
DISTILL-QUANTIZE-TUNE - LEVERAGING LARGE TEACHERS FOR LOW-FOOTPRINT
EFFICIENT MULTILINGUAL NLU ON EDGE

Pegah Kharazmi Zhewei Zhao
Clement Chung Samridhi Choudhary

Amazon Alexa AI

ABSTRACT

This paper describes Distill-Quantize-Tune (DQT), a pipeline to cre-
ate viable small-footprint multilingual models that can perform NLU
directly on extremely resource-constrained Edge devices. We distill
semantic knowledge from a large-sized teacher (transformer-based),
that has been trained on huge amount of public and private data, into
our Edge candidate (student) model (Bi-LSTM based) and further
compress the student model using a lossy quantization method. We
show that unlike monolingual models, in a multilingual scenario post-
compression finetuning on downstream tasks is not enough to recover
the performance loss caused by compression. We design a fine-tuning
pipeline to recover the lost performance using a compounded loss
function consisting of NLU, distillation and compression losses. We
show that pre-biasing the encoder with semantics learned on a lan-
guage modeling task can further improve the performance when used
in conjunction with DQT pipeline. Our best performing multilingual
model achieves a size reduction of 85% and 99.2% when compared
to uncompressed student and teacher models respectively. It outper-
forms the uncompressed monolingual models (by >30% on average)
across all languages on our in-house data. We further validate our
approach and see similar trends on the public MultiATIS++ dataset.

1. INTRODUCTION

Natural Language Understanding (NLU) is the task of inferring se-
mantics (domain, intent and entities) from the transcription of an
utterance and is the key technology behind commercial voice assis-
tants (VAs). The rise in the adoption of deep learning in NLU [1, 2]
has made VAs more reliable and efficient with an estimate of up
to 8.4 billion VA devices being available by 20241. With growing
number of VA users, privacy, fast and accurate response and availabil-
ity without internet connection, across different languages becomes
critical for good experience. ‘On-device’ or ‘Edge’ processing has
been an important enabler, with increasing number of VAs mov-
ing to edge [3, 4, 5, 4]. While they have been a practical success,
edge-compatible NLU models are still largely trained to support a
single language. In an increasingly globalized world, it should be
possible for users to address their VAs in the language(s) of their
choice. Creating multilingual systems is the key to achieving this
goal. These systems not only understand multiple languages but also
demonstrate better performance per language due to cross-lingual
knowledge transfer [6]. A possible solution is to combine multiple
monolingual systems with a component for language identification.
While this would work for some applications, it increases the footprint
and requires maintaining multiple models, making it a bottleneck for
resource-constrained devices.

1https://www.statista.com/statistics/973815/
worldwide-digital-voice-assistant-in-use/

Recent development of large Transformer-based models as in [7,
8, 9] and many more, have pushed the frontier for multilinguality in
NLU, resulting in state of the art performances, especially for low-
resource locales [10, 11, 12, 13]. However, due to their size, inference
latency and resource requirements they are problematic to deploy on-
device [14]. Driven by such limitations, the last few years have seen
the rise of transfer learning approaches in NLU, where knowledge
from large transformer models are distilled into smaller footprint
models, without much loss in performance [14, 15, 16, 17, 18]. Many
distilled versions of these models have pioneered research in efficient
transfer learning [19, 20, 21, 22]. These studies achieved parameter-
size reductions of > 80% with < 10% loss in performance, making
on-device inference on certain devices possible. However, strict
hardware constraints for VAs require orders of magnitude further
reduction. A principled study in [3], lays out various limitations to
consider when selecting a suitable on-device candidate for resource-
constrained devices. This includes strict memory budget requiring
an architecture that is amenable to compression without much loss
in performance, rigorous latency targets requiring fast inference,
and compatibility with on-device inference engine that often lacks
support for sophisticated layers such as self-attention. Driven by these
constraints, one of the most successful on-device NLU architectures
sofar have been simple LSTM based models, with compression and
quantization applied to different parts of the network.

In this work, we design a pipeline to build robust multilingual
on-device models. Although our approach is architecture agnostic,
we focus our experiments on an on-device compatible Bi-LSTM
based multi-task NLU architecture and a quantization schema similar
to [3]. Given the limited capacity of our shallow LSTM encoder
especially as we increase the number of languages, similar to [23],
we propose a simple yet effective approach that transfers knowledge
from a large multilingual teacher to our shallow student model. We
show that in contrast to the findings in [3], task-specific fine-tuning
post compression is not sufficient to regain performance lost due to
quantization, as more languages are added to the model. We propose a
training and finetuning framework to not only regain the performance
but also get a consolidated semantic understanding across languages
in a way that our final compressed multilingual model has the best
performance per language compared to its compressed/uncompressed
monolingual/multilingual counterparts. The main contributions of
this work are: (1) We propose a framework to Distill-Qunatize-Tune
(DQT) multilingual on-device models even when the architecture of
the teacher (transformer-based) and the student (Bi-LSTM based) is
different; (2) We design a unique way to recover the lost performance
of the compressed model by fine-tuning the compressed model on a
compounded loss; (3) We investigate different viable approaches for
cross-lingual knowledge transfer and analyze their effectiveness in an
ablation setup. The best performing model created by our pipeline, is
the first viable on-device multilingual candidate for our in-house VA.

https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/

2. METHODOLOGY

2.1. Edge NLU Architecture

Similar to [3], we design our on-device model as a multi-task model
with a shared encoder and three task-specific heads to perform
sentence-level domain and intent classification (DC and IC) and
sequence-level NER tagging. The shared encoder is a word-piece
based Bi-LSTM, while the DC, IC and NER heads are fully-connected
(FC) layers. The sentence representation, formed by concatenating
the final states of the forward and backward LSTM of the last
encoder layer, is passed to the DC and IC FCs as input. The word
representation, formed by concatenating the bi-directional hidden
states at each time-step is passed to the NER FC to predict the slot
for each word. The model is trained to minimize the weighted cross
entropy (CE), where λi controls importance of a task-specific CE:

LNLU = λ1LDC + λ2LIC + λ3LNER (1)

2.2. Distill-Quantize-Tune (DQT)

Our DQT pipeline consists of three steps - (1) Distill knowledge from
a multilingual teacher into a student; (2) Quantize the model post
teacher-supervised training; and (3) Tune the model to recover the
performance lost in step 2.

Distill - Cross-lingual Distillation from Large Teachers We use
the teacher model from [24] for performing knowledge distillation
(KD) into our Edge student. The teacher is first fine-tuned on down-
stream tasks. To perform KD, we calculate multi-component KD loss
for DC, IC and NER tasks as:

LDistill = λ1L
KD
DC + λ2L

KD
IC + λ3L

KD
NER (2)

where LKD is the CE loss between teacher and student output
probabilities. At inference the model only outputs student predictions.

Quantize - Additive Quantization using Deep Compositional
Code Learning As > 90% of our model size is due to the word
embeddings, similar to [3], we use additive quantization (AQ), also
referred to as Deep Compositional Code Learning (DCCL), first pro-
posed by [25] and popularly used for word-embedding compression
[3, 26, 27]. AQ compresses the original embedding matrix W into a
set of K integer codes, which in turn create a combination of a set of
M codebooks. Each codebook contains K basis vectors referred to
as codewords of size D (embedding dimension). DCCL learns the
codes and codebooks using an autoencoder with a Gumbel-Softmax,
details of which can be found in [26].

Tune - Post Compression Fine-tuning DCCL, like most of the
post-processing compression approaches, is a lossy quantization
scheme as the compression model has no supervision from the down-
stream task. In order to recover this lost performance we employ a
suite of approaches, where we jointly fine-tune the DCCL compres-
sion layers of the student model on the downstream tasks. Details of
the proposed approaches are given below.

• Fine-Tuning with NLU Loss Similar to [3], here the compressed
model is fine-tuned on the LNLU from equation 1. The task-
aware embeddings are reconstructed by passing the input embed-
dings through the compression layers. Using Gumbel-Softmax
allows the gradients to backpropagate all the way, thereby fine-
tuning the compression layers jointly with the remaining layers
in the model. We call this approach the vanilla DQT pipeline.

f

Forward
LSTM

Backward
LSTM

Forward
LSTM

Backward
LSTM

+

+

+

NER

IC

DC

Edge NLU Model

Word
 Embeddings

NER IC DC Output
Labels

NLU
Loss

f

+

NER

IC

DC

Teacher Model

Distillation
 Loss

Teacher Encoder

+

C
om

pr
es

si
on

 L
ay

er
s

Reconstructed
Embeddings

Word
 Embeddings

Fig. 1: DQT with KD Loss Setup.

• Fine-Tuning with Distillation Loss As shown in figure 1, we
jointly fine-tune LNLU (equation 1) and LDistill (equation 2) by
defining a joint loss:

Ljoint = λ1LNLU + λ2LDistill (3)

We hypothesize that providing supervision signals from a seman-
tically robust teacher, after a lossy compression, should help both
the quantized and un-quantized parameters of the model better
adjust to the final task, compared to just providing the supervision
from the NLU task from student (as in the previous technique).

• Fine-Tuning with Embedding Loss In this setup, we add the
embedding reconstruction loss (Le) to the Ljoint (equation 3).
Le is defined as the mean squared error between the reconstructed
(w′

i) and original embeddings (wi). We hypothesize that gradi-
ents from this joint loss, especially those from Le, provide a
stronger signal to the compression layers, improving the down-
stream performance. The joint loss is defined in equation 4, where
αi determines each term’s weight.

Ljoint = α1LNLU + α2LDistill + α3

N∑
i=1

(wi − w′
i)

2 (4)

• DQT with Encoder Pre-Biasing Similar to [28], we leverage
cross-lingual representations learned from multilingual language
models (LM) [29]. The LM encoder uses the same architecture
as our edge model (word-piece embeddings, Bi-LSTM encoder),
stacked with a dense layer to perform next word prediction and
is trained on the same dataset. Once trained, learned encoder
and embedding weights are used to initialize the corresponding
components of the edge model, which is then used as a student in
our DQT pipeline with Ljoint (equation 4). We hypothesize that
pre-biasing the encoder with semantics learned from LM task can
help the student model before entering the DQT pipeline.

3. EXPERIMENTAL SETUP

3.1. Datasets

We evaluate our approach on two datasets.

Internal NLU Dataset - We use a random snapshot of propri-
etary, de-identified VA utterances for four languages: English (En),
Spanish (Es), French (Fr) and German (De). Each instance consists
of an utterance text, along with domain, intent and slot tags. For each

No. Experiment IRER Change (%)

EN ES FR DE

1 Multilingual Teacher [24] -49.57 -38.69 -40.60 -50.87
2 Distilled BERT -44.12 -35.08 -35.61 -42.01
3 Distilled TinyBERT -34.81 -30.01 -30.96 -34.32

4 Monolingual - uncompressed (B1) - - - -
5 Monolingual - compressed (B1) [3] -1.65 -1.22 -0.29 -0.18
6 Monolingual - DQT (B2) -17.36 -13.99 -13.57 -16.47

7 2L DQT -18.32 -13.58 N/A N/A
8 3L DQT -18.96 -14.98 -12.75 N/A

9 4L D only (uncompressed) -27.92 -21.68 -24.97 -26.08
10 4L DQT -22.87 -16.78 -19.57 -20.04
11 4L DQT + KD Loss -29.66 -22.67 -25.09 -27.45
12 4L DQT + KD Loss + Emb Loss -32.05 -25.00 -27.38 30.10
13 4L DQT Full -33.47 -26.11 -28.73 -32.11

Table 1: Experiments on Internal Dataset. 2L, 3L and 4L refer to
EnEs, EnEsFr and EnEsFrDe respectively. IRER is reported as rela-
tive % change. Negative numbers show improvement over baseline.

language, we have ≈ 1600 hours worth of training data, with > 75
intents and > 220 slots across 7 domains. We curate similar datasets
(< 200h) for validation and test.

MultiATIS++ - Publicly available MultiATIS++ (MA++) ex-
tends the Multilingual ATIS [30] to nine languages across four lan-
guage families. It contains intent and slot annotations on queries of
a flight reservation system. Similar to our Internal Dataset we use a
subset of MultiATIS++ for 4 languages (En, Es, Fr, De).
3.2. Baselines

Our target candidate is a 4-language (4L) model. To show the efficacy
of DQT, we conduct experiments in the following stages -

Monolingual Models: As our first baseline (B1), we build mono-
lingual models per language, using the same approach as [3], wherein
we train, compress and finetune the compressed model on LNLU

post-compression (equation 1), without distillation. For a fairer com-
parison, we train a second monolingual baseline (B2) using vanilla
DQT pipeline, where we use the same teacher for distillation and
perform fine-tuning on LNLU .

Incremental Multilingual Models: To examine if cross-lingual
knowledge transfer has additive effect on top of distillation, we in-
crementally add languages to the EN monolingual model from B2,
creating 2L (EnEs) and 3L (EnEsFr) models. We use vanilla DQT
pipeline for each incremental model.

BERT-based Models: In these experiments, we compare our
technique with a number of state-of-the-art BERT-based models. We
compare our results with 1. the multilingual teacher, a 16-layer 327M
parameters BERT-based multilingual model distilled from [24]; 2.
A 135M parameters BERT-based model distilled from [24] and 3.
A 54M parameters TinyBERT model [15] distilled from [24]. All
baselines are further finetuned on the downstream NLU tasks.

DQT Multilingual Models: In these experiments, we train our
target 4L Bi-LSTM based edge model using our DQT pipeline. We
experiment with all our proposed ways of fine-tuning (section 2.2)
and compare the results on each language against the monolingual (B1
and B2), the incremental multilingual and the BERT-based baselines.

3.3. Evaluation and Model Specifics

We use Interpretation Recognition Error Rate (IRER) for evaluating
performance. It is the strictest NLU metric and is calculated as the

No. Experiment IRER (%)

EN ES FR DE

1 Multilingual Teacher [24] 12.21 29.68 26.76 13.45
2 Distilled BERT 13.08 32.12 28.25 16.76
3 Distilled TinyBERT 15.22 36.65 30.12 18.26

4 Monolingual - uncompressed (B1) 20.49 59.35 40.43 23.09
5 Monolingual - compressed (B1) [3] 21.35 60.55 41.22 24.76
6 Monolingual DQT (B2) 20.49 48.35 40.23 22.87

7 2L DQT 20.12 46.06 N/A N/A
8 3L DQT 19.93 46.69 32.67 N/A

9 4L D only (uncompressed) 18.03 42.55 31.80 21.41
10 4L DQT 20.38 44.34 32.59 22.98
11 4L DQT + KD Loss 17.91 41.09 31.57 18.95
12 4L DQT + KD Loss + Emb loss 16.69 40.54 30.46 18.61
13 4L DQT Full 16.91 42.55 31.47 19.96

Table 2: Experiments on MultiATIS++. 2L, 3L and 4L refer to EnEs,
EnEsFr and EnEsFrDe. IRER is reported as absolute % values.

ratio of incorrect interpretations to total number of utterances. An
incorrect interpretation is when either the predicted domain, intent or
any of the slots is wrong.

Our student is a 2-layer, 256 dimensional Bi-LSTM encoder and
100 dimensional word-piece embeddings (18M parameters). The
teacher is a 327M (170M encoder, 157M embeddings) multilingual
BERT-based model distilled from the base teacher in [24] which is
trained on over 3.84B spoken language examples with 115.2B tokens.

We perform a grid search over learning rate and dropout. In the
fine-tuning stage, the joint loss (equation 4) consists of NLU loss,
Distillation loss and Embedding loss with weights of 0.425, 0.425
and 0.15 respectively. Both NLU loss and Distillation loss come from
the compound loss of IC, DC and NER with weights 0.2, 0.2 and 0.6.

4. RESULTS AND ANALYSIS

We present the experiment results for the internal and MA++ datasets
in tables 1 and 2. Owing to the private nature of internal data, we
report relative improvements over the uncompressed monolingual
baseline (B1) in table 1, whereas absolute IRER numbers and addi-
tional intent-wise and slot-wise metrics are reported in table 2 and
table 3 on MA++ dataset. For both datasets, our target 4L model
has the best performance across all languages, compared to both
monolingual (B1) and distilled monolingual (B2) baselines. Among
multilingual models using vanilla DQT pipeline (rows 7,8 and 10
in both tables), the 4L model has the best performance, most no-
tably for our internal dataset with at least 4% extra improvement
for En compared to 2L and 3L models. Adding languages to the
distillation schema results in consistent improvement across both
datasets (rows 6,7,8, 10 in both tables). Distillation has an additive
effect on both multilingual and monolingual models. B2 models
outperform B1 models by at least 14% for internal dataset and ≈ 2%
for non-Es and a significant 12% for Es for MA++. To compare
the training computational cost of the teacher vs student, we report

Model Metrics EN ES FR DE

Multilingual Teacher [24] ICER 2.69 2.02 2.58 2.80
SER 10.30 28.00 25.08 11.43

Monolingual - uncompressed (B1) ICER 6.27 7.05 9.97 7.62
SER 16.01 58.34 25.16 18.16

4L DQT + KD Loss + Emb loss ICER 4.03 5.49 5.04 5.72
SER 13.99 36.95 27.21 14.35

Table 3: Intent classification error rate (ICER) and slot error rate
(SER) on MultiATIS++. Metrics are reported as absolute % values.

Model Relative Size

Multilingual Teacher [24] 1
Distilled BERT 0.41
Distilled TinyBERT 0.17
4L DQT Full (Bi-LSTM) 0.008

Table 4: Comparison of total model size w.r.t the teacher in [24]

the virtual cpu (vcpu) hour required for each. To train the teacher
4,431,872 vcpu/hour is used whereas training the student using the
DQT pipeline, requires 35,840 vpcu/hours. The student computation
cost is orders of magnitude smaller than that of the teacher.

Through distillation, our uncompressed student achieves a size re-
duction of 94.5% compared to the teacher (18M vs 327M parameters).
Through quantization, we further compress the student, achieving a
size reduction of 85%. This puts our compressed candidate model at
a size reduction of 99.2% compared to the teacher. Looking at the
effects of quantization, we notice that while for the internal dataset,
post-compression finetuning on LNLU can recover the lost perfor-
mance for B1 models (row 4 vs 5 in table 1), this is not the case
for MA++ (rows 4 vs 5 in table 2). While distillation improves the
compressed monolingual performance in B2 for the internal dataset,
it becomes an essential component to recover the lost performance
for MA++. Similar behavior is seen for multilingual models, where
the compressed multilingual model shows an average 5% and 1.5%
degradation per language in tables 1 and 2 respectively (row 9 vs 10).

Using DQT, we are able to recover and beat the performance
of the uncompressed multilingual models (rows 11-13 vs 9-10, both
tables). For the internal dataset, the best performance is obtained with
Full DQT, i.e. using Ljoint (equation 4) and LM pre-biasing, with a
relative improvement of 30.1% over B1 (rows 13 vs 4 table 1) and
5% over the uncompressed multilingual model (rows 13 vs 9 table 1),
on average. The best setting for MA++ is DQT with Ljoint without
LM pre-biasing, with an average relative improvement of 9% over
B1 (row 12 vs 4 table 2). This might be because MA++ dataset is not
large enough for LM-biasing to add any extra semantic knowledge,
on top of that transferred through distillation. Training the LM on
larger datasets might help get the best performance for MA++.

We also compare the results from our best performing model with
state-of-the-art BERT-based baselines in terms of IRER performance
(row 13 vs rows 1-3 in table 1 and row 12 vs rows 1-3 in table 2)
and model size. Table 4 demonstrates a comparison between the total
model size of our best performing model and BERT-based baselines.
We use the size of the multilingual teacher as the baseline and calcu-
late the relative size of other models accordingly. It is worth noting
that compared to the teacher, distilled BERT and distilled TinyBERT,
our shallow Bi-LSTM edge-compatible architecture demonstrates
only 2.4%, 1.5%, 0.5% IRER degredation on internal dataset and
5.8%, 4.1%, 1.6% degredation on MA++, while being at 99.2%, 98%
and 95.2% size reduction compared to these three baselines, respec-
tively. This further validates that DQT can effectively help boost
the performance of simple architecture low foot-print multilingual
models, making them viable candidates for edge use cases.

Error Analysis - To further investigate the effects of DQT on in-
creasing semantic robustness, we analyze the most confused intent
pairs of our internal dataset with our best performing 4L model. To
select the hardest intents, we compute the jaccard similarity index
(JSI) between all intent pairs, using a unigram overlap between the
intent utterances. We also compute the cross-intent confusion matrix
and pick the intent pairs that have a higher than median JSI value and
greater than average cross-intent confusion. We categorize top-10
such pairs into ‘semantically similar’ (ex. to browse notifications

8 6 4 2 0 2 4 6
6

4

2

0

2

4

7.5 5.0 2.5 0.0 2.5 5.0 7.5
8

6

4

2

0

2

4

6

3 2 1 0 1 2 3 4

2

0

2

4

6

8

10 8 6 4 2
3

2

1

0

1

2

3

4 2 0 2 4 6

4

2

0

2

4

6 4 2 0 2 4 6 8

4

2

0

2

4

6 4 2 0 2 4

8

6

4

2

0

2

4

6

6 4 2 0 2 4 6
10

8

6

4

2

0

2

4

6

Fig. 2: TSNE visualization of outputs on high jaccard index intent
pairs for baseline (left) and the proposed (right) model. From Top to
bottom, intents are semantically opposite pairs: to accept vs ignore a
call, to extend vs shorten notifications; and semantically similar pairs:
to get the time vs the distance of a travel, to browse notifications vs
reminders. On these pairs, the proposed model is able to correct 90%
of the samples that were misclassified by the baseline model.

vs reminders) and ‘semantically opposite’ (ex. to ignore vs accept
a call). We create TSNE plots of the shared encoder outputs for the
compressed B1 and the best performing 4L model. Figure 2 shows
such plot, for a number of intent pairs. It can be seen that the encoder
outputs from our best performing 4L model (right plots) show a much
better separation compared to that of the B1 model (left plots). These
observations indicate the importance of the extended DQT pipeline
to learn a better semantic space, especially for classes with high word
overlap but different semantic labels.

5. CONCLUSION

We present a pipeline to build low-footprint multilingual models
for edge use cases and show results across four languages and two
datasets. We demonstrate that as more languages are added, the
model faces a higher performance degradation due to compression.
As a solution, we propose a distillation-led, post-compression fine-
tuning setup. We show that incorporating a compounded loss with
LM pre-baising helps recover and beat the uncompressed models’
performance, while achieving a compression rate of 85% and 99.2%
compared to uncompressed student and teacher models respectively.

6. REFERENCES

[1] S. Ravuri and A. Stolcke, “Recurrent neural network and lstm
models for lexical utterance classification,” in Sixteenth An-
nual Conference of the International Speech Communication
Association, 2015. 1

[2] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural
networks for natural language understanding,” in ACL 2019,
June 2019. 1

[3] K. Mysore Sathyendra, S. Choudhary, and L. Nicolich-Henkin,
“Extreme model compression for on-device natural language
understanding,” in Proceedings of the 28th International Con-
ference on Computational Linguistics: Industry Track, Online,
Dec. 2020, pp. 160–171, International Committee on Computa-
tional Linguistics. 1, 2, 3

[4] A. Saade, A. Coucke, A. Caulier, J. Dureau, A. Ball, Th. Bluche,
D. Leroy, C. Doumouro, Th. Gisselbrecht, F. Caltagirone, et al.,
“Spoken language understanding on the edge,” arXiv preprint
arXiv:1810.12735, 2018. 1

[5] Zh. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobile-
bert: a compact task-agnostic bert for resource-limited devices,”
arXiv preprint arXiv:2004.02984, 2020. 1

[6] D. Mueller, N. Andrews, and M. Dredze, “Sources of transfer
in multilingual named entity recognition,” in Proceedings of
the 58th Annual Meeting of the Association for Computational
Linguistics, Online, July 2020, pp. 8093–8104, Association for
Computational Linguistics. 1

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018. 1

[8] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, et al., “Language models are
few-shot learners,” CoRR, vol. abs/2005.14165, 2020. 1

[9] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R Salakhutdinov, and
Q. V Le, “Xlnet: Generalized autoregressive pretraining for
language understanding,” in Advances in neural information
processing systems, 2019, pp. 5753–5763. 1

[10] O. Cattan, Ch. Servan, and S. Rosset, “On the cross-lingual
transferability of multilingual prototypical models across nlu
tasks,” arXiv preprint arXiv:2207.09157, 2022. 1

[11] W. Antoun, F. Baly, and H. Hajj, “Arabert: Transformer-based
model for arabic language understanding,” arXiv preprint
arXiv:2003.00104, 2020. 1

[12] S. Louvan and B. Magnini, “Simple data augmentation for
multilingual nlu in task oriented dialogue systems.,” in CLiC-it,
2020. 1

[13] Z. Liu, G. I. Winata, Zh. Lin, P. Xu, and P. Fung, “Attention-
informed mixed-language training for zero-shot cross-lingual
task-oriented dialogue systems,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2020, vol. 34, pp. 8433–
8440. 1

[14] V. Sanh, L. Debut, J. Chaumond, and Th. Wolf, “Distilbert, a
distilled version of bert: smaller, faster, cheaper and lighter,”
arXiv preprint arXiv:1910.01108, 2019. 1

[15] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang,
and Q. Liu, “Tinybert: Distilling bert for natural language
understanding,” arXiv preprint arXiv:1909.10351, 2019. 1, 3

[16] S. Sun, Y. Cheng, Zh. Gan, and J. Liu, “Patient knowl-
edge distillation for bert model compression,” arXiv preprint
arXiv:1908.09355, 2019. 1

[17] M. A Gordon, K. Duh, and N. Andrews, “Compressing bert:
Studying the effects of weight pruning on transfer learning,”
arXiv preprint arXiv:2002.08307, 2020. 1

[18] Zh. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, “Albert: A lite bert for self-supervised learning
of language representations,” in International Conference on
Learning Representations, 2020. 1

[19] P. Ganesh, Y. Chen, X. Lou, M. A Khan, Y. Yang, D. Chen,
M. Winslett, H. Sajjad, and P. Nakov, “Compressing large-scale
transformer-based models: A case study on bert,” arXiv preprint
arXiv:2002.11985, 2020. 1

[20] H. Saghir, S. Choudhary, S. Eghbali, and C. Chung,
“Factorization-Aware Training of Transformers for Natural Lan-
guage Understanding on the Edge,” in Proc. Interspeech 2021,
2021, pp. 4733–4737. 1

[21] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert:
Quantized 8bit bert.,” arXiv preprint arXiv:1910.06188, 2019.
1

[22] Sh. Shen, Zh. Dong, J. Ye, L. Ma, Zh. Yao, A. Gholami, M. W
Mahoney, and K. Keutzer, “Q-bert: Hessian based ultra low
precision quantization of bert,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2020, vol. 34, pp. 8815–
8821. 1

[23] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin,
“Distilling task-specific knowledge from bert into simple neural
networks,” arXiv preprint arXiv:1903.12136, 2019. 1

[24] J. FitzGerald, S. Ananthakrishnan, K. Arkoudas, D. Bernardi,
A. Bhagia, C. Delli Bovi, et al., “Alexa teacher model: Pretrain-
ing and distilling multi-billion-parameter encoders for natural
language understanding systems,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 2022, KDD ’22, p. 2893–2902,
Association for Computing Machinery. 2, 3, 4

[25] A. Babenko and V. Lempitsky, “Additive quantization for ex-
treme vector compression,” in 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014, pp. 931–938. 2

[26] R. Shu and H. Nakayama, “Compressing word embeddings via
deep compositional code learning,” CoRR, vol. abs/1711.01068,
2017. 2

[27] T. Chen, M. Renqiang Min, and Y. Sun, “Learning k-way
d-dimensional discrete codes for compact embedding represen-
tations,” in ICML, 2018, pp. 853–862. 2

[28] H. Tu, S. Choudhary, H. Saghir, and R. McGowan, “Leveraging
multilingual neural language models for on-device natural lan-
guage understanding,” in The Web Conference 2021 Workshop
on Multilingual Search, 2021. 2

[29] T. Wada, T. Iwata, and Y. Matsumoto, “Unsupervised multi-
lingual word embedding with limited resources using neural
language models,” in ACL, 2019. 2

[30] G. Tur D. Hakkani-Tur L. Heck Sh. Upadhyay, M. Faruqui, “(al-
most) zero-shot cross-lingual spoken language understanding,”
in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018. 3

