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Abstract
Text classification has become increasingly important with the exponential growth of digital text data, finding
applications in sentiment analysis, spam detection, topic categorization, and content moderation across various
domains. Our research introduced a novel approach that integrates reinforcement learning with a specialized
reasoning path. This methodology enabled smaller 7B parameter language models to increase performance
significantly to the level comparable to larger models e.g. Claude 3.7, on an open source Pubmed multilabel text
classification task. We experimented with 1) Claude 3.7 and DeepSeek-R1-Distill-Qwen-7B (Qwen-7B) zero shot,
2) Supervised Fine-Tuned (SFT) Qwen-7B, 3) Reinforcement Learning (RL) Qwen-7B and 4) SFT + RL Qwen-7B.
We also experimented with different reasoning paths: 1) no reasoning, and 2) Socratic reasoning, as well as
different evaluation metrics as reward: 1) F1 score as reward, 2) Trustworthiness (or reasoning process accuracy) as
reward. The training data are composed of ~11,000 pubmed publication abstracts. We evaluated the performance
in another ~1,000 abstract. SFT + RL Qwen-7B with Socratic reasoning and F1 score as reward achieved the
highest F1 score of 0.8348. In summary, we proposed an innovative post-training paradigm integrating SFT, RL,
Socratic reasoning path, and Trustworthiness-as-Reward. With this paradigm, we were able to double the F1
score compared to the base 7B model and achieved a ~ 0.15 lift in F1 score compared to using SFT alone without
reasoning. Our pipeline demonstrates that strategic optimization of smaller models can achieve superior results
compared to simply scaling up the model size.
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1. Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language processing tasks, including text classification. Their performance can often be further
enhanced through supervised fine-tuning (SFT). However, in our previous experiments on various
datasets, it was found that using SFT alone cannot increase the performance of 7B models to the level of
Claude 3.7 on various tasks. This finding motivates us to explore opportunities to further improve the
7B models through reinforcement learning and reasoning path design. Moreover, we propose increasing
the trustworthiness of LLM reasoning process to increase the LLM’s performance on the final task.

This paper introduces a novel approach that integrates SFT, reinforcement learning (RL) with
"Trustworthiness-as-Reward" and a specialized reasoning path to improve LLM performance specifically
on text classification tasks. Using the evaluation metrics (F1-score or Trustworthiness) of classification
tasks as reward signals, we create a feedback loop that allows the model to learn from its own predictions
and gradually improve its performance. This method offers a promising direction for optimizing LLMs
through RL in a task-specific, metric-specific manner. Our approach not only aims to boost classification
performance but also explores the potential of reasoning path for self-improvement in language models,
paving the way for more adaptive and efficient AI systems in the field of natural language processing.

The outline of the paper includes: Background and related work survey (Section 2), the Proposed
method (Section 3), Experiments (Section 4), and Conclusions (Section 5).
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2. Background

2.1. LLM for text classification

Recent advances in text classification using LLMs have demonstrated diverse approaches to enhance
classification performance while addressing computational and resource constraints. Several innovative
methods have emerged, including self-training techniques where LLMs generate augmented training
data and assist smaller models [1], ensemble approaches that combine multiple LLMs with traditional
machine learning classifiers [2], and knowledge distillation frameworks where LLMs serve as teachers
for smaller student models [3, 4].

Researchers have also explored adaptive boosting frameworks, such as RGPT, which creates spe-
cialized classification LLMs through recurrent ensemble of base learners [5]. To address the challenge
of minimal supervision, some studies have developed methods that combine LLMs with taxonomy
enrichment and corpus-specific features [6], while others have integrated LLMs within active learning
frameworks to optimize human annotation efforts [7]. Cost-effective approaches have gained attention,
with some researchers proposing multi-stage in-context learning methods [8] and others focusing on
domain-specific fine-tuning strategies [9]. The integration of instruction fine-tuning has also shown
promise in improving classification performance for specific domains [10]. A notable trend across these
studies is the focus on reducing computational resources and annotation costs while maintaining or
improving classification accuracy.

2.2. Reinforcement Learning for LLM

Reinforcement Learning (RL) is a learning approach where an AI agent learns through trial and error
by interacting with its environment. Instead of being directly taught, it discovers optimal actions by
receiving feedback (rewards or penalties) based on its choices. Natural Language Processing (NLP),
particularly in modern LLMs, shares some fundamental connections with RL.

The transformer architecture used in modern LLMs can be viewed as implementing a sophisticated
form of RL’s state-action mapping, where the attention mechanism helps determine the most relevant
context (state) for generating the next token (action). Recent trends to combine RL with LLMs target 1)
model performance improvement through fine-tuning and 2) prompt optimization. Fine-tuning methods
modify the LLM’s parameters, while prompt optimization methods focus on improving how we interact
with unchanged models.

2.2.1. RL-Fine tuning

Human input plays an important role in RL-Fine tuning. Human input can be incorporated into fine-
tuning through two main channels: policy model training (where humans demonstrate desired LLM
behavior) and reward model training (where humans rank LLM outputs). In one study [11], researchers
utilized reinforcement learning to predict human-preferred Reddit post summaries, using a supervised
learning model as a reward function. The approach, which used Proximal Policy (PPO) Optimization
Algorithms [12] for fine-tuning, proved more effective than traditional NLP metrics like ROUGE in
generating summaries aligned with human preferences. Instruct-GPT, developed by Ouyang et al. [13],
demonstrated improved truthfulness and harmlessness through a three-step process: First, training a
policy model using human-demonstrated behaviors; second, developing a reward model trained on
human-ranked outputs; and third, fine-tuning LLM using RL with the reward model. The result showed
enhanced performance while maintaining generalization capabilities.

2.2.2. RL-Prompt optimization

Prompt optimization can often align LLM behavior with human preferences without the computational
burden of fine-tuning. Most studies focus on tuning soft prompts (e.g., embeddings), which are difficult
to interpret and non-transferable across different LLMs [14]. On the other hand, discrete prompts,



which consist of concrete tokens from vocabulary, are hard to optimize efficiently. Recent studies have
explored using RL to optimize discrete prompts, aiming to enhance LLM performance across various
tasks with minimal training data. RLPROMPT, developed by Deng et al. [14], takes a different approach
by training a transferable policy network for prompt generation. Their research revealed that effective
prompts don’t necessarily need to follow human language patterns, often appearing as grammatical
"gibberish." Unlike TEMPERA, which requires access to embedding vectors, RLPROMPT treats the LLM
as a black box and considers the entire vocabulary as potential actions.

2.3. Reasoning for LLM

Improvements in LLM reasoning are closely tied to advancements in a variety of techniques in inference
scaling at test time and learning-to-reason at training time. On the other hand, the release of Reasoning
Language Models (RLMs) such as OpenAI’s o1 and DeepSeek’s R1, marked a significant increase in
research dedicated to learning-to-reason approaches.

2.3.1. Inference Scaling

While Chain-of-Thought (CoT) laid the groundwork, researchers have developed more complex frame-
works such as Tree-of-Thought (ToT) and Forest-of-Thought (FoT), with the latter introducing sparse
activation and dynamic self-correction strategies for improved efficiency [15]. Some works have focused
on verification-based approaches, combining multiple reasoning paths with specialized verifiers to
assess and rank outputs [16]. The GLoRe framework introduced Stepwise Outcome Reward Models
(SORMs) trained on synthetic data to detect incorrect reasoning steps and implement both global and
local refinements [17]. Some researchers have explored bidirectional reasoning through reverse thinking
strategies [18], while others have focused on inference-time computation scaling [19] and automated
reasoning chain evaluation methods [20]. The field has also seen advances in controlling reasoning
processes through strategic thinking intervention [21] and grounding explanations in explicit reasoning
sequences [22].

2.3.2. Learning-to-reason

Recent advances in LLM reasoning studies have seen a surge in RLMs that simulate inference, generating
trajectories that capture potential reasoning paths using supervised and/or reinforcement learning.
Training innovations have included the development of preference trees for comprehensive reasoning
alignment [23] and rule-based reinforcement learning approaches using synthetic logic puzzles [24].
Process reward models (PRMs) have emerged as a promising direction, with innovations like step-
level advantages and process advantage verifiers (PAVs) showing improvements in both accuracy
and compute efficiency [25]. While traditional RLHF methods remain influential, [26] reveals that
different algorithms like Expert Iteration, PPO, and Return-Conditioned RL perform comparably well for
improving reasoning capabilities. Novel approaches include offline RL methods, with [27] introducing
OREO, which jointly optimizes a policy model and value function using the soft Bellman Equation,
showing superior performance on mathematical reasoning tasks. Several papers explore domain-
specific applications, such as [28]’s SWE-RL, which employs a lightweight rule-based reward system for
software engineering tasks, and [29]’s Rank-R1, which enhances document reranking through RL-based
reasoning. More recent developments include[30]’s ReSearch framework, which integrates search
operations into the reasoning chain without supervised data on reasoning steps, and [31]’s DAPO
algorithm, which introduces decoupled clip and dynamic sampling policy optimization for large-scale RL
training. These advancements are characterized by diverse reward mechanisms, from simple rule-based
approaches to more sophisticated joint optimization strategies, all contributing to enhanced reasoning
capabilities in LLMs.



3. Proposed Method

The purpose of the paper is to compare and identify the best LLM setup for Pubmed publication
category classification. Specifically, we introduced novel approaches leveraging ‘Socratic reasoning’
and ‘Trustworthiness-as-Reward’ to improve classification performance. ‘Socratic reasoning’ refers to
the prompt instructions to guide LLM to examine several key aspects for the classification task through
Question and Answer (QA). ’Trustworthiness’ score was calculated by evaluating the answer accuracy
of LLMs to the fifteen Socratic questions provided in the prompt. Our definition of ’Trustworthiness’ is
not focused on LLM’s internal mechanism behind the generation process. It aims to measure how well
LLM collects all the useful information from the input and how accurate LLM understand key aspects
of the input. The Socratic QA reasoning path + ‘Trustworthiness-as-Reward’ helps LLM to examine all
useful information from the input and corrects incorrect understanding of the input during RL. With
our hypothesis, this setup could provide users with the most accurate and trustworthy final answer
that is based a correct and thorough synthesis of the input.

We experimented with several post-training methods: 1) Claude 3.7/DeepSeek-R1-Distill-Qwen-7B
(Qwen-7B) zero-shot, 2) Supervised Fine-Tuned (SFT) Only, 3) Reinforcement Learning (RL) Only and
4) SFT + RL for Qwen-7B. We also experimented with different reasoning path prompt for inference
optimization: 1) no reasoning, and 2) Socratic reasoning. Finally, we compared using F1-score as reward
vs using F1-score + Trustworthiness’ as reward during RL training.

3.1. Data Summary

We leveraged an open source Kaggle dataset [32] to select training and test data for our experiments. Our
training data includes ~11,000 randomly selected Pubmed publication abstracts from the original Kaggle
dataset. Our test data is another randomly selected sample of ~1,100 Pubmed publication abstracts. The
output used as training material was generated by Claude 3.7. Claude 3.7 was given the gold standard
publication category and was instructed to provide reasoning (when applicable) on why the publication
should belong to those categories. On average, each publication has 5.7 MeSH tags associated with it.

3.2. Models

We compared three different base LLMs: 1) Claude 3.7 from Anthropic, released on 02/19/2025 and 2)
DeepSeek-R1-Distill Qwen-7B [33] to be the base model for the task.

3.3. LLM Post-training Setup

We experimented with four different post-training setups of LLM: 1) Zero-shot, 2) SFT-only, 3) RL-only,
4) SFT + RL. For SFT + RL, we performed SFT first, followed by RL as a second step. For RL, we adopted
Group Relative Policy Optimization (GRPO) algorithm [34], a reinforcement learning algorithm that
extends the concept of Proximal Policy Optimization (PPO) to handle group fairness constraints in
decision-making systems. It was introduced as a method to address fairness concerns in reinforcement
learning while maintaining good performance. For both SFT and RL, we employed QLoRA (Quantized
Low-Rank Adaptation) [35] for both SFT and RL phases. QLoRA enables efficient model tuning by
utilizing 4-bit quantization and low-rank adapters while maintaining model quality. This approach
significantly reduces memory requirements compared to full-parameter fine-tuning, allowing the
training of large language models on consumer-grade hardware. For RL, we tried three different reward
functions, including: 1) F1-score as reward, 2) Trustworthiness (or reasoning process accuracy) as
reward. ’Trustworthiness’ score was calculated by evaluating the answer accuracy of LLMs to the
fifteen Socratic questions provided in the prompt.



3.4. Reasoning Path

We experimented three different prompt instructions (see Figure 1): 1) No reasoning: provide LLM
with direct instruction of the task, which is to assign fifteen categories to each publication, 2) Socratic
reasoning: asking LLM to answer fifteen binary (Yes/No) questions, which were designed based on
domain knowledge (also provided by Claude 3.7) of the definitions of the fifteen categories.

Figure 1: Comparison between Different Reasoning Paths.

3.5. Evaluation Metric

We used two metrics for evaluation of model performance: F1-score and Trustworthiness. F1-score was
calculated based on Precision and Recall calculated based on gold standard topic list vs model output
topic list. Trustworthiness was calculated based on the accuracy of answer fifteen questions during
reasoning process. During RL training, we used F1 or Trustworthiness as reward, and applied the same
logic each generated output and feedback to the model.

4. Experiments

In this section, we will share and compare performance with different reasoning paths, different training
methods, and different reward function for RL.

Table 1 shows the F1 score of Claude 3.7 performance on the task of Pubmed publication classification,
using different reasoning paths. It shows with a Socratic reasoning path, Claude 3.7 can achieve a ~ 2%
lift in F1 score compared not instructed to reason. F1 lift mostly comes from improving on Recall (~
8% lift), which is aligned with our hypothesis that using Socratic reasoning can induce more thorough
examination of details in the abstract and reduce information skipped or missed during summarization.

Table 2 shows F1 score of fine-tuned Qwen-7B’s performance, using different reasoning paths. With
only SFT, providing no reasoning instructions achieves a comparable F1 score compare to using Socratic
reasoning. However, when combining with R1, training using Socratic reasoning path provide most
notable improvement on model performance (~ 4% lift for SFT+RL vs SFT-only). Although guiding
language models with Socratic reasoning path improved Recall, it does not lead to better precision than
models without such reasoning instructions. The addition of complex reasoning prompts may actually
increase the likelihood of errors and fabricated responses. This highlights the critical need to enhance
the reliability and accuracy of model outputs to achieve better precision and overall performance
(F1-score).



Table 1
Comparison of Pubmed publication Classification Performance of Claude 3.7 with or without Reasoning
Path

Reasoning Precision Recall F1

No 0.8611 0.5095 0.6402
Socratic 0.8476 0.5426 0.6616

Table 2
Comparison of Pubmed publication Classification Performance of Qwen-7B with or without Reasoning
Path

Method Reasoning Precision Recall F1

SFT No 0.8229 0.8163 0.8196
SFT Socratic 0.7625 0.8118 0.7864

SFT+RL - F1 No 0.8654 0.7781 0.8194
SFT+RL - F1 Socratic 0.7743 0.8739 0.8211

Table 3
Comparison of Pubmed publication Classification Performance of Qwen-7B using Training Methods
and Rewards with Socratic Reasoning Path

Method Reasoning Precision Recall F1 Trustworthiness

Zero-shot Socratic 0.4416 0.2792 0.3421 0.0238
SFT Socratic 0.7464 0.8668 0.8021 0.8017

RL - F1 Socratic 0.6201 0.6578 0.6384 0.0025
SFT+RL - F1 Socratic 0.7743 0.8739 0.8211 0.8425

SFT+RL - Trustworthiness+F1 Socratic 0.8246 0.8452 0.8348 0.8625

Table 3 provides an overview of performance for models trained with Socratic reasoning path but
using different training paradigm and reward functions. Specifically, we introduced a new metric/reward
function - ’Trustworthiness’ that calculates how accurately language models answer a set of fifteen
Socratic questions in the prompt. We can see the performance for zero-shot baseline is poor. However,
Both SFT and RL individually led to substantial improvements. SFT proved more effective than RL alone
because using RL alone does not induce LLM’s ability to follow instructed reasoning path. We observed
that the combination of SFT and RL techniques produced the best results with the Qwen-7B model.
Moreover, we observed that using Trustworthiness + F1 as reward generates superior performance (~
1%) than using F1 score as reward alone. The lift in F1 score is mostly contributed by lift in Precision by
~ 6% and lift in Trustworthiness by ~ 2% (’SFT+RL - F1’ vs ’SFT+RL - Trustworthiness+F1’ ). This proves
that ’Trustworthiness’ is a very important metrics that will help to improve LLM’s performance in text
classification tasks when used as a reward function during RL.

5. Conclusions

In summary, we proposed an innovative LLM training paradigm combining SFT, RL, Socratic reasoning
path and Trustworthiness reward. By leveraging RL with Socratic reasoning path and Trustworthiness
as reward, our paradigm effectively enhances the LLM’s capacity for learning and reasoning, while
optimizing key performance metrics: we were able to double the F1 score compared to the base 7B model
and achieved a ~ 0.15 lift in F1 score compared to using SFT alone without reasoning. This innovative
combination proposed a new direction to maximize the potential of LLMs in various applications.
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