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Abstract

In today’s fast-paced world, customers increasingly value quick
and reliable delivery services, with many prioritizing speed as a de-
cisive factor in their purchasing decisions. E-commerce stores serve
customers through specialized programs ensuring delivery within
same day. Facilitated by strategically placed delivery networks, this
provides an ultra-fast delivery experience to the end customers
enabling them to receive their orders within the same day in a
chosen fixed size window. While intra-day deliveries conclusively
improve the customer experience, in the age of quick commerce,
customers want the orders faster, and many scenarios (for e.g. pe-
riods of the day when customers would be traveling to school or
work) make long static windows inconvenient for customers. How-
ever, faster deliveries increase the cost of shipping. In this work,
we leverage the observation that in many instances orders reach
ahead of time because of the geographical proximity of the shipping
address and the order density in the neighborhood. This presents
an opportunity to improve the delivery experience of customers
without incurring any additional costs for customer or the seller.
We present a framework to recommend dynamic, faster delivery
time slots to customers. We create multiple heterogeneous views
of order-to-delivery data capturing the spatial and spatio-temporal
aspects of the data, and leverage a novel deep view interaction
network which computes the higher order interactions among the
views. The proposed model outperforms multiple representative
baselines and allows us to predict narrower slots for 60%+ eligible
orders for the locale under experimentation. During a 21 day online
A/B test, the treatment recorded a significant gain of +17 bps in
units, +21 bps for views and +19 bps increase in search interactions,
establishing the efficacy of the framework.
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1 Introduction

Online stores today offer ultra fast delivery experience to the cus-
tomers allowing them to receive their orders by a certain time
within the same day if the orders are placed by a specific time
window. Faster delivery is known to improve customer satisfaction
resulting in better engagement and retention [3, 23, 27]. Customers
who are located in the respective servicable zones amenable to
fast delivery services are provided the option to choose between
the preferred delivery slot among evenly distributed slots start-
ing at 6AM, and ending at 11PM. In this work we refer to these
as ‘promise’ slots. The quickest slot presented to the customer is
contingent on the on-ground delivery capacity for the remaining
slots of the day. A common practice in these delivery systems is to
pool orders that arrive within a predefined pooling window, and
optimize shipments for timely dispatch and efficient route plan-
ning. Due to the inherent uncertainty in predicting which other
addresses will place orders in the same window as a given customer,
fixed-size promise windows are typically configured to standardize
fulfillment planning and ensure operational reliability. However,
in this age of quick commerce, customers want faster speeds. This
is achievable by supplementing the delivery capacities to enable
shorter delivery promise windows. But this reduces the delivery
density (delivery/hour), and thus is detrimental to the existing cost
structures associated with the shipping logistics. Another crucial
problem with static slots is that these introduce an ambiguity for
customers ordering in the peak slots. For e.g., a morning slot of
6-10AM, or 8AM-12PM or an evening slot of 4PM-9PM may overlap
with travel to/from office/school and hence might not appeal to
these set of customers. This is especially important for high value
purchases/exchanges/setup, where the customer might want to be
present in person. Even in the same fixed slot, some customers re-
ceive orders before others due to the way delivery executives batch
orders for delivery, resulting in shorter effective delivery times for
some of the customers. This motivates us to explore data driven
approaches to sharpen the promise time windows presented to the
customers by predicting shorter dynamic windows on the fly, while
incurring no additional investments towards the logistics.
Predicting delivery estimates at (address, slot) level is a chal-
lenging problem as (1) demand distribution at individual address
level is often sparse, (2) last mile delivery time is contingent on
multiple factors like nearby addresses placing order for the same
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slot, on-ground capacity deployed, traffic conditions and so on. The
high sparsity of order events (in terms of the possible day, slot
combinations) makes the task of predictive modelling on the basis
of locality identifier alone difficult. This is complicated by the fact
that the sub-same day windows are made available to customers
for windows spread over upto 2 days (observed across multiple
online stores) to allow for flexibility, and hence, the order data
has an latency of roughly 48 hours, which implies that when the
customer is searching for a product, or placing the order, there is
little to no information available on the other orders which will
placed in the same time window or the available delivery capacity
of the station (the nodal points which are established in the vicin-
ity of fulfillment-centers for direct delivery to the end customer).
As such, our problem is different from origin-destination based
shipping time estimation, since in a sub-same day delivery setting,
customers usually receive shipments from a local hub within the
same city; in our case local factors like neighborhood orders and
station-address delivery time spread are more important, and usu-
ally there is little control over the route a delivery executive is likely
to take. Due to the pooling of orders, our setting is also different
from real time delivery prediction/tracking wherein real time lo-
cation and capacity of delivery executives are present. Rather our
goal is to opportunistically create high precision dynamic windows
offering faster delivery to the customer.

To tackle the unique challenges for our problem, we leverage a
few key observations - (1) delivery executives tend to visit nearby
addresses in same sub-interval of time window, and are more likely
to visit clusters which are closer to the delivery station first (delivery
time is negatively correlated with the distance of the address from
the station), and (2) while the temporal information at smaller
locality levels is sparse, the coarser view of the data (combining
multiple localities) is more amenable to predictive modelling. Based
on these observations, we propose SPEEDY, a deep learning based
framework for sharpening promise time estimates for sub-same day
delivery, which leverages hierarchical multi-view features across
multiple geo-spatial resolutions, and efficiently computes higher
order interactions of the hierarchical views of data via deep late
stage fusion. Our key contributions in this work are as follows:

(1) We create multiple views from delivery data to capture the
distribution of delivery times. For instance, to capture deliv-
ery distribution in the neighborhood of an address, we create
efficient multi-resolution, hierarchical grids summarizing de-
mand and delivery time information at multiple granularities,
while, to efficiently leverage the spatio-temporal nature of
the order delivery data, we leverage a deep Convolutional
LSTM [21] based neural network.

(2) To model the heterogenous views of data, we present a deep
multi-task (MTL) model [19, 33] which fuses multi-view geo-
spatial features via explicit higher order interactions [20, 29].

(3) Finally, we demonstrate the effectiveness of our proposed
approach by carefully chosen quantitative/ablation studies,
as well as an online A/B test spanning across 3 weeks.

2 Related Work

Our problem is closely related to that of delivery time prediction
in the last mile delivery networks. However a key distinction from
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recent works like [6], where the authors deal with the problem of
route planning and delivery time estimation for delivering multiple
orders to different addresses in a quick delivery, we have multiple
orders (per executive) to be delivered in a multi-hour window,
and estimates need to be generated upto 48 hours in advance. In
[4], authors solve the problem of parcel delivery time prediction
and experiment with multiple deep Convolutional Neural Network
(CNN) [14] based approaches, and find that CNNs can effectively
model spatio-temporal dependencies. Compared to the broader
problem of origin-destination delivery time estimation [4, 17, 34],
in our case, station to customer addresses distances already fall
within a serviceable area, and we rather need to model the how
the delivery dynamics within a locality will affect the delivery
time to a particular address in a given slot. Somewhat related is
the task of traffic congestion prediction in urban setup, in which
given the routes of a region, task is to predict traffic at different
traffic intersections, and this heavily influence our model design
wherein we leverage the spatio-temporal modelling capabilties
demonstrated by CNN + LSTM based models in [30-32]. In [32]
authors present a meta-learning based approach and use CNN +
LSTM based architecture to model spatio-temporal patterns, in [31],
authors propose a deep spatio temporal ResNet based architecture
to forecast inflow/outflow of crowds, and in [30], authors propose
the use of Convolutional LSTM network for predictive modelling
of crashes for accident prevention.

3 Proposed Approach

In this section, we introduce the preliminaries, describe the prob-
lem formulation, and present our solution approach for predicting
dynamic promise slots for sub-same day delivery.

3.1 Problem Formulation

In a typical e-commerce store, when a customer arrives at the prod-
uct listing on search page or is checking out the product details
on the detail page (DP), multiple services come into play to fetch
information on customer’s active address, and possible delivery op-
tions (promise times) to be surfaced to the customer. If the product
is eligible for fast delivery at the customer’s shipping address, the
earliest delivery option is shown to the customer on search and
DP, and all the available slots are shown when the customer is on
checkout page. For a given shipment, we define the early delivery
delta as the difference between promise time and the delivery time:
A = tpromise_end — Ldelivery- As such, our objective to estimate for
the available promise time slots for a given order, how much can
the slot be narrowed down to by tapering the end time of the slot.
Thus the central problem here is to predict if the shipment will be
delivered to the customer M minutes ahead of the static promise
end time for multiple values of M:

argmax P(tp = M|addr.,C), M € Z* (1)
M

where C is the additional context like date/time of order, historical
shipping data etc. For fixed slots like 6-10AM, this in effect allows
offering narrower dynamic slots like 6-8AM, 6-9AM and so on. In
this work, we pose this as a classification problem, in which for
given (addr., C), we estimate the probability in eq. 1 for multiple
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values of M, where the target values of M are chosen in accordance
to the product/UX considerations.

3.2 Preliminary Data Analysis

We performed extensive data analysis to understand the nature of
the problem, and the data characteristics. We used 12 months of
anonymized order data (Xfi 1)» where ground-truth was derived
based on the promise window selected at the checkout, and the
delivery time was as registered by the delivery executive. One of
the key findings was that at small locality levels, there is lack of
repeatability of outcomes in terms of same localities receiving or-
ders early or late. For instance, in the sample proprietary data we
observed less than 10% overlap of localities with early delivery be-
tween consecutive days. This can be attributed to the fact that every
day, different set of customers from different neighborhoods (small
localities) place orders in an online store. As expected, repeata-
bility improves as we increase the locality size, but the precision
inevitably goes down as all addresses in a larger neighborhood will
not necessarily receive the orders in the same time sub-window.
Moreover we found that distance of an address from the deliv-
ery has a weak negative monotonic relationship with t5. While
intuitively, one may expect a strong correlation, usually delivery
hubs are strategically located to guarantee timely deliveries for
all addresses in the covered regions. This makes it important to
effectively encode the spatio-temporal dynamics for our task.

3.3 Constructing Multiple Views of Data

Hierarchical locality based spatial views (X,): As we go from
smaller to larger localities, the historical order data becomes less
sparse (making it easier to train a predictive model), however, this
also causes loss of precision, as not all addresses which fall in the
same locality will get the orders delivered equally early or late since
they will share a small subset of delivery executives. Faced with this
trade-off, we propose creating hierarchical views of data to aggre-
gate features at multiple resolutions. Specifically, we hierarchically
partition the address space R = {addr.}, where shipping address ¢
is composed of the (latitude, longitude) pairs, into uniform (square)
grid based segments [32], rg];" where Gy represents a grid with
fixed dimensions (wg, X wg, ) at level k. The conversion logic from
coordinates to grid cell is outlined in Algorithm 1. We create grids
of size wg, = [50m, 100m, 200m, 500m]. Intuitively, smaller grids
capture the more specific properties of the address/locality, whereas
larger grids enable efficient neighborhood aggregation for each ad-
dress. Note that these grids have higher resolution compared to
the existing pre-defined hierarchy defined by postal-code, station,
fulfilment-center, city level identifiers in the addressing system.
Finally, both the pre-defined and the newly introduced grid-based
hierarchy is used to aggregate historical distributions of order vol-
ume, fraction of early deliveries, etc. Following the observation that
delivery executives tend to traverse nearby addresses in certain
precedence, for the grids, we additionally compute the average rank
in which the address was served among other addresses receiving
order in the same time window.

Spatio-temporal views (Xst): While the spatial view captures
aggregate level features at multiple resolutions, it does not capture
how the distribution of tp for a given locality changes over time.
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Algorithm 1 Coordinate-to-Grid Mapping for Hierarchical Region
Partitioning

1: Input: Set of delivery coordinates Dcoorq = {(lat;, lng,—)}l{il
2: Output: Assigned grid cell rg;" for each address c € R

3: My < 111,000 > Approximate meters per degree latitude

4 latyin «— min lat
(lat,") € Deoord
5: INgmin < min Ing

("lng)EDcoord
6: function CoorDToGRIDCELL((lat, Ing), Gi)
WG,

7: Alat —
Miat

WG,
My, - cos(radians(latmin))

{lat - latminJ
9: mée | ——

8: Alng «—

Alat
Ing — Ingm;
1o: (_\‘ g gmmJ
Alng
m,n
11: return er

12: end function

13: for Gi € G do > G is the set of grid configurations at different
levels

14: for (lat,Ing) € Deoorg do

15: Assign rg"l:" «— CoorpToGRIDCELL(lat, Ing, Gy.)

16: end for

17: end for

We adapt the Convolutional LSTM architecture [21] to model the
spatio-temporal view of the localities, and create distinct views for
each classification task corresponding to prediction of early deliv-
ery by M minutes. For brevity, we drop the task indicator in this
discussion. We therefore adapt the Convolutional LSTM (ConvL-
STM) architecture to obtain a sequence of latent maps {Ht}tT:1 that
capture local, short-range interactions in both space and time. Al-
though newer visual representation backbones such as pre-trained
Vision Transformers (ViT) [5] could be plugged in as well, two con-
siderations motivate our deliberately conservative choice: (1) local
inductive bias: convolutional kernels are well suited for dense fields
in which neighbouring cells exhibit the strongest dependence (2)
data efficiency: ViTs (and transformer models in general) are known
to be data-hungry [15], and as such ConvLSTM remains a practical
baseline for usecases like spatio-temporal forecasting [22]. Given
that our inputs are intensity maps and not complex visual objects,
the ConvLSTM’s local spatial bias and proven robustness make it
a pragmatic choice for learning the dynamics of spatio-temporal
relationships for our task.

For a given region (e.g., grid/city) r C R, we denote the temporal
snapshot at time ¢ as Ay) € RWrxHrX3 To form the snapshot, we
start from the smallest sized grids (50x50m? in this work), where
W, and H, are sides of the rectangular box which bounds all the
grids in the region r. We assign grid at the bottom left corner of the
box as the origin for the region, and shift the other grid coordinates
relative to this, thereby mapping the bottom left corner to (0, 0).
For rest of the discussion, we use ®,(addr.) = (m, n) to denote the
operator which maps an address to a position in A;. For a grid cell
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(a) Vis. of spatial hierarchy of localities

(b) Observed capacity-fill rate over time.
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(c) Predicted fill-rate at different query times.

Figure 1: (a)—(c): Visualizations from SPEEDY for hierarchical locality-based view of delivery address segments, and estimated

fill-rates as a function of time before promise slot end.

(m, n) in the shifted space, let the fraction of orders which were
delivered before M minutes to end of promise time be p(’f ) (m,n),
then a 3-dimensional vector is assigned to each grid forming the
individual entries:

[0,0,0], if no order was placed
ALy = 101,01, pr(m,m) > pfhiresh @
[0,0.1], pr(m,n) < pthresh
Given a sequence of Dy;,; temporal snapshots [Aﬁt), AﬁHDhi“)]
for a region r, predictive saptio-temporal representation at a future
time horizon +Dj,, is generated, forming spatio-temporal views
of data. In Here we have used day-level snapshots aggregating
delivery events throughout the day.

Static view (X;): Apart from these, multiple static features are
created to represent the shipment data: date/time features, distance
of the location from the station, event indicators (e.g., High Velocity
Events like Prime Day), promise-slot etc. A vital factor which deter-
mines how crowded a promised delivery slot will be is the number
of orders which will be placed in the slot. However this data is not
available during the inference. So, we approximate the percentage
capacity that is already filled at the serving station at the time of
ordering (fig. 1). This is modelled by a lightweight GBDT model
[2, 11], predicting the remaining-capacity as a function of (station,
promise-time, request-time), where the request is triggered when
the user lands on search/detail/checkout page. This is modelled as
a function of (station, promise-time, request-time). Figure 1c shows
the fitted curve for a station on sample data.

ﬁstn,f = %GBDT(SWL T, At), At =7 - 154

where stn denotes the station, T = fpromise_end is the end time of the
promised slot, t,,q is the order timestamp, and js ; represents the
predicted fill-rate for station s and slot 7. The mapping %GBDT(J
is a gradient-boosted decision-tree model parameterised by 6.

3.4 Model Architecture

Modelling Spatio-temporal View: To model the complex intra-
region relationships with respect to the probability of early delivery
across the temporal dimension, we employ a deep sequential neural
network architecture which leverages Convolutional LSTM [21]

which determines the future state of a certain point in a region
by the current inputs and past states of the local neighbors. As
discussed in the last section, an address addr. has multiple spatial
views, however the smaller localities usually have sparse order
events, and mapping of address to station/FC can also change over
time leading to noisy transitions. In this work, we model the spatio-
temporal dynamics at the city-level which have sufficient order
events, and are relatively free of mapping changes. Different cities
have varying sized snapshots (W, Wy,). For processing the snap-
shots via a neural network model, we need the shapes of tensors
to be identical. Resizing is a popular operation for this purpose
in computer vision, but in this case, the change in aspect ratio
could lead to mis-representation of distance between two addresses.
Instead, first the tensors are padded to (Wyimg X Wrimg X 3), s.t.,
Wrimg < maxr(Wy, Hy). For our data Wy;py = 1024 was selected.
After padding, the tensors are downsampled to (512 X 512 X 3)
using nearest-neighbor based interpolation for the efficiency of
computation. Starting with the downsampled historical snapshots

Ar = [Ait), . A£t+D""5’ )], we compute the future spatio-temporal
representation as:

Hr(Hth) = Conv2d(Conv2dBlock(. ..

ConvLSTM2dBlock(. .. (A)))),
Conv2dBlock(Z) = LeakyRelu(Drop(BNorm(Conv2d(Z)))),
ConvLSTM2dBlock(Z) = Drop(BNorm(ConvLSTM2d(Z)))  (3)

Here Drop and BNorm represent the Dropout [26] and BatchNorm
[10] operations respectively. We use a variant of the original Con-
vLSTM architecture as implemented in Keras [12], with the final
hidden state H (*) as output (see details in A.1). Here * represents
the convolution operator, © represents the Hadamard product, and
we set Dp,;; = 7, and Dy, = 2 to mimic the lag in data.

Higher Order View Fusion: Different views of the data capture
various important aspects of the dataset. The static view captures
intrinsic properties of a shipping address/order, the spatial view
captures the neighborhood characteristics at multiple resolutions,
and finally the spatio-temporal view captures how the spatial dy-
namics change over time. Apart from their individual importance,
the views also interact with each other to affect the delivery speed.
For instance, occurrence of an sales event like Prime Day (static
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Figure 2: Architecture of the proposed framework, illustrating the spatio-temporal view modelling and the deep view fusion
module which computes higher order interactions among the views.

view), Valentines Day, etc., should in principle affect the spatio-
temporal view as the order volumes and correspondingly delivery
capacities usually increase during these times. Similarly, if the dis-
tribution of orders which are delivered early in a smaller region
changes, it will affect the corresponding distribution in the regions
higher up in the hierarchy as well. To effectively combine these
heterogeneous views, we leverage the idea of computing the higher
order interactions via deep crossing networks [29]. Given the views
of the data for a given address, we propose modelling the early
arrival probability for a particular value of M as:

P(tp = M| addr;,C) = sigmoid(fDVIN(Xh(addrc));
Xst 1) (addre | £); Xs(addre)
@)

Here, Xp(.) € RN*Mn X () € RN*hs and X () =
[7(ae)mn | (m,n) = @y (addre) ¥ addr| € RNX1, where q;(*) =

sigmoid (Conde (Hr (t) ) ) .7 (.) is the interpolation operator which

is used to resize q; () € R312%512X3 t original dimension of the
temporal snapshot (W, X H, X 3). Note that the static view consists
of categorical features like the event indicator, day of week etc.,
which are projected to fixed size continuous embeddings via an em-
bedding layer. fpyn represents the deep view interaction network
which performs explicit higher order interactions among the vari-
ous views in latent space. This is implemented via an adaptation
of deep cross networks [29] and is composed of multiple cross-
interaction layers. For input u(®), representation at an intermediate
layer [ is given by:

1D @) = 4@ o (WD 4 pDy 4 x(=D (5)

Each of these layers explicitly increments the order of feature-
feature interaction relative to previous layer representation. We
will hereby use the shorthand DCN(.) to represent this construct.
With v(©) = [Xy, (addrc)); Xet(addre|t); Xs (addre)] € D,

fDVIN(-) = DCN( [V(Ld);hgllr‘lr)])’
vD = DCN(V(O)) (I=1,...,Lg), and,

hﬁll,;) = Drop(G(BNorm([v(O);Wr(l’)v(lrfl) +b(l’)]))) (6)

where Ly is the number of interaction layers, L, is the number of
layers in the resnet-style [8] neural network component with output

h%l’). For the choice of non-linearity o, we found the Swish/SiLu
[18] activation function led to more stable training for our model
compared to the ReLU/Sigmoid.

As discussed before, for each value of M, probability of early
delivery (eq. 4) needs to be modelled. For our problem, probabilities
corresponding to the different values of M are related to each other,
and P(tp = M+ h|.) < P(tp = M|.)Vh > 0. While we do not
enforce this constraint, we employ multi-task learning for better
information sharing across the tasks. All the layers except the final
deep crossing layer are shared between the tasks. For each task the
logits are given as:

S () = DENM (v n))) )
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Optimization: For modelling the spatio-temporal view, final
layer representation Hy (“*Prz) is used to predict the future tempo-

ral snapshot AEHD”Z). Network parameters are learned by mini-
mizing the reconstruction-style loss:

Ly = —% > ﬁ > woman -

N fimg (m,h,k)
Ar,;l‘;,‘,( log(qﬁl,ﬁ,x)
+ (1= An ) log(1 = 4 ®)

Here w5, 7 ) is used for down-weighting loss on snapshot patches
with no non-zero channel and « represents the channel. We use the
Adam optimizer [13] with weight decay based regularization. The
final representations are frozen and used in the downstream deep
crossing network.

The parameters of the higher order fusion model are learned by
simultaneously predicting the early delivery probability for all M,
and minimizing the joint loss:

et (mt) 1 c(mt)
L = _Nmt Z N Z Y; log(yi )

VEO) €Dyy

+(1-3"™) log(1 - §™) ©)

where yAl.(mt) = D("%;\,(vfo)) (refer Eq. 7), mt is the task identifier,
Npm: represents the number of tasks, and Dy, represents the train-
ing dataset. For the deep view crossing network, we found that
AdamW optimizer [16] with weight decay worked slightly better
than the Adam optimizer and was used in our experiments. The

model architecture is illustrated in figure 2.

4 Evaluation

In this section we present the empirical results of evaluation of the
proposed model, and ablation studies to justify the design choices.
For the task of predicting if a shipment will reach early to the cus-
tomer, we compare the proposed model SPEEDY to the following
representative baselines:

e Gradient Boosted Decision Trees: We use LightGBM [11],
a fast and efficient GBDT implementation, and is a very
powerful baseline for tabular data.

¢ Deep Neural Network (DNN): A multilayer Feedforward
Neural Network [1], with Batch-Normalization [10] and
Dropout [26] is used.

e TabTransformer: Transformer based architecture proposed
in [9] for tabular data, in which the categorical features are
first transformed to embeddings, and are passed through a
stack of multiple Transformer [28] encoder layers. Finally the
categorical feature representation and numerical features are
concatenated and passed through a shallow neural network.

e FTTransformer: Proposed in [7], it is a transformer based
model for tabular data. The tokenizer component transforms
all features to tokens and passes the tokens via a stack of
transformer layers. A CLS token is prepended to the token
sequence, and the embedding of the CLS token is used for
prediction.

Arindam Sarkar and Prakash Mandayam Comar

4.1 Experimental Setup

Dataset: The proprietary dataset is comprised of 19 months of
anonymized checkout/delivery data of sub-same day delivery or-
ders which consists of the promise slot chosen by the customer at
checkout, the actual delivery time when the order was delivered to
the customer, and various date/time related features. We discard
orders which were not delivered in the first attempt, as these are
late delivered due to reasons outside our control. We split the data
into 2 out-of-time splits (1) Train data consisting of 18 months, (2)
Test data comprises of data for following 1 month period. Validation
split is created by further partitioning the train set in 80:20 split.
The resulting train set has ~30M, validation set ~7.7M, and the test
set has ~2.2M samples.

Metrics For our problem, we want to predict if an order can
be delivered M minutes before the end of a static N-hour promise
time window. For this binary classification problem (for each M),
we report two metrics (1) AUC-ROC, which summarizes the model
performance at varying thresholds, (2) Recall at 90% Precision (Re-
call@90P), since having a low precision w.r.t promised delivery time
erodes customer trust. All the results are reported in relative terms
to one of the baselines to preserve the anonymity of the internal
dataset.

Model Selection We perform careful parameter tuning by vary-
ing tree depth/number of leaves/number of trees for LightGBM
model. For the neural network based models, the no. of layers, hid-
den dimension size and number of heads (self-attention) are varied,
and the model with minimum validation loss is retained. These are
trained with binary cross entropy loss, with ADAM optimizer.

4.2 Discussion

Comparison with baselines: From table 1, it can be observed that
the the proposed model outperforms all the baselines models. The
top performing multi-task variant of SPEEDY gains upto 1.47%
on AUC, and 27.3% on the recall % metric (relative) compared to
the next best baseline across various tasks with access to two of
the views, and including the spatio-temporal view improves the
gain in performance to 2.34% on AUC, and 60.9% on recall. Note
that even the non-multitask base SPEEDY model (with two views)
gains 0.16% to 1.05% on AUC, and 17.3%-43.8% on the recall metric
compared to the next best baseline, improving over both the GBDT
and the specialized neural network based models for tabular data,
demonstrating the effectiveness of the presented architecture. This
can be attributed to the fact that by design our model explicitly
captures both weighted sum based non-linear interactions as well
as product style interactions (similar to conjunctive rules in deci-
sion tree based models), and by utilizing multiple layers of such
interactions, can readily models complex relationships among the
views. Apart from this, it can be noted that as hypothesized, multi-
task variants of SPEEDY improve upon the single task variants as
the label information results in constructive information sharing
in the multi-task setup [19, 33]. Among the baselines, GBDT out-
performs the vanilla neural network based models on most of the
metrics. Despite the advent of complex transformer based archi-
tectures for tabular data, GBDT based models tend to outperform
them or are still on par in general tabular data settings [24]. One
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Table 1: Performance improvement (relative) of SPEEDY versus baselines, expressed as + % change over the DNN baseline

M =60 M =120 M =180
Views Model AUC Recall@90 AUC Recall@90 AUC Recall@90
[Xs; Xn] LightGBM +1.767% +6.736%  +1.102% —-1.085% -0.351% -1.579%%
TabTransformer —0.483% +0.053% +0.318% —9.483%  —1.8522% +24.967%
FTTransformer +0.106%  +1.698%  —0.126% - -0.7% -
SPEEDY +1.928% +7.045%  +1.831% +17.375%  +0.696%  +49.775%
SPEEDY (multi-task) +2.377% +8.409% +2.242% +27.364% +1.116% +84.743%
SPEEDY +2.925% +10.211% +3.091% +43.889% +1.3650% +80.480%
[Xs; Xp; Xs¢] SPEEDY (multi-task) +3.780% +12.730% +3.370% +60.993% +1.985% +102.692%
Table 2: Ablation study showing the impact of various fea- 1.0
ture groups in terms of Recall @90% Precision. We use the Xs .
multi-task variant of SPEEDY as the base model. Results are 0.8
reported relative to X5 (w/o est. capacity). Xst -
- Xh(G,) - 0.6
SPEEDY Variant M =60 M =120 M =180
Xs 0.022 8.938 3.899 Xhivor) - -0.4
+ Xn(G,) (grid IDs) 0.270 24.411 3.914 x
+ Xp(edb) (early del) 0.415 37.523 6.904 h(edb) 0.2
+ Xn(vol) (vol distr.) 0.424 39.111 5.238 Xn(deL_rank -
+ Xh(del_rank) 0.443 40.769 7.563 . ‘ Lo.0
+ Xt (spatio-temporal)  0.480 49.211 7.734 )

trend we noticed was that neither TabTransformer or FT Trans-
former conclusively outperform the 5-layer DNN model. In fact,
for FT Transformer, for M = [120, 180], recall @90% precision was
close to 0 (and hence indicated with ‘-’ in the table). One reason
could be that these models are over-parameterized w.r.t our dataset,
hence increasing the generalization gap. In SPEEDY, we leverage
various task specific structures and inductive biases - for instance
the related-ness of the views, tasks and by explicitly modelling the
higher order interactions between the views, improving upon all
the baselines.

Analysis of feature groups: To understand the feature inter-
action induced by the view crossing layers, we plot the weights
of cross-layer (eq. 5). Since the input to the cross layer is embed-
ding of actual input features, we first group the input embeddings
corresponding to 6 feature groups: static features, spatial features
(grid IDs, aggregated early delivery distribution, agg. volume distri-
bution, and avg. delivery rank), and the spatio-temporal features.
Block matrices are constructed between the feature groups, and
Frobenius norm of each block is computed to get the interaction
strength between each pair (fig. 3). As expected the view cross-
ing layers effectively learn strong interactions between the feature
groups. Further we perform an ablation study to understand the
incremental contribution of each view/feature group to the final
model (table 2). It is evident that incrementally adding multiple
views of the data improves the efficacy of the base model.

Customer Impact: In an offline back-testing, we observe that
using the best performing variant of SPEEDY, we are able to signif-
icantly reduce the promise time by 75% for ~1.01% of orders, 50%
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Figure 3: Visualization of the learned feature-group interac-
tion matrix.

for ~6.51%, and by 25% for ~60.44% of the orders, operating at 90%
precision. To test the effect of displaying narrower promise times
on customer engagement, we performed an online A/B test where
the Control was shown the original fixed promise time windows,
while the Treatment was exposed to dynamic promises. In order to
meet a strict sub 5 ms online latency budget, we pre-materialised
predictions at grid cell level and persisted them in key-value datas-
tore (e.g., DynamoDB) [25]. At runtime, each incoming (latitude,
longitude) coordinate associated with customer address is mapped
to its grid index, enabling a constant-time key lookup that delivers
the pre-computed score to downstream services. Freshness of this
caching layer is maintained by re-computing the scores every 24
hours. Over the 21-day online A/B experiment, the treatment vari-
ant delivered significant uplift: total units increased by 17 bps, page
views by 21 bps, and search interactions by 19 bps, demonstrating
the effectiveness of the framework.

Training/Inference Infrastructure: Data processing jobs were
run on a distributed cluster of 15-30 nodes with 32 CPUs in each
node. All the models were trained/tested on a single NVIDIA V100
GPU node with 512 GB RAM.
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5 Conclusion & Future Work

In this work, we present SPEEDY, a framework for recommending
dynamic promise time estimates for sub-same day eligible orders,
enabling us to replace the current static promise windows on multi-
ple interaction points like the search, detail and the checkout page.
We construct multiple views of data, capturing static, spatial and
spatio-temporal characteristics of order delivery data, and propose
a novel deep view interaction network which models the proba-
bility of early delivery by M minutes by computing higher order
interactions among the views. By exploiting the problem specific
structure, our model is able to outperform representative baselines
like - Gradient Boosted Decision Trees, and Neural Network based
models, and reduces the promise time estimate by atleast 25% for
60%+ of same day delivery eligible orders and results in significant
lift in various customer engagement metrics as well. As part of
future improvements, we plan to experiment with more specialized
architectures to improve the spatio-temporal modelling aspects of
the data by leveraging models like dynamic spatio-temporal graph
neural networks which can model the joint dependencies of the
spatial grids over time more naturally.
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