
A Vocabulary-Free Multilingual Neural Tokenizer
for End-to-End Task Learning

MdMofijul Islam†∗, Gustavo Aguilar‡, Pragaash Ponnusamy‡
Clint Solomon Mathialagan‡, Chengyuan Ma‡, Chenlei Guo‡

University of Virginia †, Amazon.com ‡

mi8uu@virginia.edu, {gustalas, ponnup, matclint, mchengyu, guochenl}@amazon.com

Abstract

Subword tokenization is a commonly used input
pre-processing step in most recent NLP models.
However, it limits the models’ ability to leverage
end-to-end task learning. Its frequency-based
vocabulary creation compromises tokenization
in low-resource languages, leading models to
produce suboptimal representations. Addition-
ally, the dependency on a fixed vocabulary lim-
its the subword models’ adaptability across lan-
guages and domains. In this work, we pro-
pose a vocabulary-free neural tokenizer by dis-
tilling segmentation information from heuristic-
based subword tokenization. We pre-train our
character-based tokenizer by processing unique
words from multilingual corpus, thereby ex-
tensively increasing word diversity across lan-
guages. Unlike the predefined and fixed vocab-
ularies in subword methods, our tokenizer al-
lows end-to-end task learning, resulting in opti-
mal task-specific tokenization. The experimen-
tal results show that replacing the subword tok-
enizer with our neural tokenizer consistently im-
proves performance on multilingual (NLI) and
code-switching (sentiment analysis) tasks, with
larger gains in low-resource languages. Addi-
tionally, our neural tokenizer exhibits a robust
performance on downstream tasks when adver-
sarial noise is present (typos and misspelling),
further increasing the initial improvements over
statistical subword tokenizers.

1 Introduction

Subword tokenization methods, such as BPE (Sen-
nrich et al., 2016), Word-Piece (wor), and Uni-
gram (Kudo, 2018), rely on a predefined vocabu-
lary to tokenize text. This vocabulary is built based
on frequencies of word fragments. As a result,
rare words are highly fragmented into many sub-
pieces, whereas the integrity of the most frequent
words is substantially preserved (Bostrom and Dur-
rett, 2020). This vocabulary bias is magnified in

∗Work performed as summer intern at Amazon Alexa AI.

Table 1: Segmentation of Workshop in different languages.
Subword tokenizers over-segment low-resources languages
(Arabic and Thai) and create junk tokens, whereas our neural
tokenizer reduces the junk tokens.

Tokenizers Word Languages
Arabic Thai English

BPE عمل / شة ور/ การ/ประชุม/เชิง/ปฏิบัติ/การ workshop

Unigram /عمل ة / ورش การประชุม/เชิง/ปฏิบัติการ work/shop

Word-piece عمل / شة / ور การ/ประช/ุม/เช/ิง/ปฏิ/บัต/ิการ workshop

Neural /عمل ورشة การประชุมเชิงปฏิบัติการ workshop

multilingual settings, where low-resource languages
are heavily discriminated in favor of high-resource
ones (Tay et al., 2021; Chung et al., 2020; Wang
et al., 2021) (see Table 1). Additionally, a sub-
word vocabulary is often defined while processing
a (large) pre-training corpus, thereafter remaining
fixed. Consequently, when the data samples are
drawn from a different distribution (e.g., multilin-
gual text vs. linguistic code-switching, formal writ-
ing vs. arbitrary spellings, or simply by adversarial
manipulation), the subword tokenizers struggle to
adapt and poorly segment the input, in some cases
defaulting to character pieces. These issues usu-
ally get reflected in downstream tasks when using
pre-trained models that rely on subword tokeniza-
tion (Devlin et al., 2019). The models cannot adapt
their predefined static vocabulary, thereby employ-
ing suboptimal tokenization for downstream tasks
(Clark et al., 2021). We argue that this represents
an important bottleneck in the NLP pipeline, where
models could become truly end-to-end, but they lag
behind due to the only unlearned component.
To address the aforementioned issues, we design

a vocabulary-free neural tokenizer, which we train
in two phases. First, in the pre-training phase, we
train our neural tokenizer by distilling the segmen-
tation information from a subword tokenizer. In
the multilingual setting, our neural tokenizer learns
from the language-specific subword tokenizers so
that it is not biased towards high-resource languages.



After the pre-training phase, the neural tokenizer
segments the character sequence without requiring
a predefined vocabulary. In the second phase, we
employ an end-to-end learning approach, which al-
lows our neural tokenizer to adapt the tokenization
behavior to the downstream task. Such an end-to-
end approach is not feasible for models with sub-
word tokenizers due to the predefined vocabulary
and their strong ties to the models’ embedding layer.
Additionally, unlike the subword tokenizers, our
neural tokenizer does not require a vocabulary, and
its versatile alphabet reduces the bias towards high-
resource languages (i.e., there is not unbalanced
word coverage favoring specific languages).
We compare the impact of our approach with

respect to the subword tokenizers in downstream
monolingual, multilingual, and code-switching
tasks. For multilingual NLI, the results show that
our neural tokenizer generally improves the model
performance, with substantially larger gains for low-
resource languages (+11 absolute points of accu-
racy for Thai, +8 for Arabic, and +4 for Swahili).
For code-switched Spanish-English sentiment anal-
ysis, our neural tokenizer also outperforms the base-
line tokenizers, demonstrating better language gen-
eralization capabilities. We inspect the robustness
of our neural tokenizer in the presence of noisy
text through adversarial manipulation (e.g., typos
and spelling variations), and we find that the tok-
enization result is much more resilient to generate
junk tokens (i.e., excessive fragmentation of sub-
word pieces) than the subword tokenizers. Finally,
we provide extensive experimental analysis that con-
sistently suggest to adopt our approach for more ro-
bust and versatile representations of text.

2 Related Work
2.1 Subword Tokenization
Several subword tokenization approaches have been
proposed to segment the input text in the NLP
pipeline, such as BPE (Sennrich et al., 2016), Word-
Piece (wor), Unigram (Kudo, 2018), and Senten-
cePiece (Kudo and Richardson, 2018). These to-
kenizers use a frequency-based approach to deter-
mine the vocabulary from a corpus. Although these
subword tokenization approaches improve upon pre-
vious rule-based methods, recent studies show that
subword tokenization leads the model to produce
suboptimal representations (Bostrom and Durrett,
2020; Wang et al., 2021; Chung et al., 2020; Kudo,
2018). For instance, Bostrom and Durrett (2020)

evaluate the impact of Byte Pair Encoding (BPE) to-
kenization on language model pretraining, and the
results suggest that BPE leads to suboptimal repre-
sentations. Due to the data imbalance among the
languages, the impact of multilingual tokenization
on the representations is profound (Tay et al., 2021;
Wang et al., 2021)—i.e., the tokenizers are prone to
excessive fragmentation of subwords due to the lack
of word coverage leading to meaningless tokens.
To reduce the undermining effects of subword

tokenization, several approaches have been pro-
posed. For example, Kudo (2018) introduced a
subword regularization approach to probabilistically
sample multiple segmentations to improve neural
machine translation models. Along this line, Wang
et al. (2021) shows that multilingual representations
can be improved by utilizing multiple input seg-
mentations. Although these approaches improve
the model’s representations by using multiple sub-
word segmentation, they ultimately rely on heuristic-
based subword tokenization with a fixed vocabulary.
Thus, the limitations of the heuristic-based tok-
enization still persist, such as restricting the model’s
ability to leverage end-to-end task learning while
adapting to an optimal downstream tokenization.

2.2 Character-level Models

Although subword tokenization alleviates the out-
of-vocabulary problem, it relies on a static vo-
cabulary, which prevents end-to-end learning. A
natural alternative to that deficiency is to replace
the subword tokenization with a character-level ap-
proach and learn the representations directly from
the character sequence (Graves, 2013; Sutskever
et al., 2011; Radford et al., 2017). These character-
based approaches can adapt more easily to noisy
text, code-switched languages, and adversarial ma-
nipulation to extract the representation (Clark et al.,
2021; Tay et al., 2021; Hwang and Sung, 2017; Pin-
ter et al., 2019; Akbik et al., 2018; Xie et al., 2018;
Aguilar et al., 2020b). However, the character-
based approaches may not capture the token-level
representation, which degrades downstream task
performance. Moreover, these method have to pro-
cess longer sequences at the character level, thus in-
creasing quadratically the complexity of the mod-
els (Clark et al., 2021; Aguilar et al., 2020b; Costa-
jussà and Fonollosa, 2016).
Several approaches have been proposed to down-

sample the character sequence to sub-token se-
quence (Tay et al., 2021; Clark et al., 2021). For



example, Clark et al. (2021) deterministically com-
bined a fixed number of characters’ representations
to reduce the model complexity. Along this line,
Tay et al. (2021) downsample the sequence of
character vectors by a fixed factor to produce la-
tent subwords representations. Furthermore, Zhang
et al. (2019) produce character n-grams, which are
hashed and summed to produce word embedding
for downstream task. Since these approaches de-
terministically reduce the sequence length in the
downsampling operation, they may not capture the
morphological information, potentially struggling to
learn representations on noisy text.

3 Method
We propose a learnable tokenizer that is trained
to convert sequence of characters into meaningful
subword-level tokens. Consider the multilingual al-
phabetΨ (i.e., a closed set of letters) and the charac-
ter sequence c = [c1, . . . , cn] that represents a word
of length n and ci ∈ Ψ. We aim at learning the cor-
responding IOB1 sequence of tags t = [t1, . . . , tn]
that groups characters into the desired tokenization:

pθ(t | c, ℓ) = fθ(c, ℓ) (1)

Here ℓ denotes the language of the word. Themodel
fθ can be any neural architecture that allows a one-
to-one mapping from the input to the output.2 We
condition the model on ℓ in the multilingual setting,
while the monolingual variant does not require it.
A trained neural tokenizer, fθ, is capable of pro-

viding tokenization as a stand-alone tool, which can
be compared directly to the standard subword tok-
enizers (e.g., controlling by the task-specific model
in a downstream setting). Additionally, a trained
neural tokenizer can expose the internal represen-
tations of a segmentation so that it enables end-to-
end task learning by optimizing the tokenization to-
wards the task particularities. We describe both sce-
narios in more detail in the following subsections.

3.1 Pre-training
We rely on the assumption that statistical subword
tokenizers learn reasonable tokenization until they
start over-segmenting the text due to the target vo-
cabulary size and the infrequent subword occur-
rences. To stick to a data-driven approach (hence,

1Each character is encoded as the beginning (B), inside (I),
or outside (O) character of a word

2We stick to the LSTM architecture for all our experiments
since this simplifies iterations over pre-training and fine-tuning.

avoiding language specific heuristics), we choose
a subword tokenizer, i.e. Unigram (Kudo, 2018),
to generate our ground-truth segmentation while
also discarding over fragmented sequences. For
example, if the subword tokenizer segments tricy-
cles as tri/cycle/s, then the ground-truth label is
BIIBIIIIB. We train our neural tokenizer using
the negative log-likelihood objective over the sub-
word tokenizer segments:

L = −
∑
i

ti log pθ(ti | c, ℓ) (2)

Neural Tokenizer not only mimics the more
prominent (and insightful) patterns from the sub-
word tokenizer, but it also generalizes such behav-
iors to unseen words.

Pre-training Dataset: We generate a pre-
training corpus by curating space-separated tokens
from the Wikipedia articles (e.g., removing hy-
perlinks, HTML tags, and tokens whose length is
beyond 30 characters). Additionally, we use two
heuristics to improve the ground-truth label from
the subword tokenizer. First, if the input sequence
is less than four, we do not segment into subwords.
Second, if the subword tokenizer creates more
than 50% subwords with a single character, we
discard the ground-truth label and do not tokenize.
These heuristics discard the junk tokenization of
the subword tokenizer, especially on the input from
low-resource languages and noisy text.

3.2 End-to-End Task Learning
While the pre-training provides a stand-alone neu-
ral tokenizer tool, we can also leverage the model’s
hidden representations for end-to-end task learning.
Recall that the neural tokenizer provides a tagging
sequence for the segmented tokens based on its in-
ternal character-level vectors. Such tags can be used
to group and reduce the dimensionality of the in-
ternal representations (e.g., via max-pooling). Our
neural tokenizer is based on the LSTM architecture,
so we use the LSTM output vectors and max-pool
them according to the tokenization tags (although
this approach is invariant to LSTM).

[h1, . . . , hn] = LSTM([c1, . . . , cn]) (3)
ri = maxpool([hi, . . . , hj ])

where the interval [i, j] denotes the characters of a
single subword (i.e., a IOB segment), hi ∈ R1×d

and ri ∈ R1×d are vectors of dimensionality d. We



Figure 1: The neural tokenizer architecture and its two settings: (a) Pre-training and (b) Fine-tuning. (a) In the pre-training
setting, the model is trained to segment the sequence of characters by outputting the correct IOB tags according to the statistical
subword tokenizer. (b) In the fine-tuning setting, the model uses the trained segmentation layer to predict the tags and max-pool
the corresponding vectors (e.g., tri/cycle/s). These vectors are passed directly to the task-specific model, bypassing the need for
vocabulary and embedding layers. In the backpropagation step of the fine-tuning setting, all the parameters in the shadow boxes
are updated (i.e., the alphabet embedding, LSTM, and the task-specific parameters).

use the resulting vectors r as the subword repre-
sentations, which we can feed to any task-specific
model on a downstream scenario. Note that we ef-
fectively bypass the need of a vocabulary, while also
enabling the task-specific model to adjust the pre-
trained tokenization parameters towards the task do-
main in an end-to-end manner.

3.3 Neural Tokenizer Variants
The neural tokenizer model can be used to segment
the input for a task model in a general-purpose set-
ting, such as a task with monolingual input (i.e., ℓ is
constant). However, we need to slightly change the
neural tokenizer model for multilingual and mixed-
lingual (code-switched) settings to improve the tok-
enization and internal representations. We describe
two variants of our neural tokenizer: multilingual
and mixed-lingual neural tokenizers.

Multilingual Neural Tokenizer: Multilingual
subword tokenizers are designed to segment the text
with an fixed multilingual vocabulary, irrespective
of the input language. While this may be practical,
it has severe effects on the tokenization behavior,
disregarding dissimilar linguistic properties across
languages (e.g., morphology). Thus, if a language
identifier ℓ is available with the input, the neural
tokenizer can condition the tokenization on ℓ. We
achieve such behavior by simply including the iden-
tifier ℓ at the beginning of the sequence, which ex-
tends the alphabet Ψ with the same number of lan-
guages ℓ we are including in the pre-training data.
Additionally, since multilingual subword tokeniz-

ers cannot tokenize low-resource languages appro-
priately due to the dominance of the high-resource
languages in their vocabulary, we use monolingual

subword tokenizers to generate the ground-truth
segmentation labels for pre-training. Using mono-
lingual subword tokenizers helps our neural tok-
enizer avoid bias towards any languages, especially
the high-resource languages. Thus, we distill the
tokenization knowledge from the multiple monolin-
gual subword tokenizers into our neural tokenizer.

Mixed-Lingual Neural Tokenizer: In mixed-
lingual settings, such as in code-switching, we may
not have access to the language identifiers ℓ of the
input words or sentences. Thus, we need to train
a neural tokenizer to segment text with mixed lan-
guages without relying on language identifiers of the
input tokens. To do so, we change the pre-training
dataset to train the neural tokenizer with and with-
out language tags, hence forcing our model to gener-
alize when the language tags are provided as well as
when they are missing. We replicate the dataset for
training the model with and without language tags.

4 Experimental Setup

4.1 Neural Tokenizer Model

We design our neural tokenizer character encoder
with a character embedding layer followed by two-
layers Bidirectional LSTM (Bi-LSTM) with a hid-
den feature dimension of 64. The embedding layer
project each character to the 64 sized embedding.
We have used a fully connected network with the
feature dimension 128 × 2 followed by a softmax
layer to predict the character-level segmentation la-
bel. The predicted labels represent whether a char-
acter is the beginning or part of a subword.



4.2 Pre-training Neural Tokenizer
In the pre-training phase of the monolingual neu-
ral tokenizer, we have developed a monolingual
Unigram subword tokenizer with a vocabulary size
of 30, 000 to generate the ground-truth segmenta-
tion labels. To train multilingual and mixed-lingual
(code-switched) neural tokenizers, we have devel-
oped monolingual Unigram tokenizers with a vocab-
ulary of 30, 000 for each language. We fixed the vo-
cabulary size by following monolingual vocabulary
size of BERT (Devlin et al., 2019).
We have utilized Adam optimizer with weight

decay regularization and cosine annealing warm
restarts with an initial learning rate set to 3e−4 to
train the neural tokenizer. In the cosine annealing
warm restarts learning scheduler, we set the cycle
length (T0) and cycle multiplier (Tmult) to 3 and
2, respectively. We have trained the models for 6
epochs and selected the best model based on the
minimum validation loss.

4.3 Baseline Tokenizers
We have developed subword tokenizers, such as
BPE, Unigram, andWord-Piece, for the experimen-
tal evaluations. We developed two versions of these
subword tokenizers: monolingual and multilingual.
Following state-of-the-art model with subword tok-
enizer (Devlin et al., 2019), we have fixed the vocab-
ulary size of monolingual and multilingual tokeniz-
ers to 30000 and 120000, respectively. We have
used the Wikipedia dataset to develop the vocabu-
lary of these tokenizers.

4.4 Downstream Task Model
We have evaluated the impact of our neural and
heuristic-based subword tokenizers on the two
downstream tasks: natural language inference (NLI)
in monolingual and multilingual settings and senti-
ment analysis with code-switched languages. For
the baselines models with subword tokenization, the
segmented subwords are projected to create feature
embeddings of size 256. For the model with our
neural tokenizer, we max-pool the character embed-
dings to create the subword-level representations of
size 128. We project these pooled representations
to the embeddings of size 256 to match the sub-
word representations’ dimension of the baseline to-
kenizers. We have used a two-layers Bidirectional
LSTM with the hidden feature embeddings of size
256 for extracting the task representations. In the
experimental evaluations, we have used the same

task model architecture with the subword tokenizer
and our neural tokenizer. All the models are trained
from scratch for fair experimental evaluations.

5 Experimental Results and Discussion

We have evaluated the impact of our neural and sub-
word tokenizers on multilingual and monolingual
natural language inference (NLI) tasks and on a sen-
timent analysis task with code-switched language.
We also evaluated the impact of tokenizers in the
presence of noisy data (typos and misspelling).

5.1 Evaluations on Multilingual NLI Tasks
We have conducted the experimental analysis to
evaluate the impact of neural and baseline tokeniz-
ers on multilingual NLI tasks with five languages:
Arabic (ar), English (en), Russian (ru), Swahili (sw),
and Thai (th). We have used XNLI dataset (Con-
neau et al., 2018) for this experimentation. We have
developed three multilingual tokenizers (BPE, Un-
igram, and Word-piece) with a vocabulary size of
120, 000. Moreover, we have developed another
baseline, called Character-based Model, which seg-
ments input based on space without using any vo-
cabulary and pools character embedding to create
word-level representations. These representations
are used for downstream task. Finally, we have used
the same downstream learning architecture (De-
scribed in Section 4.4) with all the above-mentioned
tokenizers and multilingual neural tokenizers.
Results and Discussion: The experimental re-

sults in Table 2 suggest that the neural tokenizer out-
performs the evaluated baseline tokenizers across
all languages for the NLI task. Especially, neural
tokenizer achieves substantially larger gains for the
low-resource languages over the baseline tokenizers,
such as +11 absolute points of accuracy for Thai
(th), +8 for Arabic (ar), and +4 for Swahili (sw). For
the English, neural tokenizer slightly improves the
performance compared to the baseline tokenizers.
The reasoning behind the performance improve-

ment of neural tokenizer is that it segments the in-
put based on lexical similarity and thus create better
segmentations, especially for the low-resource lan-
guages. As the subword tokenizers use a vocabulary
with the most frequent subwords in a corpus, these
tokenizers over-segment the input of low-resource
languages and create junk tokens, which lead to the
performance degradation.
We have also noticed similar phenomena in our

qualitative analysis, presented in Figure 2 and 3.



Table 2: Multilingual NLI task performance comparison of various tokenization approaches.

Tokenizers
Vocab
Size

Model Params
(Millions) Languages (Accuracy %)

ar sw th ru en
BPE 120,000 67.8 M 51.81 50.66 51.32 54.77 57.57

Unigram 120,000 67.8 M 53.78 51.32 56.09 53.13 57.24
Word-Piece 120,000 67.8 M 50.66 50.00 43.26 54.61 57.57

Character-based Model - 33.4 M 53.29 46.88 44.41 52.80 50.99
Neural - 33.4 M 61.51 53.95 68.42 60.69 58.22

Subword tokenizers over-segment the words from
the low-resources languages compared to the high-
resources languages (Figure 2). For example, the
subword tokenizers create at least 10 subwords for
more than 20% words in the multilingual NLI cor-
pus. On the other hand, the neural tokenizer cre-
ates fewer subwords than the baseline tokenizers,
including the Unigram, which is used to pre-train
our neural tokenizer. Specifically, the neural tok-
enizer reduces the number of subwords for the low-
resource languages, such as Thai (th) and Swahili
(sw). As the neural tokenizer distills the segmen-
tations knowledge from the language-specific tok-
enizer, it does not bias towards the high-resource
languages. Additionally, we have observed that
subword tokenizer over-segment the hypothesis and
premise from low-resource languages, such as Ara-
bic (ar), Swahili (sw), and Thai (th), compared
to the neural tokenizer (Figure 3). This over-
segmentation leads to performance degradation for
the NLI task with low-resource languages.
Additionally, one can argue that instead of using

the neural tokenizer, we can use a Character-based
Model to extract characters embedding for down-
stream task learning. To validate this argument,
we have developed a baseline, called Character-
based Model, which segments input based on space
without using any vocabulary and pools character
embedding to create word-level representations for
downstream task learning. This Character-based
Model is trained end-to-end to learn characters em-
bedding from input character sequence and gener-
ate task representation to produce task output. The
results in Table 2 suggest that although it achieves
comparable performance to the baseline subword
tokenizers, there is a considerable performance gap
between the Character-based Model and the neural
tokenizer across all the languages.
Moreover, our neural tokenizer achieved these

performance improvements with half themodel size
compared to the model with baseline tokenizers.
Because the model with baseline subword tokenizer
has to allocate most of the model parameters to

Table 3: Monolingual (English) NLI task performance compar-
ison with various tokenization approaches

Tokenizer Vocab
Size

Model Params
(Millions) Accuracy (%)

BPE 30,000 44.8 M 57.85
BPE 70,000 65.3 M 59.94

Unigram 30,000 44.8 M 58.65
Unigram 70,000 65.3 M 58.01

Word-Piece 30,000 44.8 M 58.65
Word-Piece 70,000 65.3 M 58.33
Neural 69,480 65.0 M 59.94
Neural - 33.3 M 60.58

learn the subword embeddings. On the other hand,
neural tokenizer creates the subword embeddings by
pooling the character-level representations, which
reduces the model size.

5.2 Experimental Evaluations on
Monolingual NLI Tasks

We have investigated whether the neural tokenizer
can outperform the baseline subword tokenizers on
monolingual NLI tasks. We have developed three
baseline subword tokenizers (BPE, Unigram, and
Word-Piece) with the vocabulary of sizes 30,000
and 70,000. To ensure a fair comparison, we have
also trained our neural tokenizer in the monolingual
setting. Moreover, we have applied our neural tok-
enizer on the same corpus as the baseline tokenizers
and produced a vocabulary for the neural tokenizer.
In this vocabulary-based setting, we tokenize the in-
put based on the fixed vocabulary, similar to base-
line subword tokenizers. In this experimental eval-
uation, we have selected the English language.
Results and Discussion: The experimental re-

sults in Table 3 suggest that our neural tokenizer
shows comparable performance to the subword to-
kenizers on the monolingual NLI task. Moreover,
the model with our neural tokenizer achieves a sim-
ilar performance to the model with the subword to-
kenizers. However, the neural tokenizer helps to
achieve similar performance with a smaller model.
This performance improvement of neural tokeniz-
ers with reduced model size attributes that we can
utilize our neural tokenizer to extract representa-



Figure 2: Impact of tokenizer to segment words into different number of subwords in low and high resource languages.

Figure 3: Average number of subwords of hypothesis and
premise from low and high resource languages, which are to-
kenized by different tokenizers.

tions for downstream tasks instead of employing a
resource-intensive model with subword tokenizers.

5.3 Experimental Evaluations on Noisy Text
We have evaluated the impact of tokenizer on
monolingual (English) NLI task in the presence of
noisy text (typos and misspelling). For this ex-
perimental evaluation, we have developed baseline
monolingual (English) tokenizers (BPE, Unigram,
and Word-Piece) with a vocabulary size of 30,000.
We have developed a monolingual neural tokenizer
trained, which is trained using a Unigram subword
tokenizer with a vocabulary size of 30, 000. More-
over, we have developed a vocabulary-based neu-
ral tokenizer, where we used our neural tokenizer
to segment the Wikipedia corpus with the English
language and create a vocabulary with the most fre-
quent subwords. We have used this vocabulary to to-
kenize the hypothesis and premise of the NLI task.
We adversarially introduce noise to the 0% − 70%

(a) Accuracy of NLI (English) Task

(b) Average number of segmented subwords

Figure 4: Performance comparison of tokenizers on monolin-
gual (English) NLI task with noisy text (typos and misspelling).

input words, such as typos and misspelling, using
TextAttack Library (Morris et al., 2020).
Results and Discussion: The experimental re-

sults in Fig 4 suggest that the performance of the
models with vocabulary-based subword tokenizers
degrade with the increased amount of noisy words
in the input. Although the performance of the
model with our vocabulary-free neural tokenizer de-
grades with the increased amount of noisy words,
it outperforms all the evaluated tokenization ap-
proaches. Especially, our neural tokenizer outper-
forms the Unigram subword tokenizer, which is
used to train our neural tokenizer.
As the subword tokenizers use a fixed vocabu-

lary, they can not appropriately segment the text
from the out-of-distribution and introduce junk to-
kens. These junk tokens lead the model to cre-
ate suboptimal representations and thus degrade the
downstream task’s performance. On the other hand,



Table 4: Segmentation of words using Unigram and Neural
Tokenizer, which is trained using Unigram subword tokenizer.
Red colored words are with noise (typos and misspelling).

Input Unigram Neural
tricycles t/ r/ i/ cycle/ s tricycle/ s
trycycles t/ r/ y/ cycle/ s trycycle/ s
improving improv/ ing improv/ ing
improbing imp/ robin/ g improbing
timeline timeline time/ line
timlline t/ i/ m/ l/ line timlline
swimming s/ w/ imming s/ w/ imming
swiming swim/ ing swiming
workshop workshop workshop
worksops works/ o/ p/ s worksops
biotechnology biotechnolog/ y biotechnolog/ y
bitechnology b/ i/ t/ echnology bitechnolog/ y

neural tokenizer segments the input based on lex-
ical similarity, and thus it creates better segmen-
tation in the presence of noise, such as typos and
misspelling. However, the vocabulary-based neu-
ral tokenizer’s performance degrades with the in-
creased percentage of noisy words. Because, in the
vocabulary-based neural tokenization, if a subword
does not present in the vocabulary, then we replace
that subword with an <UNK> (unknown) token. As
a result, vocabulary-based neural tokenizers create
many <UNK> junk subwords in the presence of
noise and thus hurting the task performance.
Additionally, the tokenizations present in Ta-

ble. 4 suggest that our neural tokenizer helps to im-
prove the segmentations quality of the Unigram sub-
word tokenizer in the presence of noise (e.g., typos
and spelling variations). For example, Unigram cre-
ates junk tokens in segmenting tricycles. Our neural
tokenizer, trained using Unigram, reduces the junk
tokens and creates morphologically aligned segmen-
tation. However, in some cases, such as segmenting
swiming, the Unigram tokenizer creates better seg-
mentation than our neural tokenizer.

5.4 Experimental Evaluations on
Code-Switched Language

We have evaluated the impact of the tokenizers on
the sentiment analysis task with the Spanish-English
code-switched languages. We have used the Lince
dataset and the evaluation benchmark (Aguilar et al.,
2020a). We have developed three baseline tokeniz-
ers (BPE, Unigram, Word-Piece) with a vocabulary
size of 60,000. We have also trained a neural to-
kenizer in the mixed-lingual settings (Section 3.3),
where the training dataset is developed from the
Spanish and English Wikipedia articles.
Results and Discussion: The experimental re-

sults in Table 5 suggest that our neural tokenizer out-

Table 5: Performance comparison of tokenizers on sentiment
analysis task with code-switched languages (Spanish-English).

Tokenizer Vocab
Size Accuracy (%)

BPE 60,000 49.39
Unigram 60,000 49.18

Word-Piece 60,000 48.43
Character-based Model - 45.63

Neural - 51.41

performs the subword tokenizers, including the Un-
igram subword tokenizer, on the sentiment analy-
sis task with code-switched languages. Unlike the
heuristic-based subword tokenization, neural tok-
enizer allows end-to-end task learning, which helps
to improve the task’s performance.
Our neural tokenizer and the heuristic-based to-

kenizers segment the input into subwords, and the
task models use the subword embeddings. These
models, which use the subword embeddings, outper-
form the Character-based Model, where character
representations are used for downstream task learn-
ing. Because in the code-switched language settings,
extracting subword embeddings can be beneficial to
create aligned multilingual representations, which
help to improve the sentiment analysis task perfor-
mance. Thus, appropriately segmenting input with
code-switched languages is crucial to improve per-
formance in the code-switched language settings.

6 Conclusion

We propose a neural tokenizer to segment text
without a vocabulary, which allows end-to-end task
learning. The experimental evaluations on multilin-
gual NLI task suggest that our neural tokenizer re-
duces the model size and improves the task’s perfor-
mance for low-resources languages, such as Arabic,
Swahili, and Thai. Moreover, the neural tokenizer
outperforms subword tokenizers on the NLI task
with noisy text (typos and misspelling). The qualita-
tive analysis also suggests that our neural tokenizer
improves the tokenizations of the subword tokeniz-
ers, which is used to train our neural tokenizer. Ad-
ditionally, the neural tokenizer shows comparable
performance on sentiment analysis task with code-
switched languages. The experimental results sug-
gest that our neural tokenizer can distill the segmen-
tations knowledge from multiple subword tokeniz-
ers to improve the tokenization. This finding opens
future research avenues to design a learnable tok-
enizer for improving the state-of-the-art subword to-
kenization and the downstream task’s performance.



References

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020a. LinCE: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of the
12th Language Resources and Evaluation Conference,
pages 1803–1813, Marseille, France. European Lan-
guage Resources Association.

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Keskar, and Thamar Solorio. 2020b.
Char2subword: Extending the subword embedding
space using robust character compositionality. arXiv
preprint arXiv:2010.12730.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence labeling.
In Proceedings of the 27th international conference on
computational linguistics, pages 1638–1649.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
EMNLP, pages 4617–4624.

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and
Jason Riesa. 2020. Improving multilingual models
with language-clustered vocabularies. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 4536–4546.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representation.
arXiv preprint arXiv:2103.06874.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Marta R. Costa-jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 357–361, Berlin, Germany. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Kyuyeon Hwang and Wonyong Sung. 2017. Character-
level language modeling with hierarchical recurrent
neural networks. In 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5720–5724. IEEE.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 66–75.

Taku Kudo and John Richardson. 2018. Sentence-
piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In EMNLP: System Demon-
strations, pages 119–126.

Yuval Pinter, Marc Marone, and Jacob Eisenstein. 2019.
Character eyes: Seeing language through character-
level taggers.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1715–1725.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference on
International Conference on Machine Learning, pages
1017–1024.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2021.
Charformer: Fast character transformers via gradient-
based subword tokenization.

Xinyi Wang, Sebastian Ruder, and Graham Neubig.
2021. Multi-view subword regularization. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 473–482.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix Stahlberg,
Xiaochang Peng, Kyle Gorman, and Brian Roark.
2019. Neural models of text normalization for speech
applications. Comput. Linguistics, 45(2):293–337.


