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Abstract— Online advertising is typically implemented via
real-time bidding, and advertising campaigns are then de-
fined as extremely high-dimensional optimization problems. To
solve these problems in light of large scale and significant
uncertainties, the optimization problems are modularized in
a manner that makes feedback control a critical component
of the solution. The control problem, however, is challenging
due to plant uncertainties, nonlinearities, time-variance, and
noise. Multi-constraint optimization problems are especially
difficult to solve via feedback control because of the dynamic
interaction across feedback loops. This paper demonstrates how
one particular multi-constraint problem can be solved using
a cascade feedback controller. The inner loop is managed by
a linear time-periodic feedforward controller combined with
a linear time-invariant feedback controller. Meanwhile, the
outer loop is managed by a linear time-invariant feedforward-
feedback controller. This paper is concerned with the outer loop
controller and derives sufficient conditions for stability of the
nonlinear closed loop system by expressing it as a Lure’ system
and by engaging the circle criterion. The solution is evaluated
in a simulated environment based on artificial data.

Index Terms — Nonlinear control, Lure’ system, circle
criterion, stability, programmatic advertising

I. INTRODUCTION

Online advertising is an important industry segment and
at the core of the business model for companies such as
Amazon, Google, and Meta. A Demand Side Platform (DSP)
is an example of such a business model, and provides the
service to efficiently spend online advertisement budgets on
behalf of an advertiser. It implements advanced algorithms
to compute and submit bids in real time for ad impressions,
which are opportunities to show an ad creative to Internet
users. The bidding strategy is designed to solve an ad
campaign optimization problem.

There is an astronomically large number of impressions
to bid on, which makes the optimization problem extremely
high-dimensional, but the dimension can typically be re-
duced by reformulating the problem as a three player non-
cooperative game. The three players that collectively produce
bids on behalf of an advertiser are represented by impression
valuation, campaign control, and bid shading optimization.

Impression valuation computes the expected value of an
impression conditioned on it being awarded to the cam-
paign [1]–[4]. Campaign control makes bid adjustments
to satisfy campaign delivery constraints (more on that
later) [5]–[9]. And bid shading optimization computes the
final bid by taking into account how much other campaigns
are expected to bid for the same impression [10]–[14].
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All areas of bidding in online advertising are subject to
intense research in both academia and industry [15]. This
paper contributes to this body of work and is focused on the
campaign control sub-problem. Campaign control is a critical
feature of the bid computation, but is challenging due to
plant uncertainties, nonlinearities, delays, time-variance, and
noise. Multi-constraint optimization problems [16]–[18] are
especially difficult to solve via feedback control due to the
dynamic interaction across feedback loops.

Our contribution is a cascade feedback controller that
solves the most commonly encountered multi-constraint
problem in online advertising and a set of sufficient con-
ditions for stability of the resulting nonlinear closed loop
system. To the best of our knowledge, this is the first
stability result for any of the multi-constraint problems
described in [16]–[18] under a dynamic and nonlinear plant.
Note, [16]–[18] only presents necessary conditions for op-
timality and does not examine under what conditions the
closed loop system is stable. The stability results in this
paper are derived by transforming the system into a Lure’
system [19] and by engaging the circle criterion. The solution
is successfully evaluated in a simulated environment based
on artificial data produced to capture the dominant properties
of a real online advertising campaign.

A cascade controller approach to the problem examined
in this paper is explored also in [20]. The authors refer to
their approach as “sequential pacing” and adopts a different
parameterization. In contrast to our work, [20] evaluates the
stability of their proposed algorithm neglecting the plant
dynamics and based on a continuous-time approximation.

II. OPTIMIZATION PROBLEM

Consider managing an ad campaign via bidding on impres-
sions sold in an open impression exchange. The objective is
to solve a constrained optimization problem. Let Ω denote
the set of all available impression opportunities i ∈ Ω,
where each impression is sold sequentially based on a
first or second price cost model [21]. The cost model for
each impression opportunity is decided by the seller of the
impression and is known before a bid is computed. For a
first price impression (i ∈ Ω1) the winner pays an amount
equal to its own bid, whereas for a second price impression
(i ∈ Ω2) the winner pays an amount equal to the second
highest bid. Assume Let Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω.
The decision variables are given by bid prices bi ∈ [0,∞)
produced by the optimization engine. Let vi ∈ [0,∞) denote
the expected value of impression i and ci ∈ [0,∞) the cost
of the impression, if awarded. The total expected cost for



awarded impressions is denoted EC, and the total expected
value is denoted EV .

The objective is to produce bid prices bi, for all i ∈ Ω,
to maximize the cost-discounted profit J := EV − ρEC,
subject to a spend constraint EC ≤ ξ1 and a cost-benefit
ratio (CBR) constraint EC ≤ ξ2EV ; where ρ ∈ (0, 1] is a
known cost-discount parameter, and ξ1, ξ2 > 0 are prescribed
constraints on spend and CBR.

It is well-known (see e.g. [16]–[18]) that a necessary
condition for optimality is that bi = bopti , for all i, where

bopti =

{
argmax
b∈[0,∞)

(bui − b)wi(b), i ∈ Ω1,

bui , i ∈ Ω2,

and where wi(b) is the winrate (the probability impression i
is awarded at bid price b), the private value bui is defined by

bui =
1 + ξ2λ2

λ1 + λ2
vi, (1)

and where EC ≤ ξ1, (λ1 − ρ)(EC − ξ1) = 0, EC ≤ ξ2EV ,
λ2(EC − ξ2EV ) = 0, λ1 ≥ ρ, and λ2 ≥ 0.

Assume wi(b) and vi are known. In practice, they are
estimated by separate systems not in scope of this paper. It
remains to determine the optimal values of λ1 and λ2. The
optimal bidding strategy for various generalizations of the
above problem is derived in [16], [17] and [18].

III. CONTROL PROBLEM

The problem of finding the optimal λ1 and λ2 can in
principle be achieved by adjusting their values in a feedback
loop until they converge and satisfy constraints EC ≤ ξ1,
(λ1 − ρ)(EC − ξ1) = 0, EC ≤ ξ2EV , and λ2(EC −
ξ2EV ) = 0. However, using λ1 and λ2 as the control levers
in what is a multi-input multi-output control problem, is
extraordinarily difficult due to the nonlinear, time-varying,
and strong coupling across inputs and outputs. Note, for
example, that the sensitivity in bui due to changes in λ1 (or
λ2) is highly dependent on λ2 (or λ1). In fact, ∂bui /∂λ2 =
(ξ2λ1 − 1)vi/(λ1 + λ2)

2 goes from being negative to being
positive when λ1 exceeds 1/ξ2. Hence, without careful
consideration, λ1 may turn a control system involving λ2

from negative to positive feedback, and with instability as
the result. To make the problem less challenging, a re-
parametrization of the control levers is advised. To support
this endeavour a few observations are in order.

The first observation is that the private value (1) can be ex-
pressed bui = m(λ1, λ2)vi, where bid modifier m(λ1, λ2) :=
(1 + ξ2λ2)/(λ1 + λ2). Hence, instead of identifying the
optimal values of λ1 and λ2 separately and then computing
m(λ1, λ2), we may identify the optimal value of m directly.

The second observation is that EC and EC/EV are
both monotonic non-decreasing functions of m (see [6]
for details). It can the be shown that the optimal bidding
corresponds to the largest constant value of m ≤ ρ−1 for
which EC ≤ ξ1 and EC ≤ ξ2EV at the end of the flight [16].

The third and final observation is that instead of identify-
ing the largest value of m maintaining the two inequalities,
we may solve the problem in cascade by introducing an
intermediate spend cap ξ̃1 as follows: Find the largest ξ̃1 ≤ ξ1

for which EC ≤ ξ2EV , and simultaneously find the largest
m for which EC ≤ ξ̃1. Implemented as a feedback system,
this delegates the maintenance of the spend constraint to an
inner loop spend controller, and the maintenance of the CBR
constraint to an outer loop CBR controller.

See Figure 1 for a block diagram of the cascade control
system. In order to solve the problem using feedback, we

Fig. 1. Block diagram of the cascade control system architecture.

introduce time as a variable. Assume a discrete time im-
plementation with a separate update frequencies for the two
feedback systems.

The CBR controller first converts the flight budget ξ1 into
daily budgets ur(k) that sum up to ξ1. These (unadjusted)
daily budgets together with a CBR constraint ξ2 and feedback
on the daily spend y1(k) and observed ad value y2(k) are
used to update an adjusted daily budget u(k) ∈ [0, ur(k)]
once per day. The goal is for u(k) to converge to the largest
possible value for which y1(k) ≤ ξ2y2(k) is satisfied on
average.

The spend controller consumes u(k) obtained from the
CBR controller and first distributes this budget throughout
the day in a performance-optimal manner using a time-
periodic feedforward controller. It then uses feedback on
the spend in an error feedback controller to update m(t) ∈
[0, ρ−1] at time stamps t every few minutes. The objective is
for m(t) to converge to the largest value for which the daily
spend y1(k) does not exceed u(k). Designs for this control
system is readily available in the literature [9], and outside
the scope of this paper. The advantage of using a daily update
cadence for the CBR controller is that it turns the effective
plant perceived by the CBR controller approximately time-
invariant. This time-invariance makes the design of the CBR
controller less challenging.

Assume the inner loop spend controller is implemented
and stable. The goal is to design the outer loop CBR
controller such that u(k) ∈ [0, ur] converges to the largest
value for which y1(k) ≤ ξ2y2(k) in expected sense.

IV. PLANT MODEL

The plant as perceived by the CBR controller describes the
mapping u 7→ [y1, y2]. Assume y1 in response to adjustments
of u (via intra-day adjustments of m) is observed almost
immediately. In particular, at the start of day k, the controller
knows how much was spent the previous day. We make the
simplifying assumption that the spend controller precisely
delivers any adjusted daily budget u in full; i.e.,

y1(k) = q−1u(k), (2)

where q is the forward-shift operator (q−1u(k) = u(k− 1)).
While not guaranteed, since the inner loop controller operates



at a much higher frequency than the outer loop, the as-
sumption is typically a good approximation in practice. The
assumption is used to simplify the derivations, and modest
violations have not hurt the results in closed loop simulations.

Ad value y2 encodes user activities such as clicks and
sold products triggered by served impressions. It is related
to u in a nonlinear and dynamic fashion, but the dynamics is
assumed to be time-invariant (partially achieved by the daily
update cadence of u). Assume u > 0 and Ey2 > 0, and that
the spend controller has converged to a stable equilibrium.
The expected CBR η(u) := Ey1/Ey2 can then be shown to
be positive, strictly monotonic increasing, and with a limit
η(u) → 0 as u → 0 [6]. In other words, the expected eventual
ad value satisfies Ey2 = Ey1/η(u) = u/η(u); however, this
value generation is typically subject to a multiple days delay.
The delay is a priori unknown, but is assumed to be linear
and time-invariant. In particular, the observed ad value y2(k)
on day k satisfies

y2(k) = q−1P (q)
1

η(u(k))
u(k) + ϵ(k), (3)

where P is a proper, linear, time-invariant transfer function
with steady state gain one; and where ϵ(k) is independent
mean zero noise.

While not needed in the forthcoming control design, it is
useful for analysis and simulation tasks to leverage additional
properties of the plant, especially as it relates to how ad value
and CBR depend on m.

Theorem 4.1: If the expected ad spend c(m) := EC is
differentiable and its derivative c′(m) converges to zero, as
m → 0, at a rate that is at least linear, then the expected
ad value v(m) := EV and CBR η(m) := c(m)/v(m) are
given by

v(m) =

∫ m

0

1

x
c′(x)dx, v(0) = 0, (4)

η(m) =
c(m)∫m

0
x−1c′(x)dx

, if v(m) > 0. (5)

Proof: By virtue of the cost model and the optimal
bidding strategy (see Section II), the CBR for additional
impressions awarded by making an infinitesimal adjustment
of the bid modifier from m to m + dm equals m. The
additional spend for these incremental impressions is dc =
c′(m)dm, which means the additional expected ad value
from the impressions equals (1/m)c′(m)dm. Hence, the ad
value satisfies v(m+ dm) = v(m) + (1/m)c′(m)dm. Since
c′(m) converges to zero at least linearly, (1/m)c′(m) is
bounded for small m. The differential equation for v(m) may
therefore be integrated from 0 to m, resulting in v(m) =∫m

0
x−1c′(x)dx, which confirms (4), and (5) is a trivial

consequence of (4) and η(m) = c(m)/v(m), completing
the proof.

In some cases, the ad spend c(m) can be approximated by
a parametric function with particularly convenient properties.
A versatile family of two-parametric functions that are de-
fined for non-negative values, and that describe functions that
are monotonic increasing, and bounded is given by the family
of so called gamma cumulative density functions (CDFs).

The versatility comes from the fact that a wide range of
functional shapes can be produced by selecting different
values of the parameters defining the CDF.

Definition 4.1: The gamma cumulative density function
(CDF), F (x|α, β), is defined for x ≥ 0, and given by

F (m|α, β) =
∫ m

0

βα

Γ(α)
xα−1e−βxdx, if m > 0, (6)

and F (0|α, β) = 0, where shape parameter α > 0 and
inverse scale parameter β > 0, and where the gamma
function is defined by Γ(α) =

∫∞
0

e−xxα−1dx.
Theorem 4.2: If the expected ad spend is a scaled gamma

CDF defined by c(m) = γF (m|α, β), where the spend
capacity γ > 0, and α, β > 0; then

v(m) =
γβ

α− 1
F (m|α− 1, β) and (7)

η(m) =
α− 1

β
· F (m|α, β)
F (m|α− 1, β)

. (8)

Proof: To prove (7), use c(m) = γF (m|α, β), together
with the definition of F (m|α, β) from (6), in (4) to obtain

v(m) = γ

∫ m

0

x−1 βα

Γ(α)
xα−1e−βxdx

=
γβΓ(α− 1)

Γ(α)

∫ m

0

βα−1

Γ(α− 1)
xα−2e−βxdx.

The integral expression is recognized as the gamma CDF
F (x|α − 1, β), and it is well-known that Γ(α) = (α −
1)Γ(α − 1), hence v(m) = γβF (m|α − 1, β)/(α − 1),
which completes the proof of (7). To prove (8), combine
η(m) = c(m)/v(m), c(m) = γF (m|α, β), and (7); which
immediately yields the result and completes the proof.

V. CONTROLLER DESIGN AND ANALYSIS

Consider a linear time-invariant controller composed of a
feedforward component Cff and a feedback component Cfb

based on error signal e and feedback mechanism u

e(k) = Cff (q)y1(k)− ξ2y2(k), and (9)
u(k) = Cfb(q)e(k). (10)

Controller components Cff (q) and Cfb(q) are proper, linear,
and time-invariant transfer functions; and Cff (q) has steady
state gain one. The objective is to design Cff (q) and Cfb(q)
so that u converges to the largest possible value for which
Ey1(k) ≤ ξ2Ey2(k). Assume there exists a strictly positive
solution u for which Ey1(k) = ξ2Ey2(k). This implies
Ee(k) = 0 at steady state. Recalling the definition of the
expected CBR, it is noted that η(u) := Ey1/Ey2 = ξ2 if the
solution has been found.

However, u = 0 also yields Ey1(k) = Ey2(k) = 0,
which corresponds to Ee(k) = 0 at steady state. This is an
undesirable suboptimal equilibrium, and to prevent getting
trapped in this equilibrium, we define a permissible range
of values for the adjusted budget u ∈ [umin, ur], where
umin > 0 is a configured parameter chosen so small that
we confidently expect the optimal u to be larger.



Combine (2), (3), (9), and (10) to obtain

e = q−1

(
Cff − P

ξ2
η(u)

)
Cfbe− ξ2ϵ, and (11)

u = q−1Cfb

(
Cff − P

ξ2
η(u)

)
u− ξ2Cfbϵ, (12)

where arguments k and q are omitted from signals and
operators to reduce the clutter. This is a nonlinear dynamical
system and it is not obvious under what conditions the system
is stable. Note, for example, that P and η−1(u), as well as,
Cfb and η−1(u) do not commute; i.e., Pη−1(u) ̸= η−1(u)P
and Cfbη

−1(u) ̸= η−1(u)Cfb. The following main result of
the paper establishes sufficient conditions for stability.

Theorem 5.1: Let H(z) be the discrete time transfer func-
tion (in the Z-domain) defined by

H(z) =
(
z − Cfb(Cff − P )

)−1

CfbP. (13)

If there exists a uopt ∈ [umin, ur] such that η(uopt) = ξ2, no
pole of H(z) is outside the unit circle, and Re[H(ejω)] >
−1 for π/2 ≤ ω ≤ π/2; then u = uopt is the unique and
absolutely stable solution of (11)-(12) with a finite domain
of u ∈ [umin, ur].

Proof: First rewrite (12) as

u = q−1Cfb

(
Cff + P

(
1− ξ2

η(u)

)
− P

)
u− ξ2Cfbϵ.

Define Ψ(u) := 1−ξ2/η(u) and δ := Ψ(u)u, which implies
u = q−1Cfb(Cff − P )u + q−1CfbPδ − ξ2Cfbϵ. It follows
that the closed loop system dynamics is described by

u =
(
q − Cfb(Cff − P )

)−1(
CfbPδ − ξ2qCfbϵ

)
,

δ = Ψ(u)u.

This is a feedback connection of a linear time-invariant
dynamical system and a memory-less nonlinear element.
The system is depicted as a block diagram in Figure 2
and is recognized as a so called Lure’ system [19]. Re-

Fig. 2. Block diagram of the closed loop dynamical system depicted as
a Lure system composed of a linear time-invariant operator H(z) and a
nonlinear memory-less function Ψ(u).

call that η(u) is strictly monotonic increasing and satisfies
limu→0+ η(u) = 0. Consequently, Ψ(u) := 1 − ξ2/η(u) is
defined for all u ≥ umin > 0 and is an increasing function
satisfying limu→0+ Ψ(u) = −∞, and Ψ(u) ≤ 1.

For the purpose of stability analysis, we may set ϵ = 0.
The dynamics under examination then equals

u = H(z)δ, (14)
δ = Ψ(u)u. (15)

By assumption, there exists a uopt ∈ [umin, ur] such
that η(uopt) = ξ2, which corresponds to Ψ(uopt) = 0.
Since Ψ(u) is an increasing function, the solution is unique.
Furthermore, since only strictly positive solutions are consid-
ered, uopt uniquely also solves δ(uopt) = Ψ(uopt)uopt = 0.

Moreover, the upper bound and monotonicity of Ψ(u)
imply that θ(u − uopt) ≤ δ(u) ≤ u − uopt, if u ≥ uopt,
and u − uopt ≤ δ(u) ≤ θ(u − uopt), if umin ≤ u ≤ uopt,
for some θ > 0. It follows that the nonlinearity δ(u) satisfies
the sector condition [19] centered around u = uopt.

θ(u− uopt)
2 ≤ (u− uopt)δ(u) ≤ (u− uopt)

2.

The conditions for the circle criterion (Theorem 7.2 [19]) are
satisfied, which states that if H(z) has no unstable poles and
the Nyquist plot of H(ejω) does not enter the circular disk
in the imaginary plane going through points −1/θ and −1,
then the feedback connection is absolutely stable with a finite
domain. Since θ > 0 may be arbitrarily small (determined
by umin), the circular disk may be very large, but still going
through −1. Hence, Re[H(ejω)] > −1 ensures the Nyquist
plot certainly does not enter the circular disk. This completes
the proof.

Example 5.1: To demonstrate how Theorem 5.1 can be
used to examine the stability of a system, consider a plant
P = 0.5/(z − 0.5), and a candidate controller defined by
Cff = P and Cfb = 0.3z/(z − 1). Equation (13) yields
the transfer function from δ to u as H(z) = 0.15/(z2 −
1.5z + 0.5). The pole-zero map and the Nyquist plot of
H(z), produced in Matlab, are shown in Figure 3. It is

Fig. 3. The pole-zero map and the Nyquist diagram of the dynamic
component of a feedback system to in Example 5.1 to demonstrate how
to check for the stability of a feedback interconnection with a nonlinear
memoryless function.

noted that no pole is outside the unit circle and that the
Nyquist curve is on the right side of −1 for all frequencies.
Hence, according to Theorem 5.1, the feedback system has
a unique and absolutely stable solution with a finite domain
of u ∈ [umin, ur] for some value of umin > 0.

Next section demonstrates the closed loop behavior of a
system designed with help of Theorem 5.1.



VI. SIMULATION RESULTS

To evaluate the theoretical results in Section V, we con-
duct a simulation study designed to capture the dominant
properties of a real advertising problem. Many properties are
well-understood from years of operation, but there are also
edge case scenarios such as sparse discrete-valued feedback
y2 and isolated extreme disturbances. These scenarios require
experimentation which is outside the scope of this paper.

A. Set-up

Consider a 30 days long ad campaign, where the inner
loop spend controller updates m once every ∆ = 2/60 hours.
Assume the observed intraday spend yintra1 (m, t) satisfies

yintra
1 (m, t) =

γ∆

24

(
1 + 0.8 sin

(
2πt

24

))
F (m|α, β)(1 + ϵ1(t)),

where γ = 4000, F (m|α, β) is a gamma CDF (Defini-
tion 4.1), and where ϵ1(t) is independent and identically
distributed noise with mean zero and standard deviation 0.2.
Furthermore, assume α = 1/σ2

rel and β = 1/(µσ2
rel), where

µ = 6, σrel = 0.8. The sinusoidal component of yintra1

simulates the time-of-day pattern in Internet traffic with less
impressions available during the night than during the day.

Theorem 4.2 can be used together with (15) to derive
closed form expressions for Ey1, η, and δ in terms of gamma
CDFs. The result is depicted graphically in Figure 4. The

Fig. 4. The plant model for the campaign being simulated, defined by key
input-output relationships.

left subplots show how Ey1 and η are monotonic increasing
functions of m, whereas the right subplots show that η is a
monotonic increasing function of u and that δ(u) satisfies the
sector condition θ(u−uopt)

2 ≤ (u−uopt)δ(u) ≤ (u−uopt)
2

(see also the proof of Theorem 5.1).
The advertiser defines ad value as the number of sold

products. Assume, at steady state, it is a Poisson random vari-
able y2(k) = u/η(u) + ϵ2(k) with mean u/η(u) and where
ϵ2(k) is mean zero random noise. The advertiser specifies
daily constraints on spend and CBR, and the constraints are

updated a few times throughout the flight according to

ur(k) =

 600, if 1 ≤ k ≤ 10
500, if 11 ≤ k ≤ 20
700, if 21 ≤ k ≤ 30

,

ξ2(k) =

{
0.4, if 1 ≤ k ≤ 15
0.8, if 16 ≤ k ≤ 30

.

Suppose the delay between spend and ad value is given by
P (z) = 0.4z/(z − 0.6) corresponding an average delay of
48 hours in continuous time.

The most likely violated assumptions in the real world and
with most significant impact is that η(u) is monotonic and
that P (z) is linear time-invariant and known. The mono-
tonicity is based on the premise that the inner-loop spend
controller is stable and non-volatile, which is sometimes
hard to achieve in practice. Experiments will assess the
implications of violating these assumptions, and others.

B. Control Design
Assume the inner loop spend controller is implemented

using the design proposed in [9]. For the outer loop CBR
controller, consider the design in Example 5.1; i.e., Cff (z) =
P (z) and Cfb(z) = 0.3/(z−1) which is a pure integral error
feedback controller. In a real application, plant P (z) is not
known precisely and Cff can at most be an estimate of the
real plant.

A simulated outcome of the campaign defined in the
previous section managed by the above control system is
depicted in Figure 5.

Fig. 5. Closed loop simulation results for the campaign under control by
the proposed multivariable control system.

The top-left panel shows the daily budget (ur) as a red
curve, the adjusted daily budget (u) produced by the CBR
controller as a green curve, and the intra-day cumulative
spend as a blue curve. It is noted that the spend constraint
is maintained throughout the flight.

The top-center panel shows the CBR constraint as a red
curve and the daily observed CBR as a blue curve. It is noted
that the CBR constraint is initially violated due to a poor
initialization, but recovers throughout the flight illustrating
the stability. It is noted that during the first 15 days of the
flight the CBR constraint is limiting the campaign delivery,
whereas in the last 15 days it is the spend constraint keeping
the campaign from delivering more.



The top-right panel displays the intra-day spend, which
exhibits a distinct time-of-day pattern and contains multi-
plicative noise. Next, the bottom-left panel presents spend
control signal m, which is updated at high frequency and
responds to the intra-day spend noise. Furthermore, the un-
adjusted daily budget (ur) and the adjusted daily budget (u)
are shown in the bottom-center panel. Finally, the intraday
observed ad value is shown in the bottom-right panel. Based
on the convergence of the spend and the CBR, and based
on how the constraints are maintained at steady-state, we
conclude for this example that the control system behaves as
desired and expected.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a cascade multivariable control system
to manage the spend (budget utilization) and the cost-benefit
ratio, CBR, (performance) of an online advertising campaign.
The plant is nonlinear, time-varying, and dynamic; and is
subject to noise and uncertainties. The control system is
composed of an inner loop spend controller (developed
separately), and an outer loop CBR controller. Besides de-
riving certain key plant properties for the inner loop plant,
this paper is focused on the outer loop control system,
which consists of a feedforward and a feedback component.
The main result of the paper are sufficient conditions for
stability of the CBR controller. These results are obtained
by transforming the closed loop system into a Lure’ system,
identifying the applicable sector condition, and making use
of the circle criterion. The results demonstrate how concepts
from nonlinear system theory can be used to establish key
stability conditions in applications such as online advertising.

Immediate future work includes experimental validation
of the mathematical results. Real advertising campaigns are
difficult to model and simulation results cannot capture all
significant behaviors that are present in the real plant. Near-
term future work also includes determining conditions on
Cff and Cfb to ensure stability. The control system must
also be robust to model uncertainties and must be sufficiently
responsive to load disturbances and measurement noise,
which requires additional research. In particular, important
areas of future work is to determine conditions for robustness
to violations of the assumptions that η(u) is monotonic and
that P (z) is linear time-invariant and known. We conjecture
the circle criterion framework can be extended to establish
robustness margins and uncertainty bounds.

Furthermore, the derived stability conditions are sufficient
but not necessary, hence, they may be overly conservative.
Future work therefore also includes a search for tighter
sufficiency conditions. Finally, advertisers are increasingly
interested in a multitude of objectives and constraints. These
lead to additional feedback control problems that must be
solved simultaneously. Consequently, additional research is
needed to develop multivariable control systems that solve a
more general multi-input multi-output control problem.
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