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Abstract—Batch-mode active learning iteratively selects a
batch of unlabeled samples for labelling to maximize model
performance and reduce total runtime. To select the most
informative and diverse batch, existing methods usually calcu-
late the correlation between samples within a batch, leading
to combinatorial optimization problems which are inefficient,
complex, and limited to linear models for approximated solutions.
In this paper, we propose NimbleLearn, a scalable deep imitation
batch-mode active learning approach to address these drawbacks.
NimbleLearn sequentially predicts an “ideal sample” by a deep
policy network for each batch. Such ideal sample maximizes
the model performance when combined with the labeled samples
and the already-selected samples in the current batch. Unlike the
existing batch-mode active learning methods which directly select
one batch of samples from unlabeled ones, NimbleLearn reduces
the dimension of the policy network output to the number of
features (assuming the number of unlabeled samples is much
greater than the number of features). In addition, NimbleLearn
is a general framework and can be applied in both linear and
nonlinear models. Experiments conducted on 4 public datasets
show NimbleLearn can achieve similar or better performance as
existing SOTA algorithms, while reducing the number of labeled
samples and runtime by over 50%.

Index Terms—active learning, batch-mode, imitation learning

I. INTRODUCTION

Supervised learning needs enough labeled data to achieve
a reasonable performance in practice. To label the data is
usually costly and time-consuming. In order to reduce the
cost of labeling while achieving a decent model performance,
machine learning practitioners have been widely using active
learning to train supervised models. In active learning, an
agent selects a subset of unlabelled samples for labelling, and
then a supervised model or classifier is retrained with those
newly added labels together with the already labeled samples.
This process is iterated until the model achieves a decent
performance or the labelling budget is met. Active learning
usually requires only a small number of labelled samples,
while generating a considerable performance boost in practice
[1]. Traditional active learning, the single-point active learning
method, selects one sample per iteration for labeling, which
is not time efficient since the model needs to be retrained for
every labeled sample. On the other hand, batch-mode active
learning [2]–[4] was proposed to select a batch of unlabeled
samples in parallel for labeling, which reduces the training
time (and labelling time). Since we will discuss the training of

the active learning agent later, we will refer to the supervised
model or classifier as the base model in this paper to avoid
confusion from now on.

The key problem in batch-mode active learning is to
design or train an agent to select the most informative
batches with minimum redundancy in each batch, that is,
π(Dlab, Dunl,m) −→ {x1, x2, ..., xQ}, where π denotes the
agent, Dlab and Dunl are labeled and unlabeled samples,
m the base model, xi one of selected samples and Q is
the batch size (see Table II). There are

(|Dunl|
Q

)
ways to

select a batch. Once the size of unlabelled samples Dunl

becomes large (which is true in practice), scalability becomes
an issue and overall speed is compromised. Therefore, most of
these proposed algorithms are compromised with approximate
solutions using linear base models [5], [6], or designing a
policy heuristically [7]. However, those proposed algorithms
are hard to extend to scenarios where we have a large size of
unlabelled samples, or too slow.

We propose NimbleLearn, a scalable and fast batch-mode
active learning approach. NimbleLearn trains an agent π to
iteratively select one “ideal sample” for Q times in each
batch. The “ideal sample” is expected to maximize the base
model performance when combined with selected samples
in the current batch and the labeled samples in a greedy
fashion, namely π(Dlab, Dsel, Dunl,m) −→ {xi}, where
Dsel = {x1, ..., xi−1} are selected samples of the current
batch. Since the agent is implemented as a policy network
in NimbleLearn, we will use these two terms exchangeably in
this paper. NimbleLearn enables us to train a policy network
which scales linearly with the number of features instead of
the number of unlabelled samples to overcome the scalability
issues. Also, NimbleLearn uses deep imitation learning to train
π on a fully labelled source dataset, and then applies the
trained π to select a batch of samples in an unlabeled target
dataset. This actually is “active transfer” learning. Overall, this
imitation learning strategy can learn an efficient policy and
make NimbleLearn one of the fastest algorithms.

We conduct experiments on four benchmark datasets (bal-
anced and imbalanced) for classification. Figure 1 shows the
runtime of applying NimbleLearn versus the baselines against
F1-score on Hate Speech classification. Results show that
NimbleLearn requires fewer labeled samples and converges
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Fig. 1: Average runtime of single-point strategy, one of the
tested batch-mode active learning baselines with the highest
performance (BMDR), and NimbleLearn against base model
F1-score on hate speech classification task.

TABLE I: NimbleLearn versus Batch-model Baselines.

Uncer-
tainty

Diver-
sity

Ran-
dom

BMDR SPAL K-
Center

Nimble-
Learn

Scalability X X X X X
Fast
Algorithm

X X X X

High
Performance X X X X

faster compared with other tested batch-mode active learning
algorithms (see Appendix A). We summarize the advantages of
each algorithm in Table I, and key takeaways of NimbleLearn
are listed as follows:

1) Scalability: NimbleLearn scales linearly with the size
the of the features instead of the number of unlabelled
samples, which well suits problems with large datasets.

2) Fast algorithm: NimbleLearn is more than 2x faster than
tested baselines to reach similar performance due to the
efficient selection algorithm.

3) High performance: NimbeLearn achieves the SOTA per-
formance on various datasets, and even better perfor-
mance on imbalanced datasets.

II. RELATED WORK

A. Single-point Active Learning

Single-point active learning algorithms select one sample
per round for labelling [2]. Different single-point active learn-
ing algorithms are distinguishable based on the method they
use to select one sample per round. Early studies select the
sample based on some informativeness of heuristics. Lewis and
Gale [8] proposed an uncertainty based approach which selects
one sample with the base model probability score closest
to 0.5. Freund et al. [9] proposed the query-by-committee
algorithm, which builds a committee of base models. In this
case, the sample with the highest disagreement for prediction
from the committee would be selected. Tong and Koller
proposed an algorithm to select the sample that is closest to
the decision boundary of the base model [10].

Later on, some algorithms considered the representative-
ness of the selected samples, and used the information of
the unlabeled samples. McCallum and Nigam proposed to
maximize the expected performance of the base model on
unlabeled samples [11]. Muslea et al. [12] employed a semi-
supervised learning approach to build a multi-view active
learning algorithm. Despite these advancements, single-point
active learning is inherently slow in application when a parallel
labeling system is available, where multiple samples could be
assigned to multiple human investigators simultaneously [3].

B. Batch-Mode Active Learning

Batch-mode active learning selects multiple samples each
round to improve the time efficiency when multiple human
investigators are available to label the samples in parallel
[4]. Comparing with single-point active learning, batch-mode
active learning has an added complexity to consider cor-
relations between samples within a batch. Some methods
use heuristics to approximate correlations, where researchers
proposed a “diversity score” (the dissimilarity between one
candidate sample and the samples already in the batch) and
then added it to the “informativeness score” (which is used in
the single-point active learning algorithms) with some preset
weights [7], [13]. Xu et al. [14] and Li [15] et al. used the
idea of semi-supervised clustering to measure the “diversity”.
Hoi et al. [16] considered the Fisher information score as the
“informativeness” and selected the batch that maximizes it.
However, because of pre-defined heuristics and preset weights,
there is no guarantee to reach optimal base model performance
from these proposed algorithms.

Besides using heuristics, some batch-mode active learning
algorithms try to optimize the objectiveness around “infor-
mativeness” and “representativeness” of the selected batch.
Wange and Ye [6] followed the idea of empirical risk min-
imization and tried to find the batch that maximizes the base
model performance. This optimization is NP-hard and only has
approximate solutions for choosing logistic regression as the
base model. Huang et al. [17] proposed a min-max optimiza-
tion strategy on “informativeness” and “representativeness”
scores and provided solutions for the base model of SVM
classifier using the quadratic loss function. Chakraborty et
al. [18] proposed to optimize the maximum generalization
capability of the selected batch. The original problem is
NP-hard, and they further approximated it with an integer
LP problem. Chattopadhyay [19] et al. tried to minimize
the difference between the selected batch and the unlabeled
samples, where the proposed objective is still an NP-hard
integer programming problem. Fu et al. [20] proposed an
approximated error reduction criterion which estimates the
impact of one sample on other data points, and is implemented
on hierarchical anchor graphs as the base model.

C. Active Learning as a Learning Process

Recent advancements fit iterative selection and labelling
process into a reinforcement learning framework. Liu et al.
[21] used a reinforcement learning framework to minimize
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human annotation efforts while maximizing the base model
performance. Lopes et al. [22] enabled the active learning
agent to query the demonstrator for samples in specific states.
However, these methods require many rounds to train a decent
active learning agent, which contradicts the idea of applying
batch-mode active learning to reduce overall runtime.

In high level, these algorithms train an active learning
agent, which is perceived as a policy network to select the
next unlabelled sample [23]. Supposing we have an unlabeled
sample pool Dunl = {xi}i∈{1,..,|Dunl|} and labeled sample
pool Dlab = {(xi, yi)}i∈{1,..,|Dlab|}, where xi denotes feature
vector of one sample and yi is the label of sample class
(see Table II). At each round r, the active learning agent
selects an unlabeled sample based on an action probability
vector Pr = π(sr), where Pr is an |Dunl| × 1 vector, the ith
element of Pr is the probability of selecting the ith unlabeled
sample and sr is the current training states. Here the sr usually
includes the feature vector of each unlabeled sample, and other
information about labeled samples and the base model. The
action Ar is to select the sample from Dunl with the highest
probability:

Ar = argmaxi∈{1,...,|Dunl|} {Pr,i} (1)

These reinforcement learning based approaches can apply to
any base models. However, in their designs of policy networks,
the input and output size scales with size of unlabelled
samples. This can be problematic as the unlabelled sample
size can be huge in practice.

D. Gap

Many existing algorithms are not scalable and quite slow,
given that they introduce a complex combinatorial optimiza-
tion problem that is NP-hard or require too many rounds of
selection. Among these algorithms, some have approximate
solutions for a specific linear base model. These drawbacks
block the applications on selecting from large unlabelled
datasets. Our proposed NimbleLearn can bridge the gap.

III. METHOD

A. Active Learning Agent as An Action Policy

In this section, we explain how to design a new policy
network to represent the active learning agent while avoiding
O(|Dunl|) complexity. Suppose we budget for selecting Q
samples per round for R rounds. At round r, to select the
q-th sample, instead of outputting the probability of selecting
each unlabeled sample, we output an n feature × 1 “ideal
sample” Pr,q . This “ideal sample“ can improve the base model
performance at most when adding it to the combined set of
already-selected ones in current batch Dsel plus the labeled
samples Dlab, in the retraining process. n feature is the
dimension of the feature vector. By this design, we decrease
the size of the policy’s output from |Dunl| to n feature.
Then the action Ar,q is to select the sample from Dunl which
is closest to this ideal sample:

Ar,q = argminx∈Dunl dist(x, Pr,q) (2)

where dist is any metric used to measure the distance between
these 2 vectors (0 ≤ dist ≤ 1), e.g., 1 - cosine similarity.

The output of the policy network denotes a feature vector for
an ideal sample. It takes state as inputs, which is the snapshot
of the current sample states and the trained base model.
Specifically, it is designed to include descriptive information of
the current feature vectors (of labeled, unlabeled, and selected
samples) and other general model information (e.g., percentage
of each class in the labeled samples, model coefficients,
entropy). The descriptive information of the current feature
vectors could be the [0, 1, ...,m] ∗ 100

m th percentile of each
dimension of the feature vectors of labeled/selected/unlabeled
samples, see figure 2. With this design, we limit the policy
network input size in O(n feature).

Fig. 2: The policy network for selecting an unlabeled sample
to be added to current batch (selected samples). It takes
the percentiles of each dimension of the feature vectors of
labeled/selected/unlabeled samples and some general features
of the training states as inputs, then goes through several dense
layers, and outputs an ideal sample. * denotes an arbitrary
number of hidden nodes.

B. Train Active Learning Agent via Imitation Learning

In this section, we explain how to learn the aforemen-
tioned policy. As discussed in the subsection II-D, learning
a policy while selecting samples simultaneously with existing
reinforcement learning framework could not be applied here.
This framework requires many rounds of iterative selections,
hence is against the time efficiency requirement for batch-
mode active learning.

We learn the policy on a labelled dataset (called source
dataset) in a simulation step, and then transfer the policy to
select unlabeled samples on our target dataset in real-time
environment. We start with a random policy and improve the
policy network iteratively on the source dataset with imitation
learning. Imitation learning is a machine learning technique
that proves to be more useful when the expert can provide
the optimal action easily as opposed to specifying a reward
function that would generate the same action [24]. Imitation
learning is a good fit for the simulation step in our framework,
as the ground truth of which sample maximizes the base model
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performance can be effortlessly found. In addition, imitation
learning has been applied in single-point active learning [23]
where the policy is trained to predict a probability vector to
select the next single sample. Still, the application of imitation
learning in batch-mode active learning has not been tackled.

Multiple episodes are simulated during the simulation phase.
Within each episode, we randomly split the source dataset
C = {x, y} into an unlabeled sample pool Cunl and a
validation sample pool Cval. We also create an empty labeled
sample pool Clab for a cold-start scenario. Alternatively, we
can start from a non-empty Clab as warm-start if we have
labels. Finally, we need to create an empty dataset to record the
pairs of current states and their corresponding ideal samples
(denoted by SI) to train the policy.

For each simulation, we select Q samples per round for R
rounds. At the beginning of each round, we start with an empty
batch (selected sample pool) Csel. Within this round, we keep
selecting an ideal sample from Cunl and adding it to Csel until
we get Q samples in Csel. Then we dump Csel to Clab and
reset Csel to empty. In particular, at round r to select the q-th
sample, we define the ideal sample x∗r,q (size n feature× 1)
and its corresponding label y∗r,q as the sample that maximizes
the base model m performance on the validation pool Cval

when it combines with the current batch Csel and already
labeled samples Clab (notice that we know the labels of C):

x∗r,q, y
∗
r,q =

argmax{x,y}∈Cunlperf(m(Clab ∪ Csel ∪ {x, y}), Cval)
(3)

where m(Clab ∪ Csel ∪ {x, y}) is the base model trained by
the dataset Clab ∪ Csel ∪ {x, y}, and perf(m,Cval) is m’s
performance on Cval, accuracy, F1-score, to name a few. We
then add this state-ideal sample pair to SI .

However, since the states sr,q(Clab, Csel, Cunl,m) are not
i.i.d, we cannot only use this ideal sample as the action we
take to transfer to the next state. In the active learning process,
the samples we should select actually depend on the samples
we already selected. Thus we apply the DAGGER algorithm,
which aims to solve this problem in imitation learning that
future observations depend on previous predictions (actions)
and violate the common i.i.d. assumptions made in statistical
learning [25]. The DAGGER algorithm proves that when the
number of simulations is large enough, the policy we get
will be asymptotic to the optimal policy. It suggests that
besides selecting the actual ideal sample x∗ above, with some
probability, we also select the predicted ideal sample Pr,q:

Pr,q = π(sr,q) = π(sr,q(C
lab, Csel, Cunl,m)) (4)

In practice, Pr,q might not exist in the candidates pool Cunl,
then the predicted action would be to select the unlabeled
sample x̄ that is closest to the predicted ideal sample:

x̄r,q, ȳr,q = argmin{x,y}∈Cunldist(x, Pr,q) (5)

We can expedite this search process with approximate
nearest neighbours methods [26], which is omitted in current
research, yet worth future exploration. As we expect to apply

this algorithm to select samples from a large size of unlabelled
dataset, we assume that we can always find a pair of x̄r,q, ȳr,q
such that dist(Pr,q, x̄r,q) < δ for a negligibly small δ ≥ 0.
In the experiments using publicly available data, we observe
that the assumption holds quite well, and the policy converges
eventually.

We define the loss l of policy π at the current state sr,q as

l(sr,q, π) = dist(π(sr,q), x∗r,q) = dist(Pr,q, x
∗
r,q) (6)

The action we take in round r and step q (the sample-label
pair to be added to Csel) is:

Ar,q = I(coint,r = 0) ∗ {x∗r,q, y∗r,q}+ I(coint,r = 1) ∗ {x̄r,q, ȳr,q}
(7)

where I(A) is an indicator random variable that has value 1
if event A occurs and has value 0 otherwise; coin is a random
variable satisfying Bernoulli distribution:

coint,r =

{
0 : prob = wt,r

1 : prob = 1− wt,r
(8)

To fulfill the prerequsites of DAGGER algorithm [25],
{wt,r} is a converging sequence such that 1

TR

∑
t,r wt,r → 0

as T →∞; T is the number of simulations and R denotes the
number of rounds. For example, wt,r could be pt(0 < p < 1).

Figure 3 and Algorithm 1 summarize the simulation process
for training an active learning policy. The learned policy is then
transferred to select unlabelled samples for labelling on the
target dataset according to Algorithm 2, and eventually output
a trained base model; Table II puts together the definitions of
symbols throughout the paper for reference.

Fig. 3: Simulation step of NimbleLearn. In level 3 we update
batch; in level 2 we update labeled pool and policy network;
in level 1 we generate different data splits; in level 0 we output
the policy network.

C. Convergence Guarantee and Algorithm Complexity

Training Convergence Guarantee: During training, the pol-
icy π is used to select x̄, ȳ each round, which can be different
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Algorithm 1 Train Policy via Imitation Learning.
Input: source labeled data C, simulation episodes T, rounds
R, query size Q, random variable sequence coint,r
Output: the learned policy π

1: Initialize a random base model m
2: SI = {}
3: for t = 1:T do
4: Split C into Cunl, Cval randomly, Clab = {}
5: for r = 1:R do
6: Csel = {}
7: for q = 1:Q do
8: Get state s(Clab, Csel, Cunl,m)
9: Predict ideal sample P = π(s)

10: Closest x̄, ȳ = argmin{x,y}∈Cunldist(x, P )
11: Real ideal sample x∗, y∗ = argmax{x,y}∈Cunl

perf(m(Clab ∪ Csel ∪ {x, y}), Cval)

12: Choose {x∗, y∗},{x̄, ȳ}, as selected {xsel, ysel}
with coint,r

13: Csel.add({xsel, ysel})
14: SI.add({state, x∗})
15: Cunl.delete({xsel, ysel})
16: end for
17: Clab.add(Csel)
18: m.retrain(Clab)
19: π.retrain(SI)
20: end for
21: end for
22: return policy π

Algorithm 2 Transfer Policy in Active Learning.
Input: unlabeled target dataset Dunl, round R, query size Q,
policy π
Output: the learned base model m

1: Initialize a random base model m, empty labeled pool
Dlab = {}

2: for r = 1:R do
3: Selected pool Dsel = {}
4: for q = 1:Q do
5: Get state s(Dlab, Dsel, Dunl,m)
6: Predict ideal sample P = π(s)
7: Closest x̄ = argminx∈Dunldist(x, P )
8: Dsel.add(x̄)
9: Dunl.delete(x̄)

10: end for
11: Get label for the samples in Dsel from investigators
12: Dlab.add(Dsel)
13: m.retrain(Dlab)
14: end for
15: return base model m

TABLE II: Definitions of symbols.

Symbol Description
C,D Source dataset, target dataset.
Clab, Csel,
Cunl, Cval

Labeled/selected(batch)/unlabeled/validation source
sample pool.

Dlab, Dsel, Dunl Labeled/selected/unlabeled target sample pool.
n feature Number of features in a sample.
n percentile Number of percentiles in training states.
xi, yi A n feature× 1 sample and its label.
Pr,q The n feature×1 ideal sample predicted by policy

in round r, q.
T (t), R(r), Q(q) # of simulations (t-th simulation)/rounds of selection

(r-th round)/samples in a batch (q-th sample).
Ar,q The sample selected in round r, q.
x∗r,q , y

∗
r,q The real ideal sample that could improve base model

performance at most at round r, q.
x̄r,q , ȳr,q The sample in Dlab that is closest to the predicted

ideal sample Pr,q in round r, q.
m,π, s base model (classifier), policy (active learning agent),

training state (policy’s input).

from the ideal sample x∗r,q, y
∗
r,q selected by human expert. The

difference can be quantified by:

loss(sr,q, π) = dist(x̄r,q, x
∗
r,q)

≤dist(Pr,q, x̄r,q) + dist(Pr,q, x
∗
r,q)

<δ + l(sr,q, π)

(9)

Let dπ be the average distribution of states if we follow
policy π for Q steps (i.e, select Q samples in a batch), and
ε = Es∼dπ [loss(s, π)] be the expected surrogate loss during the
process. Then by equation 9, ε < δ+Es∼dπ [l(s, π)]. And ac-
cording to the Theorem 4.1 in [25], Es∼dπ [l(s, π)] asymptoti-
cally converges to 1

TR

∑
t,r Es∼dπt,r

[l(s, π∗)+l(s, πt,r)]+O( 1
TR

)

, where π∗ is the ideal policy in hindsight after TR iterations,
and πt,r denotes the learned policy after t-th simulation and r-
th round. This completes the convergence of the learned policy
π to ideal policy π∗ after sufficient simulations.
Training and Transferring Complexity: Due to the carefully
designed policy network, it avoids scaling with the enormous
size of unlabelled samples. The whole training process consists
of retraining policy network and base models for TR times,
and finding optimal actions for TRQ times. Likewise, during
the transferring process, it includes R times of retraining base
models and RQ times of calculating distance and predict-
ing actions. This is a significant reduction in runtime when
compared with single-point active learning and existing batch-
mode active learning approaches which involve

(|Dunl|
Q

)
-size

integer LP problems.

IV. EXPERIMENT

A. Experiment Setup

Tasks & Datasets. We evaluate NimbleLearn on 2 different
tasks (spam email recognition and hate speech classification)
with 4 public datasets outlined in Table III. For the spam
email recognition, NimbleLearn is trained on an imbalanced
dataset and tested on a balanced dataset. For the hate speech
classification, it is trained on a balanced dataset and tested on
an imbalanced dataset.
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TABLE III: Summary of benchmark datasets and budgets.

Task Source Dataset Target Dataset Total Budget
Spam
Email
Recog-
nition

Enron Dataset
[27]: 1500 spam
emails and 3672
non-spam emails.

Nigerian Dataset [28]:
5187 spam emails and
6742 non-spam emails.

Around 5% of
the target dataset,
i.e., select 10
rounds and each
round select 50
samples.

Hate
Speech
Classifi-
cation

English Hateeval
Dataset [29]:
4210 hateful
tweets and 5790
non-hateful
tweets.

Stormfront Dataset [30]:
932 hateful posts and
8527 non-hateful posts.
We select those which the
annotators does not ask
for additional context.

Around 10% of
the target dataset,
i.e., select 10
rounds and each
round select 100
samples.

Training & Testing Process. The specific training and testing
processes are detailed as follow:

1) An active learning policy π is trained on a source dataset
C (simulation step) and transferred onto a target dataset
D for testing (transfer step).

2) In each episode of the simulation step during the training
phase, 20% of the source dataset C is set as valida-
tion sample pool Cval, and the remaining 80% as the
unlabeled sample pool Cunl. We choose bi-directional
LSTM classifier [31] as the base model, and optimize
the model against Macro-F1 score. The individual word
vector input to the base model is embedded through
a 300-dimension pre-trained Glove word vectors [32].
To quantify the cosine similarity (equation 5) between
the predicted ideal sample and the candidate sample, we
embed textual input with Sentence-BERT [33].

3) We run T = 20 episodes per simulation,
and end up with collecting 20 × 10 × 50 =
10000 {states, ideal sample P} pairs of data
points in total to train the policy network.

4) In the transfer step, 20% of target dataset D is set as
test sample pool Dtest, and 80% as unlabeled sample
pool Dunl. After selecting and labelling each batch
of samples, we retrain the base model m with all the
labeled samples Dlab and evaluate the macro-F1 score
of base model m on Dtest. We repeat 10 times and
report the average performance of strategies and the
corresponding standard deviations in Table IV,V, VI.

Baselines. We compare NimbleLearn with other batch-mode
active learning algorithms, ranging from heuristic methods
(Random/Uncertainty/Diversity strategy) to methods that com-
bine representativeness and informativeness (SPAL/BMDR/K-
center). Their key concepts are summarized in the Appendix
A.

B. NimbleLearn Performance in Different Scenarios

The trained base model and learned policy can have multiple
options to be applied during the transfer step. Under three
different scenarios, we evaluate the Macro-F1 score of the base
model per round using learned NimbleLearn policy during the
transfer step. The details of scenarios are summarized below.
• Direct transfer: we train a base model m on source dataset
C and directly apply m to make prediction on target
dataset D.

TABLE IV: Average F1-scores and standard deviations of base
model on the test dataset Dtest under different scenarios of
NimbleLearn, with respect to the number of samples labeled.

Spam Email Recognition Hate Speech Classification
|Dlab| Direct Cold Warm |Dlab| Direct Cold Warm

0 0.249±0.008 0.323±0.006 0.249±0.008 0 0.444±0.010 0.260±0.006 0.444±0.010
50 0.905±0.014 0.803±0.051 100 0.492±0.025 0.505±0.008

100 0.918±0.031 0.877±0.027 200 0.529±0.015 0.527±0.014
150 0.933±0.010 0.895±0.016 300 0.525±0.027 0.519±0.011
200 0.933±0.022 0.907±0.016 400 0.536±0.018 0.529±0.010
250 0.934±0.032 0.917±0.018 500 0.534±0.011 0.527±0.015
300 0.938±0.027 0.928±0.011 600 0.532±0.012 0.535±0.015
350 0.944±0.023 0.929±0.018 700 0.533±0.011 0.536±0.012
400 0.946±0.020 0.941±0.013 800 0.536±0.016 0.531±0.018
450 0.950±0.015 0.945±0.012 900 0.539±0.012 0.533±0.013
500 0.958±0.010 0.954±0.008 1000 0.530±0.010 0.530±0.012

• Cold transfer: we train an active learning policy π on
source dataset C and apply π to learn a new base model
m on the target dataset D from scratch.

• Warm transfer: we train a base model m and an active
learning policy π on source dataset C, and we continue
improving m on the target dataset D by adding newly
selected samples from π.

Table IV summarizes the performance of NimbleLearn
under different scenarios as we gradually label one batch
of selected samples per round till the budget is met. Both
cold-NimbleLearn and warm-NimbleLearn outperform direct
transfer. In spam email recognition task, directly transferring
the base model m on target dataset D only reaches 0.249
F1-score, whereas cold-NimbleLearn and warm-NimbleLearn
reach over 0.9. Between the two NimbleLearn models,
cold-NimbleLearn reaches 0.9 with 50 samples, while
warm-NimbleLearn needs 200 samples to achieve comparable
performance. In hate speech classification task, cold transfer
base model has a lower starting score of 0.260, and
gradually outperforms warm transfer base model with a
score of 0.530. In both tasks, the cold-transfer base model
achieves better performance with fewer samples, indicating
transferring the knowledge of selecting samples is better than
transferring trained base models, especially when a significant
difference exists between the source dataset and target dataset.

C. NimbleLearn Performance VS Batch-mode Active Learning
Baselines

Table V and Table VI summarize the Macro-F1 scores
of the base model by applying NimbleLearn and various
baseline batch-mode active learning strategies under the
cold-start scenario for the spam email recognition and
hate speech classification tasks respectively. In spam email
recognition, NimbleLearn reaches 0.905 F1-score with 50
samples and 0.958 with 500 samples. Uncertainty and
Diversity strategies reach over 0.97 with 500 samples, but
need over 250 samples to reach 0.9. SPAL and K-Center
reach 0.85 with 50 samples but could not improve further
with more added samples. Random strategy initially has
a good F1-score using 50 samples but fails to keep pace
with the NimbleLearn trend. BMDR gets a score lower
than NimbleLearn when the number of selected samples is
less than 200. In hate speech classification, NimbleLearn
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TABLE V: The average F1-scores and standard deviations of
active learning strategies on the spam email recognition task
versus the number of labeled samples. BMDR sometimes fail
to solve its QP problem and could not generate a solution.

|Dlab| NimbleLearn Uncer
tainty Diversity Random BMDR SPAL K-Center

0 0.323±0.006 0.323±0.006 0.323±0.006 0.323±0.006 0.323 0.323±0.006 0.323±0.006
50 0.905±0.014 0.359±0.004 0.359±0.004 0.889±0.009 0.887 0.881±0.027 0.853±0.025
100 0.918±0.031 0.361±0.005 0.442±0.086 0.906±0.008 0.905 0.874±0.048 0.869±0.017
150 0.933±0.010 0.385±0.025 0.685±0.222 0.925±0.007 0.914 0.876±0.041 0.858±0.022
200 0.933±0.022 0.590±0.172 0.841±0.160 0.934±0.006 0.942 0.871±0.037 0.868±0.020
250 0.934±0.032 0.848±0.056 0.910±0.082 0.936±0.007 0.943 0.878±0.042 0.850±0.038
300 0.938±0.027 0.927±0.018 0.953±0.012 0.953±0.007 0.949 0.873±0.042 0.862±0.019
350 0.944±0.023 0.946±0.012 0.960±0.008 0.954±0.006 0.932 0.869±0.035 0.850±0.029
400 0.946±0.020 0.957±0.012 0.964±0.006 0.952±0.007 0.960 0.867±0.038 0.854±0.029
450 0.950±0.015 0.966±0.005 0.970±0.005 0.953±0.005 0.960 0.870±0.041 0.857±0.027
500 0.958±0.010 0.972±0.006 0.973±0.003 0.948±0.004 0.958 0.873±0.044 0.857±0.026

TABLE VI: The average F1-scores and standard deviations of
active learning strategies on the hate speech classification task
given the number of samples labeled. BMDR sometimes fail
to solve its QP problem and could not generate a solution.

|Dlab| NimbleLearn Uncer
tainty Diversity Random BMDR SPAL K-Center

0 0.260±0.006 0.260±0.006 0.260±0.006 0.260±0.006 0.260 0.260±0.006 0.260±0.006
100 0.492±0.025 0.475±0.002 0.475±0.002 0.480±0.014 0.475 0.485±0.025 0.475±0.002
200 0.529±0.015 0.477±0.005 0.483±0.015 0.513±0.027 0.511 0.510±0.017 0.491±0.028
300 0.525±0.027 0.496±0.024 0.495±0.017 0.526±0.025 0.513 0.507±0.017 0.494±0.030
400 0.536±0.018 0.499±0.022 0.486±0.010 0.513±0.017 0.515 0.513±0.021 0.487±0.027
500 0.534±0.011 0.498±0.015 0.490±0.010 0.518±0.021 0.510 0.509±0.021 0.490±0.026
600 0.532±0.012 0.511±0.016 0.489±0.013 0.507±0.023 0.511 0.517±0.019 0.486±0.023
700 0.533±0.011 0.498±0.014 0.488±0.011 0.510±0.019 0.513 0.516±0.023 0.489±0.030
800 0.536±0.016 0.502±0.012 0.493±0.014 0.527±0.025 0.509 0.505±0.018 0.487±0.026
900 0.539±0.012 0.507±0.009 0.488±0.012 0.516±0.013 0.516 0.505±0.021 0.483±0.019

1000 0.530±0.010 0.505±0.016 0.489±0.006 0.517±0.014 0.522 0.516±0.021 0.487±0.022

only requires 200 carefully selected samples to reach 0.53
(notably, the best macro-F1 score in the previous literature
on this highly imbalanced Stormfront dataset [34] is 0.49
with a bi-LSTM model using all samples). All the other
batch-model active learning baselines fluctuate around 0.5.
This encouraging result demonstrates that NimbleLearn can
adapt to imbalanced datasets, and assign proper weight in
selecting representing samples.

D. Runtime Analysis

In this subsection, we compare the runtime during transfer
step by applying NimbleLearn versus single-point active learn-
ing with uncertainty strategy and aforementioned batch-model
active learning baselines.

Assuming all active learning agents take unit and negligible
time selecting samples. This assumption holds true as long as
the main contributors to the runtime in practice are refreshing
the base model per round and manually labelling samples. We
assume model refresh takes ttrn, and it increases linearly with
input size, i.e. ttrn = ctrn ∗ |Dlab|, where ctrn is a positive
coefficient. The conclusion still holds if ttrn increases faster
than linear as single-point active learning needs more rounds
of selection. In the single-point active learning, the base model
is refreshed upon every newly added sample, whereas the base
model is refreshed upon every newly added batch under the
batch-model active learning setting. Manual labelling process
takes tlab per round and clab per sample respectively. This
equation holds tlab = |Dsel|/n inv ∗ clab between tlab and
clab, where n inv denotes manual capacity. The total runtime

ttot of the active learning process is found to satisfy (see
Appendix B):

ttot = (
R+ 1

2
ctrn +

clab
n inv

)|Dlab| (10)

Figure 4a plots the F1-score of single-point active learning
with uncertainty strategy applied on spam email recognition
task. It needs 169 rounds of selection to have the base model
achieve performance of 0.96, versus 10 rounds for Nimble-
Learn. It is worth noting that single-point active learning
achieves the result using 169 labelled samples, while 500
labelled samples for NimbleLearn. This difference in sample
size can be explained by the fact that single-point active
learning selects the most optimal sample each round, and often
will yield better performance using fewer labelled samples in
total. Plugging in the specific number into the ttot formula,
one can easily prove that NimbleLearn always outperforms
the single-point active learning in terms of runtime when
3 or more human investigators are available (see Appendix
B). Figure 4b depicts the runtime between NimbleLearn and
single-point active learning when n inv = 50, ctrn = 1
and clab = 100 for illustration purpose. NimbleLearn indeed
requires considerably less time than the single-point active
learning to achieve a same F1-score level.

Interestingly, in hate speech classification task, the single-
point active learning can never reach performance of 0.53 as
NimbleLearn does, see Figure 5a, 5b. In the spam email recog-
nition task, single-point active learning selects the optimal
sample each round, in many if not all cases it should yield
better performance than NimbleLearn. However, such greedy
process gets stuck in local optimization as the heuristic fails for
imbalanced target dataset. This finding indicates NimbleLearn
can better avoid local optimization for highly imbalanced
target dataset.

In addition, we compare the runtime of NimbleLearn with
other batch-mode active learning strategies. We set n inv =
50, ctrn = 1, clab = 100 for illustration purpose, and apply
equation 10. For the spam email recognition task, to reach a
reasonable F1-score of 0.9, NimbleLearn requires less runtime
in some ranges of F1-score compared to other algorithms,
see Figure 4c and further discussion below. For the hate
speech classification task, other batch-mode active learning
algorithms can not reach the same model performance as
NimbleLearn does, and NimbleLearn also achieves lowest
runtime consistently (see Figure 5c).

E. Robustness Analysis

Unlike many other batch-mode learning methods that re-
quire pre-defined parameters such as weights, “informative-
ness” or “diversity” scores, NimbleLearn only requires two
parameters: number of rounds R and batch size Q. The exact
values of R and Q assigned to the experiment have a small
influence on our conclusion, as shown by the robustness analy-
sis conducted on in spam email detection (Figure 6a). In spam
email detection, the ultimate performance of NimbleLearn is
relatively stable regarding the batch size Q and rounds of
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(a) Performance of single-point active learn-
ing on spam email recognition task.

(b) Single-point strategy and NimbleLearn’s
runtime against F1-score on spam email task.

(c) Batch-mode Algorithms’ runtime against
F1-score on the spam email recognition task.

Fig. 4: Performance and runtime of NimbleLearn and active learning algorithms on spam email recognition task.

(a) Performance of single-point active learning
on hate speech classification task.

(b) Single-point strategy and NimbleLearn’s
runtime against F1-score on hate speech task.

(c) Batch-mode Algorithms’ runtime against
F1-score on hate speech classification task.

Fig. 5: Performance and runtime of NimbleLearn and active learning algorithms on hate speech classification task.

selections R, and NimbleLearn still has good performance
even when we try to learn the pattern of large batches. The hate
speech detection task is more sensitive to batch size (Figure
6b). For instance, when Q = 20, 50, the performance can not
be stably improved along with the number of labeled samples,
which might be caused by the great imbalance of the target
dataset.

Similarly, we quantify NimbleLearn sensitivity regarding
the target dataset imbalance degree (the ratio of the number
of the negative samples to the number of positive samples). In
Figure 6c, we plot the final F1-score after using NimbleLearn
to select 100 samples per round for 10 rounds, against the
dataset imbalance degree. Overall, NimbleLearn is not sensi-
tive to the degree of dataset imbalance.

V. DISCUSSION

In the transferring process, NimbleLearn in general requires
fewer manually labeled samples to reach a reasonably good
performance than other batch-mode active learning algorithms,
resulting in a runtime reduction. When manual labelling bud-
get and runtime are tightly constrained, NimbleLearn is the
best strategy among all the tested batch-mode alternatives;
For instance, when the allocated runtime threshold is 2000
(Figure 4c). However, when runtime threshold is relaxed to

larger than 2000 (i.e. label more samples), diversity strategy
can yield better F1-score.

NimbleLearn performs far better than other batch-mode
active learning algorithms on highly imbalanced datasets.
Unsurprisingly, NimbleLearn is designed to learn an agent
that can improve the desired metric of the base model based
on the target metric directly, whereas alternative batch-mode
active learning algorithms select samples based on heuristics or
assumptions, which can not optimize the target metric directly
for imbalanced dataset. In spam email recognition, where
the target dataset is balanced, batch-mode active learning
algorithms can achieve similar performance as NimbleLearn
does. However, NimbleLearn easily outperforms baselines in
the imbalanced hate speech detection task.

VI. CONCLUSION

In this paper, we propose NimbleLearn, a parameter-free
batch-mode active learning algorithm, to select a subset of
unlabelled samples efficiently when the sample size is huge.
It resolves the scalability and speed issues in existing SOTA
approaches. NimbleLearn trains a policy network to predict
the “ideal sample” greedily, and this ideal sample is added to
the selected batch to maximize the performance of any base
model in use. Through experiments conducted on two different
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(a) F1-score of NimbleLearn on spam email
recognition task given different rounds of se-
lection (R) and batch size (Q).

(b) F1-score of NimbleLearn on hate speech
classification task given different rounds of
selection (R) and batch size (Q).

(c) Final F1-score of NimbleLearn on both
tasks given different imbalance degrees of the
target datasets.

Fig. 6: Robust test of NimbleLearn on both tasks.

tasks, NimbleLearn can yield a better base model performance
with fewer rounds of selection, and result in an enhancement
in overall runtime.
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D. Mladenić, and J. Shawe-Taylor, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 31–46.

[23] M. Liu, W. Buntine, and G. Haffari, “Learning how to actively
learn: A deep imitation learning approach,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association for
Computational Linguistics, Jul. 2018, pp. 1874–1883. [Online].
Available: https://www.aclweb.org/anthology/P18-1174

[24] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A
survey of learning methods,” ACM Computing Surveys (CSUR), vol. 50,
no. 2, pp. 1–35, 2017.

[25] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[26] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” in VISAPP (1), 2009, pp. 331–340.

[27] B. Klimt and Y. Yang, “Introducing the enron corpus.” in CEAS, 2004.
[Online]. Available: https://www.cs.cmu.edu/ enron/

[28] D. Radev, “Clair collection of fraud email, acl data and
code repository,” ADCR2008T001, 2008. [Online]. Available:
https://www.kaggle.com/llabhishekll/fraud-email-dataset

[29] V. Basile, C. Bosco, E. Fersini, D. Nozza, V. Patti, F. M.
Rangel Pardo, P. Rosso, and M. Sanguinetti, “SemEval-2019 task 5:

358

Authorized licensed use limited to: University of Minnesota. Downloaded on March 08,2022 at 19:26:44 UTC from IEEE Xplore.  Restrictions apply. 



Multilingual detection of hate speech against immigrants and women
in Twitter,” in Proceedings of the 13th International Workshop on
Semantic Evaluation. Minneapolis, Minnesota, USA: Association for
Computational Linguistics, Jun. 2019, pp. 54–63. [Online]. Available:
https://github.com/msang/hateval

[30] O. de Gibert, N. Perez, A. Garcı́a-Pablos, and M. Cuadros, “Hate Speech
Dataset from a White Supremacy Forum,” in Proceedings of the 2nd
Workshop on Abusive Language Online (ALW2). Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 11–20.
[Online]. Available: https://github.com/Vicomtech/hate-speech-dataset

[31] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[32] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[33] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” 2019.

[34] H. S. Alatawi, A. M. Alhothali, and K. M. Moria, “Detecting white
supremacist hate speech using domain specific word embedding with
deep learning and bert,” arXiv preprint arXiv:2010.00357, 2020.

[35] Y.-P. Tang, G.-X. Li, and S.-J. Huang, “ALiPy: Active
learning in python,” Nanjing University of Aeronautics
and Astronautics, Tech. Rep., Jan. 2019, available as
arXiv preprint https://arxiv.org/abs/1901.03802. [Online]. Available:
https://github.com/NUAA-AL/ALiPy

[36] O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” arXiv preprint arXiv:1708.00489, 2017.

APPENDIX A
BATCH-MODE ACTIVE LEARNING BASELINES

• Random strategy: selecting Q samples from the unlabeled
pool Dunl randomly with equal probability in each round.

• Uncertainty strategy: selecting top Q samples where the
base model has the “least confident score” in each round.
The “least confident score” of sample x is defined as:

least confident score(x) = 1−max(m.predict(x)) (11)

where the prediction results of m is a probability vector
of each class.

• Diversity strategy [7]: selecting the sample with the
highest “combination score”, which is a weighted sum
of least confident score and diversity score with preset
parameters:

combination score(x) = α ∗ diversity score(x,Dsel)

+ (1− α) ∗ least confident score(x)
(12)

We set α = 0.5 for the experiment. The diversity score is
measured by the candidate sample’s distance to the batch
of samples already selected in the current round Dsel:

diversity score(x,Dsel) = min
x′∈Dsel

(1− cosine sim(x′, x))

(13)
• SPAL [5]: selecting a batch of informative, representative

and easy examples by a self-paced approach. It tries to
train the base model with the least cost by “querying the
right thing at the right time”.

• BMDR [6]: selecting a batch of informative and repre-
sentative examples by minimizing the ERM risk bound of
active learning. This method involves solving a quadratic
programming problem multiple times at one query, and
is time-consuming for large datasets [35].

• K-Center [36]: a batch-mode active learning strategy that
selects the center samples to minimize the largest distance
between each sample and its nearest center.

APPENDIX B
COST ANALYSIS

The total time spent in round r is

tr = ttrnr + tlabr

= ctrn ∗ r ∗ |Dsel|+ clab ∗ |Dsel|/n inv
(14)

The total spent from round 1 to round r is:

ttotr =

r∑
i=1

ti =

r∑
i=1

(ctrn ∗ i ∗ |Dsel|+ clab ∗ |Dsel|/n inv)

= (
r + 1

2
ctrn +

clab
n inv

)r|Dsel|
(15)

The total time of the active learning process (r = R) is:

ttot = (
R+ 1

2
ctrn +

clab
n inv

)|Dlab| (16)

We estimate how much time NimbleLearn spends compared
to single-point active learning when they reach the same
performance F1-score = 0.96 (see Figure 4a). NimbleLearn
uses 10 rounds. The time NimbleLearn spent to reach 0.96
is:

tNimbleLearn = (
11

2
ctrn +

clab
n inv

) ∗ 500 (17)

single-point active learning uses 169 rounds. The time single-
point active learning spent to reach 0.96 is:

tsingle−point = (
170

2
ctrn + clab) ∗ 169 (18)

The difference between tsingle−point and tNimbleLearn is:

tsingle−point − tNimbleLearn = 11615 ∗ ctrn − (
500

n inv
− 169) ∗ clab

= clab(11615
ctrn
clab
− 500

n inv
+ 169)

(19)

First we could notice that when n inv >= 3,
tsingle−point− tNimbleLearn is always > 0 because − 500

n inv +
169 > 0. It means that when we have 3 or more human
investigators, to save runtime, we should always choose Nim-
bleLearn.

When n inv = 2 (we only have 2 human investigators who
could work in parallel), that means − 500

n inv + 169 = −81, we
should still select NimbleLearn when ctrn

clab
> 81

11615 .
When n inv = 1 (we only have 1 human investigators and

could not work in parallel), that means − 500
n inv +169 = −331,

we should still select NimbleLearn when ctrn
clab

> 331
11615 .
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