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ABSTRACT

Federated learning is a machine learning approach that al-
lows a loose federation of trainers to collaboratively improve
a shared model, while making minimum assumptions on cen-
tral availability of data. In cross-siloed federated learning,
data is partitioned into silos, each with an associated trainer.
This work presents results from training an end-to-end ASR
model with cross-silo federated learning system. We propose
a novel aggregation algorithm that takes update diversity into
account and significantly outperforms Federated Averaging
(FedAvg). The system design used in this paper allows joint
training with human transcribed and semi-supervised (SSL)
data, yielding 7.6% relative word error rate reduction on head
test set and 13.9% on tail test set, when using 20kHr of SSL
data. Gains further improve to 13.8% and 20.5% respectively
when SSL data is increased from 20kHr to 200kHr.

Index Terms— Federated learning, Automatic speech
recognition, Semi-supervised learning

1. INTRODUCTION

In Federated Learning (FL) [1], a global model is collabora-
tively trained by many clients over decentralized data. Of this,
two typical settings are Cross-silo FL and cross-device FL. In
both settings, data is generated locally and remains decentral-
ized (no inter-client sharing) and a central server orchestrates
training across multiple clients. In Cross-silo FL, data could
be distributed across pre-defined silos such as organizations
or geographical locations. In this setup, typical number of
clients is around 2-100 [2]. Cross-device FL on the other hand
runs on large number of clients (upto 10*° devices) with only
a fraction of clients participating in each training round [2].
Cross-silo FL has recently gained traction in domains such as
medical and health care [3, 4, 5], finance [6] and manufactur-
ing [7].

Compared to the traditional distributed training system, a
cross-silo FL system is different in: a) Optimization process:
A trainer can only access its own local data defined by a silo
and can at best solve a local optimization problem on its own.
b) Non-availability of ground truth: Ground truth may or may
not be available for local data. In case of ASR, ground truth
is available only for human transcribed data, which is much

small compared to the data we want to utilize in FL training.
¢) Non IID data: Local data set may not be representative of
population distribution (features and labels) and the number
of training examples can also be non-uniform across clients.
d) Resource constraints: Trainers can be constrained with re-
spect to compute and network bandwidth.

A typical FL system utilizes user generated inputs to ap-
proximate labelled data [8, 9, 10] since supervised labels are
not available at clients. In case of ASR, machine generated
transcription could be used as an approximation, when hu-
man transcript is not available. Using semi-supervised data
for federated learning is a much less explored area and is gain-
ing interest recently [11].

In this paper, we present learnings from cross-silo feder-
ated training of an end-to-end ASR system, taking Recurrent
Neural Network Transducer (RNN-T) [12, 13] as the ASR
model architecture. Our contributions are two fold 1) We
analyze the effect of update diversity on training and propose
Federated Averaging with Diversity Scaling (FedAvg-DS)
algorithm that accounts for update diversity and significantly
outperforms Federated Averaging (FedAvg). 2) We combine
cross-silo federated learning with access qualified trainers to
jointly train with both transcribed and semi-supervised data,
to achieve atleast 7% WERR on head test set and 13.9%
WERR on tail test set.

This paper is organized as follows: Section 2 introduces
system architecture that combines Federated training with
Semi-supervised learning. Diversity scaling and FedAvg-DS
are presented in Section 3. Results are covered in Section 4,
followed by conclusion in Section 5.

2. CROSS-SILOED FEDERATED LEARNING IN
CLOUD

FL training framework in cloud is built on top of gRPC [14]
with three core components 1) FL server 2) Trainer 3) Aggre-
gator. In this cloud based FL system, all trainer clients run
in AWS cloud and consume both Human transcribed (HT)
and Semi-supervised data (SSL) for training ASR model. To
jointly train on these data sources, we define two types of
trainer clients based on data access privileges: a) Privileged
trainers (PT) b) Restricted trainers (RT). Privileged trainers
can use HT data for training, while restricted trainers can only



access SSL data. HT data is de-identified, then transcribed
by human annotators, and partitioned across privileged train-
ers. SSL data is prepared on cloud from de-identified, un-
transcribed recordings contributed by participating devices.
Alexa devices are partitioned across restricted trainer clients
in a many-to-one mapping, hence SSL data generated from
one or more devices can used for training at any given trainer
client.
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Fig. 1. Cross-siloed FL system in cloud

Un-transcribed recordings are processed through SSL
data processing pipeline on cloud and appended to SSL
data store. SSL data processing pipeline contains two main
components 1) SSL data selection 2) Machine transcription.
SSL data selection module randomly selects a subset of un-
transcribed data in confidence range of 600-900 for machine
transcription. One of the main advantages of cloud side FL.
is the ability to run a complex ASR model for generating
machine transcripts for un-transcribed data, which may not
be otherwise possible to do on-device.

FL server in Figure 1 maintains state of overall system
and sequences training and aggregation steps to iteratively
improve a global model across multiple rounds. Each trainer
takes one or more optimization steps on siloed data specified
by FL server, to generate a model update at the end of round.
Aggregator combines multiple trainer updates to a single up-
date over global model, typically via averaging.

3. DIVERSITY SCALING

At the beginning of ' FL round, server shares the current
global model (w?) to all participating trainers. Starting with
this model, each trainer takes multiple optimization steps on
local data. Change in model parameters due to local training
is communicated by each trainer client to server. In Federated
Averaging (FedAvg) [1], updates from trainers are averaged
and added to global model as in Equation (1), resulting in
global model update at the end of round.
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Magnitude of change in global model after R rounds of train-
ing can be written as
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It can be seen that [|A, || directly contributes to upper
bound on global model change and hence convergence speed.
In a given round of training, if all trainer updates are exactly
the same, then it can be argued that there is no diversity in
updates and the multitude of trainers can be replaced by a sin-
gle trainer. On the other hand, if trainer updates perfectly
cancel each other after averaging, then it can be seen that
| AL, 4|l will be 0. Compared to these two extremes, it is more
likely that updates from trainers are neither perfectly coherent
nor decoherent, but somewhere in between. The diversity in
trainer updates can be quantified by diversity coefficient,
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Larger value of + is indicative of higher degree of dissimilar-
ity between trainer updates and is very likely when training
on heterogenous data or for parameters with sparse updates.

RNN-T ASR model [12, 13] used in this work contains
three main components a) Encoder, b) Prediction network
(also referred here as Decoder) c¢) Joint network. Encoder
is analogous to an acoustic model and decoder to a language
model. Joint network combines outputs from encoder and de-
coder networks to generate output token probabilities. Fig-
ure 2 plots «y for few parameters in RNN-T when training
with human transcribed (HT) data. It can be observed that
changes as training progresses and is not same for all param-
eters. Trainer updates are most dissimilar for decoder input
embedding matrix, which has the largest «y value.
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Fig. 2. Plot of gamma for few parameters in RNN-T

To compensate for the effect of update diversity, we pro-
pose FedAvg-DS, which is an extension to FedAvg, that takes
~ into account via diversity scaling. Related notion of gra-
dient diversity can be found in [15], where it was shown that
high similarity between concurrent gradient updates is a cause
of performance degradation for mini-batch stochastic gradient
descent. Update diversity introduced here is not same as gra-
dient diversity and we incorporate it to accelerate federated
training.

A given layer or component of RNN-T model can con-
tain multiple trainable parameters. For example, joint net-
work consists of a kernel matrix and bias vector. We found
that it is best to apply the same scaling for all parameters in a
given layer. To do so, we estimate ~ seperately for each pa-
rameter in a layer and take their minimum as final scaling that
is applied for parameters in that layer. For brevity, layer-wise
scaling is not explicity shown in Algorithm 1

Setting Ypmqq to V'K, where K is the number of trainers,
works well in practise. FedAvg-DS takes inter-trainer update
dissimilarity into account via diversity scaling , which is not
considered in existing optimization methods like Adam [16].
Since 7 is calculated directly from trainer updates, there is no
additional hyper-parameter to tune.

4. RESULTS

For experiments in this paper, we use RNN-T ASR model
[12, 13] consisting of an encoder with 5 LSTM layers of 1024
units each, a prediction network with 2 LSTM layers of 1024
units each, and a joint network with one dense layer of 512
units. For audio input we stack three 10 ms frames to yield
192 dimensional Low Frame Rate (LFR) feature vectors of
log-Mel filter-bank energies, and apply SpecAugment [17]
during training. We use 4000 word pieces learnt from tran-
scribed data to represent output tokens. For all FL training
in this section, the Adam optimizer [16] is used on trainer
clients, with learning rate warm up from le-7 to 5e-4 in 3000

Algorithm 1: FedAvg with Diversity scaling
(FedAvg-DS)

Initialize global model w°
Initialize accelerated global model w
for roundt < 0,1,2,... do
Server
Identify set S* of K trainers
Send wf,, to trainers in S*
foreach trainer kin S* (in parallel) do
w % w(thC
foreach i in #steps/round do
| w+ w—nx*Vfp(w)
end
Send Al =w —w! .
end
Server
Update global model
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to server

Update accelerated global model

wit! = wh.. + min(y', Ymaz) * Afwg
where:
1 > At
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end

steps, constant learning rate of 5e-4 until 150K steps, fol-
lowed by exponential decay to Se-5 in 100K steps.

We report results using the WERR (Word Error Rate Re-
duction) metric on two de-identified test sets, based on record-
ings of Alexa interactions from a variety of voice-controlled
devices: 1) Head test set: 170 hours of randomly selected
data 2) Tail test set: 35 hours of data, each recording se-
lected to contain at least one ’rare’ word, based on a low fre-
quency threshold. An RNN-T model trained on 10kHr of de-
identified human transcribed data in a traditional distributed
training setup is used as the baseline for WERR calculation.

4.1. Effect of Diversity scaling

FedAvg-DS with diversity scaling presented in 3, scales aver-
age update by +, there by accounting for dissimilarity in up-
dates coming from trainers. Here is a comparison of FedAvg
and FedAvg-DS in a system containing 24 trainer clients, out
of which 12 are privileged trainers and 12 are restricted train-
ers.

Privileged trainers have access to 10kHr of HT data and
restricted trainers have access to a total of 20kHr of SSL data,
partitioned into multi-device silos. Table 1 has results after
2500 rounds of training at 100 steps per round, It can be seen



% WERR

Algorithm

Head | Tail
FedAvg 1.1 3
FedAvg-DS | 6.5 11.1

Table 1. Comparison between FedAvg and FedAvg-DS with
12 PT and 12 RT

that FedAvg-DS clearly outperforms FedAvg on both head
and tail test sets. For the rest of paper, FedAvg-DS is the
default algorithm.

4.2. Federated Learning with Semi-supervised data

FL system presented in Section 2 can utilize un-transcribed
data for model training via machine transcription. To inves-
tigate the effect of SSL data on FL training, we vary the pro-
portion of restricted trainers in the system. To investigate the
effect of starting point on FL training, we consider two global
model initializations for FL training a) Weak initialization,
pretrained for 5K steps on HT data b) Strong initilization, pre-
trained for 125K steps on HT data.

For results in Table 2, starting with a weak initialization,
we jointly train with 10kHr of HT data (used by privileged
trainers) and 20kHr of SSL data (used by restricted trainers).
Keeping total number of trainers constant at 24, we vary the
number of restricted trainers from 0(0%) to 21(87.5%) to con-
trol the effect of SSL data on global model. Each model is
trained for 2500 rounds with 100 steps per round.

%WERR
PT:RT | Data Head | Tail
3:21 10kHr HT + 20kHr SSL 6.3 13.7
6:18 10kHr HT + 20kHr SSL | 7.6 13.9
12:12 10kHr HT + 20kHr SSL 6.5 11.1

18:6 10kHr HT + 20kHr SSL 5 6.7
21:3 10kHr HT + 20kHr SSL | 2.3 3.2

Table 2. WERR after 2500 rounds of training

Results from Table 2 demonstrate that a) It is possible to
beneficially combine updates based on SSL data with updates
based on HT data during aggregation, without mixing data at
mini-batch level b) The best training configuration uses 75%
of all trainers as restricted trainers, yielding 7.6% WERR on
head test set and 13.9% WERR on tail test set.

We next investigate the utility of FL training to further
improve an already strong initial model, which is pre-trained
for 125K steps on HT data. To identify how FL training
progresses at larger data scale, we have increased the total
amount of SSL data from 20kHr to 200kHr and trained upto
10K rounds, while varying number of restricted trainers from
12 (50%) to 24 (100%).

Table 3 summarizes WERR results after 10K rounds of
training, while Figure 3 shows how WERR progresses on tail

%WERR
PT:RT | Data Head | Tail
0:24 200kHr SSL 10.4 | 20.6
3:21 10kHr HT + 200kHr SSL | 13.8 | 21.2
6:18 10kHr HT + 200kHr SSL | 13.8 | 20.5
12:12 10kHr HT + 200kHr SSL | 13.3 | 18.1

Table 3. WERR after 10K rounds of training
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Fig. 3. WERR on tail test data for extended training at differ-
ent number of rounds

test set with training round. We noticed that model perfor-
mance steadily improves on both head and tail test sets with
large volumes of SSL data, for all PT:RT configurations. Best
results are obtained by using a small proportion of (12-25%)
privileged trainers in system, yielding WERR of 13.8% on
the head test set and 21.2% on the tail test set, with tail per-
formance still improving after 10K rounds of training.

5. CONCLUSION

Diversity of updates in a federated training system has so far
not been considered to improve model training. The pro-
posed FedAvg-DS algorithm, takes update diversity into ac-
count and significantly outperforms Federted Averaging (Fe-
dAvg). In a typical FL system, it is not possible to mix Human
transcribed (HT) and Semi-supervised (SSL) data at mini-
batch level due to data access restrictions. To address this,
we have proposed a cross-silo federated learning system that
qualifies trainers based on data access rights. Privileged train-
ers can access Human transcribed data and Restricted trainers
can only access Semi-supervised data for training. This al-
lows us to jointly train with Human transcribed and Semi-
supervised data, without having to centrally mix data at mini-
batch level. Effect of SSL data on model performance can be
controlled by changing the proportion of restricted trainers in
the system. We found that model built with this FL system
outperforms baseline Non-FL model by 7.6% on head test set
and by 13.9% relative on tail test set when using 20kHr of
SSL data. Gains improve to 13.8% and 20.5% respectively,
when training from a stronger initial model with 200kHr of
SSL data.
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