feature group to the final

model (table 2). It is evident that incrementally adding multiple

views of the data improves the efficacy of the base model.

Customer Impact: In an offline back-testing, we observe that

using the best performing variant of SPEEDY, we are able to signif-

icantly reduce the promise time by 75% for ∼1.01% of orders, 50%

Figure 3: Visualization of the learned feature-group interac-
tion matrix.

for ∼6.51%, and by 25% for ∼60.44% of the orders, operating at 90%

precision. To test the effect of displaying narrower promise times

on customer engagement, we performed an online A/B test where

the Control was shown the original fixed promise time windows,

while the Treatment was exposed to dynamic promises. In order to

meet a strict sub 5 ms online latency budget, we pre-materialised

predictions at grid cell level and persisted them in key-value datas-

tore (e.g., DynamoDB) [25]. At runtime, each incoming (latitude,

longitude) coordinate associated with customer address is mapped

to its grid index, enabling a constant-time key lookup that delivers

the pre-computed score to downstream services. Freshness of this

caching layer is maintained by re-computing the scores every 24

hours. Over the 21-day online A/B experiment, the treatment vari-

ant delivered significant uplift: total units increased by 17 bps, page

views by 21 bps, and search interactions by 19 bps, demonstrating

the effectiveness of the framework.

Training/Inference Infrastructure:Data processing jobs were
run on a distributed cluster of 15-30 nodes with 32 CPUs in each

node. All the models were trained/tested on a single NVIDIA V100

GPU node with 512 GB RAM.
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5 Conclusion & Future Work
In this work, we present SPEEDY, a framework for recommending

dynamic promise time estimates for sub-same day eligible orders,

enabling us to replace the current static promise windows on multi-

ple interaction points like the search, detail and the checkout page.

We construct multiple views of data, capturing static, spatial and

spatio-temporal characteristics of order delivery data, and propose

a novel deep view interaction network which models the proba-

bility of early delivery by M minutes by computing higher order

interactions among the views. By exploiting the problem specific

structure, our model is able to outperform representative baselines

like - Gradient Boosted Decision Trees, and Neural Network based

models, and reduces the promise time estimate by atleast 25% for

60%+ of same day delivery eligible orders and results in significant

lift in various customer engagement metrics as well. As part of

future improvements, we plan to experiment with more specialized

architectures to improve the spatio-temporal modelling aspects of

the data by leveraging models like dynamic spatio-temporal graph

neural networks which can model the joint dependencies of the

spatial grids over time more naturally.
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Appendix
A.1 ConvLSTM Implementation Details:
ConvLSTM architecture as implemented in Keras [12], with the

final hidden stateH (𝑡 ) as the output:
H (𝑡 ) = 𝑜 (𝑡 ) ⊙ tanh(C (𝑡 ) ),

where 𝑜 (𝑡 ) = 𝜎 (𝑊𝑧𝑜 ∗ 𝑍 (𝑡 ) +𝑊ℎ𝑜 ∗ H (𝑡−1) + 𝑏𝑜 ),

C (𝑡 ) = 𝑓 (𝑡 ) ⊙ C (𝑡−1)

+ 𝑖 (𝑡 ) ⊙ tanh(𝑊𝑧𝑐 ∗ 𝑍 (𝑡 ) +𝑊ℎ𝑐 ∗ H (𝑡−1) + 𝑏𝑐 ),

𝑖 (𝑡 ) = 𝜎 (𝑊𝑧𝑖 ∗ 𝑍 (𝑡 ) +𝑊ℎ𝑖 ∗ H (𝑡−1) + 𝑏𝑖 ),

𝑓 (𝑡 ) = 𝜎 (𝑊𝑧𝑓 ∗ 𝑍 (𝑡 ) +𝑊ℎ𝑓 ∗ H (𝑡−1) + 𝑏 𝑓 ) (10)
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