Parameter-Efficient Low-Resource Dialogue State Tracking by Prompt Tuning

Mingyu Derek Ma\(^1\), Jiun-Yu Kao\(^2\), Shuyang Gao\(^8\), Arpit Gupta\(^2\), Di Jin\(^2\), Tagyoung Chung\(^2\), Nanyun Peng\(^1,2\)

\(^1\)University of California, Los Angeles \quad \(^2\)Amazon Alexa AI

\{ma, violetpeng\}@cs.ucla.edu,
\{jiunyk, guparpit, djinamzn, tagyoung\}@amazon.com, shuyangg@gmail.com

Abstract

Dialogue state tracking (DST) is an important step in dialogue management to keep track of users’ beliefs. Existing works fine-tune all language model (LM) parameters to tackle the DST task, which requires significant data and computing resources for training and hosting. The cost grows exponentially in the real-world deployment where dozens of fine-tuned LM are used for different domains and tasks. To reduce parameter size and better utilize cross-task shared information, we propose to use soft prompt token embeddings to learn task properties. Without tuning LM parameters, our method drastically reduces the number of parameters needed to less than 0.5% of prior works while achieving better low-resource DST performance.

Index Terms: dialogue state tracking, prompt tuning

1. Introduction

Dialogue state tracking (DST) that extracts structured conversation progress in a list of slot-value pairs from unstructured dialogue utterances is an essential component of a dialogue system [1]. Unlike classification-based models that pick the slot value from given candidate [2, 3], recent works formulate DST as a conditional generation task [4, 5], where the concatenation of dialogue history and a slot-specific prompt are fed to generative models and the text generation output are decoded to predicted slot values [6, 7]. This formulation enjoys the benefit of generalizability to unseen domains and slot types beyond a defined dialogue ontology [8, 9].

General prompting methods use a textual prompt to provide task information to the LM [10, 11]. Prior works have variations that update different parameter combinations such as both LM and prompt token embeddings [12, 13, 14, 15], only the token embeddings of the LM [16], or only the prompt token embeddings [17, 18, 19].

While there are some existing prompt-based approaches for DST with different designs of prompts such as using slot name [20, 21, 22, 23], slot description [24], slot type [25], possible values [25], priming examples [26] and/or slot-specific question [4, 27, 28, 29, 8, 30] in prompt sentences, they all fine-tune the entire LM along with the prompt tokens for a new domain, which requires a significant amount of training time, system resources, and annotated data [31, 32]. The computing and data resource-hungry issues are more severe in the real-world deployment where LMs tuned for different domains and tasks need to be trained and hosted, and a typical dialogue system has to serve dozens of such LMs [33, 34, 35]. This leads to a high cost of the development and service of dialogue systems and constrains offline deployment. In addition, limited data is available for a new domain or task.

We propose a parameter-efficient and data-efficient DST model for low-resource settings, which only needs to update 0.08% of parameters compared with the previous best model, by keeping LM parameters frozen and introducing soft prompt tokens to represent task properties of different slots. Figure 1 gives an overview of our model. The only prior work we are aware of that only updates prompt token embeddings and thus parameter-efficient is [36], but it focuses on continual domain adaptation and with a significant amount of training data.

Our design introduces three techniques that are generalizable to other generative-based information extraction models. 1) **Task-specific parameters**: task prompt tokens are introduced to specifically learn domain, slot and slot type information so that the model behaves according to the task; word-mapping prompt tokens enable us to obtain task knowledge contained in natural language instruction and optimize human-created prompts with continuous embedding space. 2) **Task metadata in objective**: we introduce the reiteration technique in the target sequence in order to include explicit task signals in the text generation objective. 3) **Distinguishing segments**: segment embeddings help the model identify the prompt segment, dialogue speakers, and question partition. Our proposed method enables much more efficient dialogue system deployment as only one LM needs to be hosted and inference for different domains could be realized by feeding domain-specific prompt token embeddings into the transformer stack.

Experiments on MultiWOZ 2.0 show that our method achieves better performance on low-resource DST with orders of magnitude fewer parameters. We further conduct ablation studies, error analysis, and examine the semantic information shown in the prompt tokens. We observe that our model is more specialized in predicting categorical slot values, is more conservative for slots with free output space and introduces more hallucination errors for categorical slots.

2. Method

We introduce task definition (Section 2.1), overall framework (Section 2.2) and soft prompt designs (Section 2.3).

2.1. Task definition

The goal is to construct a belief state with \(|S|\) pairs of slot and value at a certain turn in a multi-turn conversation. All the turns up to the query turn are dialogue history, and slot-specific information (i.e. name, description, value candidates, question and type of the slot) is provided. There are 5 slot types, i.e. CATEGORICAL, DAY, NUMBER, OPEN and TIME. Questions are from [28], slot descriptions are from MultiWOZ 2.2 dataset [37], and...
value candidates are from dialogue ontology.

2.2. Generative seq2seq framework

We use a decoder-only pre-trained language model (PLM) GPT-2 [38] as the backbone to provide language and commonsense knowledge, rather than an encoder-decoder model because of its superior performance [8]. To get a belief state at a certain turn, we create \(|S| \) data instances to predict the slot value for each slot. Figure 1 demonstrates the design and a sample query.

Input sequence. We construct the input sequence by concatenating the following segments: 1) Task prompt tokens for domain, slot and type, each has \(k \) prompt tokens and they are shared among instances with the same domain, slot or type; 2) Prefix, a short sentence containing slot description, names of domain, slot, and type, and all possible candidates if the query slot is categorical; 3) Dialogue history, in which \([sys]\) and \([usr]\) tokens are used to indicate the speaker; and 4) Question, human-written question about the slot.

Target sequence and reiteration. We introduce the reiteration technique in the target sequence as shown in Figure 1 and generate task information before the answer phrase. We include the verbalized slot information as a “domain is domain name, slot is slot name, type is type name” phrase in the expected output sequence. By doing so, we require the model to optimize to remember the task information explicitly before generating the answer phrase, while using a consistent text generation cross-entropy loss. This technique allows the model to optimize upon both the answer and the sentence containing slot metadata, and explicitly learn the task information.

Segment embeddings. The input sequence contains segments with diverse formats and they are quite different from the format used in the pre-training phase of the LM. We divide the input sequence into segments, including five prompt segments, the system turns, the user turns and the answer segment. Tokens within a specific segment are assigned the same segment ID, and each segment ID maps to a unique segment embedding. Segment embeddings, which have the same length as the input sequence, are added with sequence embeddings and positional embeddings. We randomly initialize the embeddings of segment IDs and update them during training.

Training and inference. We pass the combined embeddings to the decoder stack to calculate the likelihood over the vocabulary. We use the cross-entropy loss with a regularization term to constrain the scale of prompt token embeddings following \(L = CE + \lambda |PE^r - PE|_2^2 \) where \(\lambda \) is a weighting factor, and \(PE^r \) and \(PE \) are updated and initialized prompt token embeddings [39]. Parameters of the PLM are frozen, and only prompt and segment embeddings are updated with Adam optimizer. During inference, we generate the output autoregressively with greedy decoding, and extract the answer with a rule-based function. For example, we extract predicted slot value “cheap” from free-form generation output “answer is cheap”.

2.3. Soft prompt tokens

Prompt segments. We use two kinds of prompt tokens. **Task prompt tokens** are chosen according to the task’s metadata, and used in the domain, slot and type prompt segments. **Word-mapping prompt tokens** are mapped from existing tokens in the prefix and question parts and used to replace normal tokens. In other words, task and word-mapping prompt tokens are shared across instances with the same task and instances using the same words respectively. We concatenate embeddings of each prompt segment (obtained by separate embedding matrices) with dialogue history embeddings (obtained by the frozen token embedding matrix) to form sequence embeddings.

Prompt initialization. To boost the performance in the low-resource setting, we use the pre-trained token embeddings to initialize the soft prompt token embeddings. The token embeddings from PLM are used to represent word semantics for language understanding, while the soft prompt tokens are used to represent task information initialized by task-related semantic meanings. We initialize a task prompt token by embedding of a randomly chosen token from its domain, slot or slot type name. Word-mapping prompt tokens are initialized with the embedding of the mapped word.

3. Experimental setup

Settings. We experiment on dialogues of five domains (i.e. attraction, hotel, restaurant, train, taxi) in MultiWOZ 2.0 [40] using the single-domain low-resource few-shot DST task. We take 5, 10, 20, 1%, 5% and 10% of training conversations of a particular domain to train, and evaluate on the full test set of the domain.

Evaluation metrics. Joint Goal Accuracy (JGA) represents the proportion of turns with all slots predicted correctly, and Slot Accuracy (SA) reflects the proportion of correct slots. If a slot is empty at a certain turn (for example, no related information is mentioned), the model needs to predict “none”. A slot value is only correct if it matches exactly with the ground-truth value.

Implementation details. We use different prompt embeddings and learning rate schedules for the parameters of each prompt segment, meaning even if the same token appears in the prefix and question segments during initialization, it maps to different prompt embeddings for a larger optimization space. We
use GPT-2 medium with 1024 hidden states as our backbone model with a maximum output length of 20. We choose the best epoch by monitoring the JGA of the development set. We report the averaged result for three runs with different random seeds for each experiment. All the models are trained on a single NVIDIA A6000 GPU on a Ubuntu 20.04.2 OS. The implementations of the transformer-based models are extended from the Huggingface codebase [41]. We use a 1e-3 learning rate.

Baseline models. We compare with the following works.1) TRADE [42]: GRU-based model with copy mechanism; 2) DSTQA [27]: QA-style model using ELMo representation; 3) TSDST [25]: T5-based generative model with slot type as prompt; 4) Lee et al. (2021) [22]: T5-based generative model with slot description and possible slot values as prompt; 5) Li et al. (2021) [8]: GPT-2 based QA-style generative model with manually created questions. The entire language model is updated for TSDST, Lee et al. and Li et al., and they represent the performance of prompt-based DST works. For Li et al., we use GPT-2 medium as the backbone PLM and do not use DSTC8 for transfer learning as it would introduce additional data resources and make the comparison not fair. For TSDST and Lee et al., we use the T5-small PLM with 60M parameters.

4. Experimental results

4.1. Overall results

We show the overall few-shot experimental results in Table 1. Although our model uses only 0.08% and 0.45% of parameters compared with baselines, it still achieves higher JGA than all baseline models when using 1% or less training data across all domains. Especially we observe around 5, and 9 points JGA increases for the attraction and hotel domains compared with existing best models with 1% training data. In the attraction domain with 3 unique slots, our model trained using 5 dialogues performs on par with the previous best model using 20 dialogues. Our model shows its superiority especially when the amount of unique tasks is small. Using 5% and 10% data, our model performs comparably with existing best models with small gaps. Our model outperforms the frozen LM version of the baseline with even larger gaps as shown in Table 2.

Table 1: Overall performance. We report Joint Goal Accuracy (JGA, %), which is higher the better. We report the numbers from the paper (†), reproduction using author’s codebase (‡), or our re-implementation (§). 271K is the average parameter count across domains. Detailed parameter counts are shown in Appendix A.1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Attr.</th>
<th>Hotel</th>
<th>Restaurant</th>
<th>Taxi</th>
<th>Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADE</td>
<td>52.19</td>
<td>58.64</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DSTQA</td>
<td>51.56</td>
<td>61.77</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TSDST</td>
<td>8.19</td>
<td>13.46</td>
<td>19.14</td>
<td>18.63</td>
<td>38.76</td>
</tr>
<tr>
<td>Lee et al. [22]</td>
<td>6.33</td>
<td>19.12</td>
<td>34.53</td>
<td>37.56</td>
<td>54.34</td>
</tr>
<tr>
<td>Li et al. [8]</td>
<td>7.90</td>
<td>27.09</td>
<td>35.63</td>
<td>42.18</td>
<td>49.13</td>
</tr>
<tr>
<td>Average</td>
<td>33.56</td>
<td>39.41</td>
<td>45.75</td>
<td>47.28</td>
<td>56.99</td>
</tr>
</tbody>
</table>

1We are not comparing with prompt-based DST works that jointly train with other tasks for a fair comparison.

4.2. Further analysis

We investigate the relationship between performance and the number of unique candidate answers (ontology size) using 1% target domain training data and Figure 3 demonstrates the result with trendlines created by expanding average algorithm for each model. We also show the performance of two generative baseline models for comparison. We observe that the

Table 2: Comparison with the frozen LM variation of the baseline using 1% training data for each domain (JGA, %).

<table>
<thead>
<tr>
<th>Model</th>
<th>Attr.</th>
<th>Hotel</th>
<th>Rest.</th>
<th>Taxi</th>
<th>Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours 271K</td>
<td>51.11</td>
<td>59.63</td>
<td>60.89</td>
<td>60.33</td>
<td>61.63</td>
</tr>
<tr>
<td>Li et al. [8] (frozen LM)</td>
<td>29.16</td>
<td>14.81</td>
<td>15.14</td>
<td>47.56</td>
<td>35.77</td>
</tr>
<tr>
<td>Li et al. [8]</td>
<td>42.18</td>
<td>24.04</td>
<td>30.70</td>
<td>58.26</td>
<td>45.32</td>
</tr>
<tr>
<td>Ours</td>
<td>47.28</td>
<td>33.01</td>
<td>34.40</td>
<td>45.41</td>
<td>55.44</td>
</tr>
</tbody>
</table>

Figure 2: Slot accuracy across slot types using 1% training data, each dot represents a unique slot.

We observe the worst performance in OPEN slots, which could be explained by the larger output candidate space. Breaking down slot type to more fine-grained type leads to a better result (considering DAY as a separate type rather than CATEGORICAL type, NUMBER and TIME as separate types rather than OPEN type). Compared with baselines, our model performs comparably on open and time slots, but is more superior for CATEGORICAL, NUMBER and DAY slots.

We investigate the relationship between performance and the number of unique candidate answers (ontology size) using 1% target domain training data and Figure 3 demonstrates the result with trendlines created by expanding average algorithm for each model. We also show the performance of two generative baseline models for comparison. We observe that the
performance of all three models drops when the ontology size grows. For most ontology sizes, our model outperforms Li et al. [8] and T5DST [25].

![Figure 3: Performance for slots with different ontology sizes](image)

4.2. Ablation study.

In Table 3, removing the slot segment (Line 2) leads to the largest performance drop among the three task prompt segments (L1-3), as slot is the most fine-grained task categorization. Prefix (L5) is more important than the question prompt (L4), which contains more metadata and parameters. The model without segment embedding (L6) has on average 7.8 points JGA drop, indicating the effectiveness of the segment embedding.

We further examine the effectiveness of the reiteration technique in Table 4. We observe a significant JGA drop without reiteration (11 points JGA drop for 10 training dialogues) especially when we have fewer training dialogues, which shows the effectiveness of the reiteration.

Table 4: Ablation study for the reiteration technique (JGA, %).

We propose a parameter-efficient DST model using prompt tuning, and it represents tasks with soft prompt tokens with segment awareness and reiteration. Our model achieves state-of-the-art low-resource DST performance with less than 0.5% parameters compared with fine-tuning LM. We plan to further investigate the effects of prompt tuning on domain adaptation and prompt aggregation.

5. Conclusion and future work

We then investigate semantic information contained in the learned prompt tokens by selecting the most changed prompt tokens and producing the closest tokens with the smallest cosine similarity between the learned prompt token embedding and frozen token embeddings of the PLM. We show the result for the attraction domain in Table 5. The closest tokens are mostly variations or semantically similar tokens of the expected meanings of prompt tokens.

Table 5: Closest tokens for the most changed prompt tokens in five prompt segments for the attraction domain.

6. Acknowledgements

Many thanks to Sidi Lu, Tanmay Parekh, and Sarik Ghazarian for internal reviews, to members at Amazon Alexa AI, PLUS lab and UCLA-NLP for suggestions, and to the anonymous reviewers for their feedback.

A. Appendix

A.1. Detailed Parameter Count

Table 6: The number of prompt tokens and parameters needed.

B. References

