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ABSTRACT

Machine learning (ML) is increasingly used to automate deci-
sion making in various domains. Almost all common ML models
are susceptible to data errors in the serving data (for which the
model makes predictions). Such errors frequently occur in prac-
tice, caused for example by program bugs in data preprocessing
code or non-anticipated schema changes in external data sources.
These errors can have devastating effects on the prediction qual-
ity of ML models and are, at the same time, hard to anticipate
and capture.

In order to empower data scientists to study the impact as well
as mitigation techniques for data errors in ML models, we pro-
pose Jenga, a light-weight, open source experimentation library.
Jenga allows its users to test their models for robustness against
common data errors. Jenga contains an abstraction for prediction
tasks based on a dataset and a model, an easily extendable set of
synthethic data corruptions (e.g., for missing values, outliers, ty-
pos and noisy measurements) as well as evaluation functionality
to experiment with different data corruptions.

Jenga supports researchers and practitioners in the difficult
task of data validation for ML applications. As a showcase for
this, we discuss two use cases of Jenga: studying the robustness
of a model against incomplete data, as well as automatically
stress testing integrity constraints for ML data expressed with
tensorflow data validation.

1 INTRODUCTION

Many companies and organisations apply machine learning (ML)
is to assist and automate decision making in various domains. Yet
the application of ML in production settings often faces a number
of pitfalls. Almost all common ML models are susceptible to data
errors in the serving data (for which the model makes predictions).
Such errors frequently occur in practice, caused for example by
program bugs in data preprocessing code or non-anticipated
schema changes in external data sources. These errors can have
devastating effects on the prediction quality of ML models [19]
and are, at the same time, hard to anticipate and capture. While
many aspects of the impact of data changes on ML models are
studied in the ML literature [2, 10, 14], it can be difficult to relate
this research to the errors occurring in practical ML applications,
as these approaches all require distributional assumptions about
the change.

Data errors in production machine learning. Frequently, the
errors in production deployments do not originate from changes
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in the data generating real-world processes, but from program-
ming errors in the data pipelines constructing the serving data [6]
or from errors during data integration from different sources [9,
30]. Often, such errors only become apparent once models are
deployed in complex production use cases [22].

We have come across several real world instances of such
data errors. In one case, a linear model had been trained on de-
mographic data (including a person’s age), and the age value
had been missing for some records for which the model should
supply predictions. A software engineer (without knowledge of
the model intricacies) then wrote preprocessing code to replace
all missing age values with zeroes, the default value for initial-
ising integers in many programming languages. This led to a
unwanted misbehavior of the model, which effectively treated all
these records as “toddlers”. In another case, we learned about an
ML model where the pipelines for training and serving data were
running in different cloud environments. As a result, the code
bases for data preparation on the training and serving side acci-
dentally diverged, which introduced hard-to-detect data errors.
Such errors can have devastating impact, as all guarantees about
the reliability of the predictions of the ML model may be lost,
which can lead to monetary losses (e.g., if buying decisions are
made based on the predictions of a forecasting model) and bad
user experiences (e.g., if users are presented with non-sensical
recommendations in an online shop).

Evaluating the robustness of models against common data
errors. These examples show the need for testing the robustness
of ML models to data errors before they are deployed to produc-
tion. Recent research focuses on detecting and handling such
data errors, e.g., by proposing unit tests and integrity constraints
for ML data [6, 24], ML-based missing value imputation [3] and
validating the predictions of black box models [26]. In our experi-
ence, it is difficult to provide broadly valid empirical evaluations
of these approaches, and to generate synthetically corrupted data
that represents the scenarios that we encounter in the real world.

To address this need, we design the Jenga library, which en-
ables data scientists to study the robustness of their models
against errors commonly observed in production scenarios. Based
on the findings from experimenting with Jenga, users can take
appropriate measures to protect their deployed models against
impactful data errors, e.g., with custom integrity constraints im-
plemented via tensorflow data validation [6]. In summary, this
paper provides the following contributions.

e We introduce the motivation and design of our open source
framework Jenga to study the impact of data errors on ML
models (Section 2).

e We describe how to implement custom prediction tasks and
synthetic data corruptions in Jenga (Section 3).

o We discuss two use cases for Jenga: studying the robustness of a
model against incomplete data, and automatically stress testing
integrity constraints for ML data expressed with tensorflow
data validation (Section 4).



Jenga is available at https://github.com/schelterlabs/jenga.

2 FRAMEWORK DESIGN

We introduce the design of Jenga. The goal of Jenga is to enable
data scientists to evaluate the impact of data errors on their
models, and to evaluate techniques that make these models more
robust. We design Jenga around three core abstractions: (i) tasks
contain a raw dataset, an ML model, and represent a prediction
task; (i) data corruptions take raw input data and randomly apply
certain data errors to them (e.g., missing values); (iii) evaluators
take a task and data corruptions, and execute the evaluation by
repeatedly corrupting the test data of the task, and recording the
predictive performance of the model on the corrupted test data.

We provide three sample tasks (Section 2.1), several data cor-
ruptions (Section 2.2) and two different evaluators (Section 2.3)
as part of the framework.

2.1 Example Tasks

We provide three exemplary prediction tasks in Jenga. Note that
users can define and implement their own custom tasks with
low effort (see Section 3 for details). We choose simple binary
classification tasks for product review classification (predicting
whether the review of a video game was deemed helpful), income
estimation (predicting whether a person earns more than $50,000
per year based on demographic data) and image recognition
(distinguishing sneakers from ankle boots), which resemble real
world use cases, and leverage publicly available datasets and
widely used ML models.

Our examples focus on relatively small-scale problems, which
do not require costly infrastructure (e.g., the models can be
trained in a couple of minutes on a multicore CPU), in order
to allow users to rapidly experiment and play with our frame-
work. These tasks are meant as examples to enable users to test
our data corruptions and evaluators, and serve as a template for
our users to integrate Jenga with their own custom prediction
tasks.

2.2 Data Corruptions

In the following, we describe the types of data corruptions avail-
able in Jenga. Each error type requires the specification of a
column c to be affected by the error as well as the fraction of
rows r € [0, 1] that should be affected.

Choosing rows to be affected by errors. Whether or not a
row is affected by a corruption is often the result of bugs in
external data sources or complex preprocessing pipelines. In
order to account for realistic corruption patterns, we support
three different ways to model the subset of rows affected by a
corruption as follows. A row x in which to corrupt the value x.
if column c¢ is chosen in one of three ways:

o Independent of other values (corrupted rows are sampled com-
pletely at random).

e Dependent on values in columns other than ¢ (corrupted rows
are sampled at random).

e Dependent on values in column ¢ (corrupted rows are sampled
not at random).

This modelling is inspired by literature on missing value im-
putation, where three types of missingness are commonly dis-
tinguished [15]. All synthetic data corruptions in Jenga can be
applied with each of the three corruption patterns.

Missing values. Missing values are amongst the most common
data errors in practice. Missing values can have devastating
effects on training and prediction, depending on how a data
pipeline deals with missing values before feeding the data to a
downstream ML model. An important factor for the impact of
missing values are the missingness patterns: missing completely
at random (MCAR), missing at random (MAR) and missing not
at random (MNAR), which correspond to the three corruption
patterns described in the previous paragraph

Swapped values. We replace a specified ratio of values in one
column with values in another column. This corruption mimics
users mixing up entries in input forms [9] or programming errors
in data preparation code, where a programmer accidentally swaps
target columns to write to.

Scaling. We randomly scale a subset of the values by 10, 100
or 1000. This perturbation mimics cases where the scale of an
attribute is accidentally changed in preprocessing code (e.g., be-
cause a developer accidentally changes the code to record dura-
tions in milliseconds instead of seconds).

Noise. We corrupt a fraction of a column’s values by adding
gaussian noise centered at the data point with a standard devia-
tion randomly selected from the interval of 2 to 5. This corruption
is intended to mimic measurement errors.

Encoding errors. This corruption replaces certain characters in
string attributes (e.g., a with &), and is meant to simulate encoding
errors, e.g., for data retrieved from web pages which indicate a
false encoding.

Image corruptions. Dealing with corrupted training images is
a well studied problem in computer vision [4] for which a lot
of tooling exists already. We therefore integrate existing image
corruptions from the augmentor! library into jenga.

2.3 Evaluators

Finally, Jenga provides so-called evaluators, which measure the
impact of data corruptions on the model’s predictive performance.
Jenga currently features two evaluators: The CorruptionImpact
Evaluator takes a provided task, a trained model and a manually
specified list of corruptions. It applies each data corruption to
the held-out test set of the task and computes the predictive
performance of the model in light of the data corruption. We show
how to use this evaluator with a few lines of code in Section 3.1,
and discuss a detailed example of measuring the impact of missing
values on a task in Section 4.1.

The second evaluator allows users to additionally integrate a
data validation schema into the evaluation. In many cases, it is
not possible to make an ML model completely robust against data
errors [26]. A common approach to prevent feeding corrupted
data to deployed ML models is to run data validation checks
on the serving data on which the model is applied. Popular li-
braries for this task are tensorflow data validation (TFDV)? [6]
or Deequ® [25]. They allow users to define a schema and con-
straints for the serving data (e.g., that a given attribute must
not contain missing values), and efficiently execute this check
before passing the data to an ML model. Jenga contains a custom
SchemaStresstestEvaluator for feature data validation with a
TFDV schema. This evaluator works analogous to the previous
one, but additionally records whether the check of a provided
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data validation schema would have correctly detected the neg-
ative impact of the data corruption. We provide an extensive
example for this evaluator in Section 4.2.

3 USAGE AND CUSTOMISATION

We implement Jenga based on several popular open source ML
frameworks in python. We leverage pandas for data wrangling,
and numpy for numerical computations. We implement feature
extraction and preprocessing via scikit-learn’s pipeline abstrac-
tion, and also use classical ML models from this library. We rely
on keras and tensorflow for defining and training neural networks.

In the following, we first give an example of how to use Jenga
to evaluate the impact of data corruptions (Section 3.1), and
subsequently discuss how to implement custom tasks and data
corruptions in Jenga’s API in Section 3.2.

3.1 Evaluating the Impact of Data Errors

The core use case of jenga is to evaluate the impact of certain
data corruptions on a prediction task. This can be implemented
with a few lines of code: We have to instantiate the task and data
corruptions that we want to evaluate, and can execute the eval-
uation with Jenga’s CorruptionImpactEvaluator. This allows
us to measure the impact of a predefined list of data corruptions
on the predictive performance of a model.

# Create the prediction task
task = IncomeEstimationTask ()
# Train a baseline model
model = task.fit_model(task.train_data,
task.train_labels)
# Specify the data corruption to test
corruption = MissingValues(column="age',
missingness='mcar', fraction=0.05)
# Create the evaluator
evaluator = CorruptionImpactEvaluator (task)
# Run the evaluation with 10 repetitions
result = evaluator.evaluate(model,
num_repetitions=10, corruption)
# Impact on predictive performance
print(f""" Score on
clean data: {result.baseline_score}
corrupted data: {result.corrupted_scores} """)

Here, we setup a task, train the corresponding model and define
the corruption that we are interested in. We provide these to
the evaluator together with the specification of the number of
repetitions to execute for each corruption. The evaluator repeat-
edly corrupts the (copied) test data of the task, computes the
prediction quality of the model on the corrupted data and finally
provides a result object with the corresponding scores for each
corruption to investigate. Note that we could also have specified
more than one data corruption to evaluate.

3.2 Custom Tasks and Data Corruptions

We design Jenga with the goal to make it easy for data scientists
to wrap their existing code as a prediction task, which allows
them to reuse our data corruptions and evaluators. In addition, we
also make it easy to design custom data corruptions. Therefore,
we next describe how to implement the two basic building blocks
of Jenga, a Task and a DataCorruption.

Implementing a custom task. Jenga allows data scientists to
implement custom tasks with low effort. We provide an abstract
base class ClassificationTask with two methods that users
must implement. In the constructor, users have to load the input
data for the task. Next, they have to implement the fit_model
method, which trains the accompanying prediction model for

the task from training data provided in a pandas dataframe. The
model produced by this must support scikit-learns predictor APL
Finally, the score_on_test_data must be implemented, which
computes the desired metric for the task (e.g., ROC AUC) from
the predicted label probabilities of the model.

Implementing a custom data corruption. At the core of Jenga
are data corruptions, whose impact on the predictive performance
of a model we want to investigate. Data corruptions transform
a dataframe into another dataframe with potentially corrupted
values. We provide an abstract base class, TabularCorruption,
that users can extend by providing only a single method, called
transform. In the following listing, we implement a data corrup-
tion that mimics a case where duration that needs be expressed
in seconds is accidentally recorded in milliseconds (e.g., scaled
by a factor of 1000) in a fraction for the rows.

class MillisInsteadOfSeconds(TabularCorruption):

def transform(self, data):

# Operate on a copy of the data

corrupted_data = data.copy(deep=True)

# Pick a random fraction of the rows based on

# the desired corruption pattern

rows = super().sample_rows(corrupted_data)

# Multiply the column values of the chosen rows
corrupted_data.loc[rows, self.column] *= 1000
return corrupted_data

We first conduct a deep copy of the input data, which we will
corrupt later on. Then, we randomly pick the indexes of the rows
that we want to corrupt by invoking the sample_rows method of
the parent class (which supports the corruption patterns outlined
in Section 2.2). Finally, we multiply the values of affected rows by
1000 to mimic milliseconds. Note that tasks and data corruptions
implemented with our API can be readily used in the existing
evaluators from Jenga, as outlined in Section 3.1.

4 EXAMPLE USE CASES

We discuss two examplary use cases of our framework that re-
semble real world problems which we encountered in production
ML applications. Note that we provide implementations (in the
form of Jupyter notebooks) for all these use cases in our github
repository at https://github.com/schelterlabs/jenga.

4.1 Measuring the Robustness of a Model
against Incomplete Data

Overview. In our first experiment, we showcase how to study
the impact of missing values on the predictions of a model. This
targets a common usage scenario, where data scientists, who
have a trained model in production (or ready for production),
want to study its robustness towards incomplete data with Jenga.
They want to reach a conclusion on how well the model itself (in
combination with different missing value imputation methods)
can mitigate the impact of missing values in the serving data. In-
complete data is a very common issue in real world deployments,
where data is often missing as a result of programming errors,
data integration issues or unanticipated schema changes in an
external data source.

Setup. We experiment with a logistic regression model for our
income estimation task from Section 2.1. The goal of this task is to
predict from demographic data whether an individual has a high
income. We train a model on clean training data, and evaluate
its predictive performance (in terms of ROC AUC) on test data
with synthetically injected missing values. We focus on four
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Figure 1: Evaluation of the robustness of a model for the income estimation task against incomplete data. We plot the AUC
score achieved with different missing value imputation strategies (placeholder, mode and datawig) against the fraction of
injected missing values. The impact differs by attribute and there is no clear dominating imputation strategy, indicating
that it is difficult to make the model fully robust against this type of data error.

categorical attributes in the data: education, marital_status,
workclass, and occupation, and inject missing values into 1%,
10%, 50% and 99% of randomly chosen values of a given attribute.

We repeat this process for all three kinds of missing values
(“missing completely at random” (MCAR), “missing at random”
(MAR), “missing not at random” (MNAR)) as discussed in Sec-
tion 2.2. We repeat each individual configuration ten times, and
report the performance on corrupted test data (in comparison
to the performance on clean data), where we differentiate be-
tween three different ways to make the model handle the missing
values:

o First, we replace missing values with a constant placeholder
symbol.

o Secondly, we replace missing values with the mode (the most
frequent value in the column) via scikit-learn’s SimpleImputer

o Thirdly, we train a dedicated ML model to impute missing val-
ues based on the structure present in the complete records [3].
We leverage the datawig library*, which automatically fea-
turises tabular data and trains a neural network to predict the
missing values.

Results. The experimental results are shown in Figure 1. We
find that the impact of the missing values is highly dependent on
the attribute we target. There is nearly no impact for workclass,
a very minor impact for occupation for less than 50% missing
values, a much stronger impact for education, and we encounter
the highest impact for missing values in marital_status. We
additionally see that the impact is in some cases different for
different types of missing values, e.g., values “missing not at
random” in the marital_status attribute seem to be easier to
handle than the other types of missingness.

“https://github.com/awslabs/datawig

In summary, we find no clear dominating strategy for handling
the missing values in this particular task. Having the model deal
with the missing values via a placeholder symbol is simple and
works well in many cases. However, there are some setups where
leveraging a dedicated missing value imputation strategy helps,
e.g., datawig for a high fraction of missing values in education
or for occupation. We conclude that the model itself cannot
handle missing values reliably in all cases, even in combination
with imputation. Thus, the data scientists need to put checks in
place to safeguard the serving data on which the model is applied.

4.2 Stresstesting Integrity Constraints
for ML data

Overview. Our next experiment shows how to put safeguards
in place for an ML model. This experiment applies a schema and
constraints for ML data, and executes a stresstest for them, as
discussed in Section 2.3. We leverage the product review classifi-
cation task discussed in Section 2.1, where the goal is to predict
whether uses found the review of a videogame helpful or not.

We train a model for this task and, additionally, create a schema
with integrity constraints for the test data in TFDV. Next, we
run Jenga’s SchemaStresstest which generates random data
corruptions for the test data, and determines whether our schema
catches these errors, and what the impact of these on the pre-
diction quality of the model (in terms of ROC AUC) would have
been.

The connection to real world use cases is as follows: We have
found that it is difficult for data scientists to come up with an ap-
propriate schema and constraints for their data, and we therefore
develop our stresstest to uncover errors which are not caught
by the current schema. As a consequence, data scientists can
iteratively improve their integrity constraints until they pass
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the stresstest. A similar (non-ML specific) functionality to sug-
gest constraints for the data is included in our data validation
libary Deequ [24].

from jenga.tasks.reviews import VideogameReviewsTask
from jenga.evaluation.schema import SchemaStresstest
import tensorflow_data_validation as tfdv
# Setup task
task = VideogameReviewsTask()
# Create a schema to test
train_data_stats =
tfdv.generate_statistics_from_df (task.train_data)
# Auto-infer schema from training data
schema = tfdv.infer_schema(statistics=train_data_stats)
# Manually adjust schema
review_date_feature =
tfdv.get_feature(schema, 'review_date')
review_date_feature.distribution_constraints
.min_domain_mass = 0.0
# Define model to include in stress test
model = task.fit(task.train_data, task.train_labels)
# Run stress test with 250 randomly generated
# data corruptions
stress_test = SchemaStresstest()
results = stress_test.run(task, model, schema,
num_corruptions=250, performance_threshold=.03)

Setup. The code above shows the setup of the experiment. We
generate a schema for the feature data of the task, with a semi-
automatic approach, where we first have TFDV automatically
infer a schema for the data (via tfdv.infer_schema).

The schema correctly identifies the data types and categori-
cal domains of most of the attributes of the data. It is too strict
however, as it does not account for the fact that all the values in
the review_date column will change for future data. We manu-
ally adjust the schema for this attribute by setting the minimum
domain mass that must be shared between the values found at
schema inference time and the future values to zero, allowing
new values to appear in the column. The following listing shows
an excerpt of the schema and constraints for the data, containing
type information, completeness requirements and domain values
for the data attributes.

feature {
name: "star_rating", type: INT,
presence { min_fraction: 1.0 } }

feature {

name: "verified_purchase", type: BYTES,

domain: "vp_domain", presence { min_fraction: 1.0 } }
feature {

name: "review_date", type: BYTES, domain: "rd_domain"

presence { min_fraction: 1.0 },
distribution_constraints { min_domain_mass: 0.0 } }
string_domain {

name: "vp_domain", value: "N", value: "Y" }

We evaluate the schema with a stress test which applies 250
randomly generated data corruptions to the serving data of the
model (with the corruption pattern “completely at random”) and
measures their impact on the prediction quality.

Results. The model achieves an AUC of 0.78828 on clean data,
and we consider all predictions on corrupted data with more
than 3% decrease in prediction performance as failures. Jenga
categorizes the results as following:

o True positives, where TFDV reports a schema violation and
the prediction quality on the corrupt test data drops below the
threshold.

e True negatives, where TFDV reports no schema violation and
the prediction quality on the corrupt test data is within the
threshold.

o False positives, where TFDV reports a schema violation, but the
prediction quality on the corrupt test data does not drop below
the threshold. Note that it might still make sense to capture
and investigate these data errors, as they can be indicators of
problems in preprocessing code or external data sources.

e False negatives, where TFDV reports does not report a schema
violation, but the prediction quality on the corrupt test data
does drop below the threshold. These are the most important
findings from a stress test as they indicate data errors to which
the model would be vulnerable in production. It is imperative
to adjust the schema to catch these errors.

In the following, we list several findings from our stress test
example in Table 1 and discuss them.

True positives. Out of the 250 corruptions, we find 88 true posi-
tives. For example, we find that the model crashes for missing
values in the numeric star_rating column, and that the pre-
diction quality drops more than 3% for gaussian noise in this
column and for a large number of swapped values between the
verified_purchase and title column. Note that all of these
errors are correctly detected by TFDV.

error type columny(s) frac  comment
True positives

missing values star_rating .25 crash
swapped values review_body, vine .75 unseen values

swapped values  verified_purchase, 45 unseen values
title

missing values vine .53 incompleteness

gaussian noise star_rating .25 type (int to float)

True negatives

encoding vine 72 no changes

encoding review_id .83 column not used

swapped values review_id, .17 columns not used
product_parent

missing values product_id .27 column not used

False positives

missing values vine 93 unseen values

gaussian noise star_rating .16 type (int to float)

swapped values  product_id, .35 unseen values
marketplace

encoding marketplace 72 unseen values

False negatives

scaling star_rating .92 range check missing

encoding title_and_review .76 no encoding checks

missing values title_and_review .80 no length checks

swapped values title_and_review, .75 no length checks

review_headline

Table 1: Results found by the schema stress test for detect-
ing impactful data errors on the product review task.

True negatives. We additionally find 75 true negatives, which
mostly include cases where a textual column is being corrupted
which is ignored by TFDV, but also not used by the model, whose
prediction quality is therefore not affected by the corruption.

False positives. We encounter 39 false positives. For example,
we see that even a high number of missing values in the vine
column do not strongly affect the prediction quality, as well as
a low number of noisy values in the star_rating column or
encoding errors in the marketplace column, which is not used
by the model.



False negatives. The most important results from the stress test
are false negatives, e.g., data corruptions that are not detected
by our TFDV schema, but strongly affect the prediction quality
of the model. In a real world use case, we need to extend our
schema to catch all these errors. We see that scaling values in
the star_rating column strongly affects the prediction qual-
ity. This is an indicator that we should add a range check for
this column to our schema. Furthermore, all kinds of errors in
the title_and_review column negatively affect the prediction
quality. This is a textual column for which TFDV does not gen-
erate constraints automatically. Checks for both the length and
encoding of the values in that column are required to capture the
outlined errors.

We argue that it should become a best practice to execute
such stresstests for data errors before putting ML models into
production, and we think that such testing capabilities should be
integrated into common ML deployment pipelines.

5 RELATED WORK

Addressing the challenges in productionizing ML models is a field
with growing interest in recent years [3, 19, 22, 28? ]. Several
solutions were proposed for validating ML models and their
predictions. Most of them originate from a statistical ML or a data
management perspective. Approaches from the ML community
are based on distributional assumptions about the data shift, such
as label shift [20], and covariate shift [2]. These assumptions
often seem inapt to describe practically relevant data changes
for engineers, such as the errors described above. Moreover, the
proposed methods often limit themselves to adapting a particular
model or learning paradigm.

There exist several approaches from the data management
community to validate the input data of ML pipelines. For exam-
ple, Google’s TFX platform [6] offers validation for input data
via a feature schema, and Deequ [24] enables unit tests for data,
but both of them do not quantify the potential impact of errors
on the model predictions. On a related note, there is a growing
body of work on model monitoring [26], model diagnosis [8] and
model unit testing for neural networks [17].

6 LEARNINGS & CONCLUSION

During our work on real world ML deployments, we have repeat-
edly come across scenarios where data errors heavily impacted
deployed models and applications.

Missing values in data can in some cases propagate through
various connected pipelines (e.g., through data lakes where var-
ious teams push and pull data) until a customer facing model
crashes, and it is very tedious to trace these errors back to the
original data source which introduced the missing values. In
internationalised applications, which operate on text in non-
western languages, it is common to encounter encoding issues
which are often introduced by a wrongly configured intermediate
data store and are again very hard to pinpoint and fix. Another
common source of errors is calendar-related data, where dates
and durations are often incorrect, e.g., due to country-specific
movable holidays. Furthermore, often ML models are trained by
specialised teams, and then handed over to business teams. In
such cases, we often experienced that the data provided to the
ML experts had not been sampled in a representative way by the
business team, introducing a bias that results in degraded model
performance.

These experiences have motivated the development of Jenga,
which enables data scientists to evaluate the performance of ML
models under data errors. Jenga builds on existing ML libraries,
and allows practitioners and researchers to quickly build ML test-
ing suites for their models with a broad range of data errors that
we observed over several years of maintaining ML applications.
We think that is is necessary to establish a set of best practices
for testing ML models, analogously to established best practices
like unit testing and integration test in software engineering. The
goal of Jenga is to collect a broad library of data corruptions that
occur in the real world, and use these to automate the testing of
ML models, ideally with an integration into upcoming systems
for continuous integration for ML [? ].

In the future, we aim to extend Jenga to extend more diverse
tasks (e.g., regression problems or ranking problems). We will
continue to work on Jenga as part of our recently proposed vi-
sion for automated ML model monitoring with respect to data
quality [? ]. We hope that Jenga can contribute to future research
on data governance for end-to-end management platforms for
ML.
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