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Abstract
Enterprise accounting data is complex, ambigu-
ous, and shaped by evolving systems and reg-
ulations. The institutional knowledge needed
to reason over the data is sparse, scattered and
rarely structurally documented—posing major
challenges for LLM agents. We introduce a
multi-agent financial research framework that
mimics a junior analyst’s onboarding and growth.
The Analyst Agent learns proactively from re-
peated month-end cycles, builds long-term mem-
ory, clarifies ambiguity with an Accountant Agent,
and collaborates with an Engineer Agent to re-
fine tools when needed. This self-learning, self-
reflecting, and tool-refining workflow enables the
agent to adapt to vague conventions, reason with
“business sense”, and validate its own analysis.
Evaluated on 200 realistic accounting questions
across four month-end cycles, our system boosts
first-response accuracy from 44.5% to 81.3%,
with measurable gains in reasoning, clarification,
and tool use efficiency. Our agent learns like hu-
mans, grow like humans, and ultimately reason
like humans—while working in a enterprise world
that is messy, ambiguous, and alive.

1. Introduction
In recent years, large language models (LLMs) have demon-
strated remarkable capabilities in reasoning, dialogue, and
code generation. These advances have led to a surge of
interest in agentic systems that use LLMs to perform tasks,
answer questions, and automate workflows ((Weng, 2023;
Anthropic, 2024; Inaba et al., 2023; Liang et al., 2023; Patil
et al., 2023; Hsieh et al., 2023)). While many of these sys-
tems excel on benchmarks based on curated datasets, they
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often fall short in real-world enterprise environments, where
ambiguity is the norm, tools evolve rapidly, and critical
knowledge is undocumented or implicit.

1.1. The Challenge of Real-World Financial Reasoning

Financial analysis in enterprise settings differs fundamen-
tally from benchmark datasets like Spider ((Lei et al., 2024)).
Real-world financial questions often require navigating over-
lapping fields, legacy systems, vague conventions, and un-
documented institutional knowledge ((Heger & DA, 2017;
Starck & Alex, 2023)).

Consider the seemingly simple question “What is the write-
off reversal for the last week of January in the US?”.
In benchmark environments, this would typically map
to a structured SQL query with clean schema: a field
like event type with values such as “write off reversal”,
a single event date, and a normalized country code.
In contrast, enterprise datasets may contain multiple
fields—financial event, invoice transaction type, and busi-
ness activity—each with loosely related values that may
or may not include “reversal”, “write-off”. Some transac-
tions even appear to be reversals of prior reversals, further
complicating interpretation.

Date filtering is also ambiguous: the dataset includes
transaction date, accounting date, invoice date, billing date,
and booking date, all plausible yet contextually distinct.
Country-level filtering adds another layer of confusion, with
fields such as geo country code, tax country code, and busi-
ness country code representing different countries based on
customer location, tax, or operational reporting.

This complexity is not due to poor data hygiene, but rather
the unavoidable consequence of business complexity at
scale. Large enterprises inherit heterogeneous systems
through merger and acquisitions and operate under diver-
gent accounting and tax regulations. While standardization
initiatives exist, they often apply only to new data, leaving
historical entries inconsistent but immutable due to audit
and compliance constraints.

Crucially, the knowledge required to resolve these ambigui-
ties is rarely centralized. Some of it exists in Excel formulas
or SQL queries. Other resides in internal documentation,
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email threads, or chat messages. Much of it remains tacit,
held only in the minds of seasoned accountants. Unlike pre-
training of LLM using web data—where the model learns
correct grammar by seeing it repeated across millions of
documents—enterprise institutional knowledge is sparse,
often held by just a few time-constrained domain experts,
making collecting large labeled datasets difficult.

1.2. A Human-Like Analyst Agent

Given those challenges, we argue that deploying LLM
agents in the large enterprise setting requires a shift in per-
spective: from “task automation” to apprenticeship and
growth. Rather than treating an LLM as a one-shot oracle,
we model our analyst agent after a junior analyst navigating
the first few months on a new job.

Our system evolves through three phases:

• Onboarding phase: The analyst agent explores its toolset
and rewrites tool descriptions in its own words, simulating
how a new analyst internalizes capabilities. It builds a
mental model of what each tool does and when to use it.

• On-the-job training phase: The analyst agent be-
gins handling real month-end tasks, interacts with
the users (accountants) for clarifications, accumulates
domain knowledge into memory, and—after its first
month—collaborates with the Engineer Agent for tool re-
finements. This phase simulates the steep learning curve
a new analyst faces when exposed to real questions, am-
biguous conventions, and live feedback.

• Production phase: Once trained, the agent enters produc-
tion mode. It continues to answer month-end questions,
but now draws heavily on its long-term memory to reduce
clarification and accelerate reasoning. Like a seasoned
analyst, the agent exhibits more confidence and indepen-
dence, while still updating its memory and periodically
refining its tools as needed.

Unlike traditional agents that rely on rigid prompts or fixed
APIs, our agent grows in capability and context over time.
It learns the behavior of its tools through exploration, re-
fines them through collaboration, and answers questions by
combining memory, business sense, and analytical reason-
ing. The result is a system that behaves not like a command
executor—but like a self-developing team member.

In summary, we present a new paradigm for building an-
alyst agents in enterprise settings: agents that learn like
humans, grow like humans, and ultimately reason like hu-
mans—while working in a world that is messy, ambiguous,
and alive.

2. Methodology
2.1. Multi-Agent Architecture

We built a customized multi-agent framework. Our frame-
work is built around three agents, each simulating a real-
world role on a financial analytics team (Figure 1):

Financial Analyst Agent: The central agent responsi-
ble for answering financial questions, reasoning over data,
accumulating domain knowledge, and initiating tool im-
provement requests when its capabilities prove insuffi-
cient. Financial Analyst Agent has the following tools:
get pivot table (generate pivot tables for selected fields),
review field profile (show sample data for each field in the
dataset), query knowledge base (connects to a knowledge
base), edit notes (agent’s memory) and test new tools (load-
ing new tools).

Engineer Agent: A coding agent that updates the analyst’s
toolset based on feedback. It edits tools, conducts unit tests,
and collaborates with the Analyst Agent to validate new
tools via real user questions. Engineer Agent has tools
similar to a mini-IDE, which enables it to plan, write, test,
search, edit, and delete scripts.

Accountant Agent: A simulated domain expert and user. It
evaluates responses, provides clarifications or corrections,
and reflects the often undocumented institutional knowledge
that analysts must extract through conversation. Accountant
Agent doesn’t have any tools. It is to simulate real account-
ing users. In production, accountant agent is replaced by
human accountants.

Analyst Agent interacts with both the Accountant Agent and
the Engineer Agent and the Engineer Agent only interacts
with the Analyst Agent — reflecting separation of duties
commonly found in enterprise teams. This setup ensures that
responsibility for data reasoning and tool maintenance are
divided, reducing risk by introducing a “two-agent quality
check” dynamic. During our experiments, we observed the
benefit of this separation: the Engineer Agent occasionally
forgot to update tool description after repeated unit test
failures, but the Analyst Agent was able to detect this issue
during testing and report it back, resolving the problem
autonomously without human involvement.

2.2. Learning Phases

We model the Analyst Agent’s growth using three distinct
phases that reflect real-world onboarding and training of a
new financial analyst:

2.2.1. PHASE 1: ONBOARDING

The onboarding phase simulates what a junior analyst might
experience during their first week. The Analyst Agent is
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Figure 1. A multi-agent collaboration diagram between Analyst Agent, Engineer Agent, and Accountant Agent.

introduced to its toolset and asked to explore each tool by
answering a set of sample questions 1. After using a tool,
the agent rewrites the tool’s description (tools config) in its
own words — summarizing when the tool is useful, how
to configure its inputs, and what its limitations are. This
onboarding step serves multiple purposes:

• It helps the agent form a mental model of tool behavior,
similar to how human analysts develop intuition about
internal tools.

• It reinforces distinctions between tools that might other-
wise be conflated (e.g., whether to use notes vs. query the
knowledge base).

We found that onboarding increased the frequency and ap-
propriateness of tool usage — for example, knowledge base
queries became more common and correctly timed after the
agent rewrote its own tool descriptions.

2.2.2. ON-THE-JOB TRAINING

During the on-the-job training phase, the Analyst Agent
is exposed to realistic month-end analysis questions, often
ambiguous or poorly defined. It interacts with the Accoun-
tant Agent for clarification, and uses the edit notes tool to
record:

1Answers to the questinos are not provided. Samples questions
are not present in the evaluation dataset.

• Business rules or accounting definitions
• Examples of past analyses and computed metrics (e.g.

“cash application was $XXM in September 2024”)
• Tool limitations (e.g. “pivot tool cannot filter by key-

word”)

After completing the first month-end, the agent initiates
a tool refinement session with the Engineer Agent, using
notes to propose feature enhancements and provide real use
cases as test cases.

This phase models how junior analysts learn by doing and
partner with other team members to improve tooling. Rather
than being front-loaded with static knowledge, the Analyst
Agent picks up conventions, patterns, and terminology dy-
namically through interactive sessions. Importantly, the
Analyst Agent is prompted to proactively ask for valida-
tion (e.g. “Could you please verify my analysis and let me
know if anything looks incorrect?”). This leads to higher
correction rates from users, enabling the Analyst Agent to
accumulate knowledge that would otherwise remain hidden
in people’s heads.

2.2.3. PRODUCTION

Once trained, the agent enters production mode. It continues
to handle month-end workflows but now behaves more like
an experienced analyst:
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• Clarifies less and reasons faster, drawing from its accumu-
lated notes and past examples

• Makes decisions based on “business sense” developed
over time

• Still refines its memory and occasionally initiates tool
improvements during scheduled refinement windows

This phase shows how the agent graduates from active train-
ing to confident execution—while still growing, learning,
and adapting based on evolving business needs.

2.3. Tool Refinement Process

To enable safe and continual improvement of analytical
capabilities, we introduce periodic tool refinement opportu-
nities 2, which mirrors real-world release cycles, preventing
overreaction to edge cases while enabling incremental en-
hancements. After every 10 questions, the Analyst Agent
would:

• Review memory for known tool limitations
• Propose feature requests to the Engineer Agent
• Choose to defer refinement if no changes are needed

Tooling improvements follow a rigorous testing framework:

• Unit Testing: Engineer Agent tests new tools against
sample data provided in the main prompt. While sample
test data is provided, the agent may generate custom data
for edge case testing.

• User Acceptance Testing (UAT): Analyst Agent tests the
refined tool using memory from prior month-end analyses,
validating outputs against its “business knowledge”.

• Production Approval: Once tools pass all tests, the Ana-
lyst Agent issues a “CFO sign-off” to finalize deployment.
Sessions close automatically upon detecting this keyword
or after a max iteration cap.

Tools are categorized as:

• System Tools: Immutable utilities like querying the
knowledge base or editing memory. Analyst Agent can
edit the description of those tools, but is not allowed to
change the actual functions.

• Flexible Tools: Custom analytical functions (e.g., pivot-
ing, filtering) that the Engineer Agent can revise.

All changes—including code, test results, and ratio-
nale—are versioned and logged for transparency and fu-
ture audits. This structured process allows agents to evolve
tooling safely and autonomously, making the system gov-

2Due to the evolving nature of tools, we did not use any tool
related examples or chain-of-thought style prompting in the Agent
prompt. Agents selects tools purely based on general instructions
and tool description in tools config.

ernable.

2.4. Long-Term Memory and Knowledge Accumulation

Since institutional knowledge is often undocumented or
scattered across tools like Excel, email, and verbal com-
munication, we equip the Analyst Agent with a persistent
long-term memory system. This memory is:

• Editable: The agent can update its memory via an
edit notes tool.

• Incrementally Updated: Memory can be modified after
clarifications or successful task completions.

• Structured: Notes are organized using HTML-like tags
to support scoped storage and efficient retrieval (see ex-
ample in Appendix A)

• Auditable by human: the agent’s notes are inspectable
and editable, ensuring that accumulated knowledge can
be reviewed or corrected by humans.

This structured format enables parsing, versioning, and
querying by topic. Currently, notes are indexed by account
number but the framework can be generalized to other di-
mensions such as region, business unit, or transaction type.

Long-term memory empowers the Analyst Agent to exhibit
business sense—making decisions aligned with institutional
expectations and learned norms over time.

3. Evaluation
3.1. Evaluation Data

To evaluate our agent’s learning, reasoning, and adaptability
over time, we use a custom dataset of 200 accounting ques-
tions (see examples in Table 3), 50 each month repeated
across four consecutive month-end cycles. The questions
are applied to a stratified, scaled sample of real enterprise
financial transaction data with over 100 fields. While the
questions remain structurally identical each month, the un-
derlying financial data changes, producing different correct
answers and reasoning paths.

This setup reflects how month-end analysis works in the real
world: most workflows and metrics (e.g. write-offs, collec-
tions, balance movement) are recurring, but the numbers,
patterns, and anomalies change every month. This allows us
to directly measure the agent’s ability to retain knowledge,
generalize reasoning strategies, and respond to new data
over time. The dataset covers a broad range of question
types, designed to capture the full complexity of real-world
enterprise accounting:

• Recurring analytical tasks (46%) e.g., “What’s the total
credit memo issued (excluding reversals) this month?”

• Ambiguous filters (40%) e.g. “What are system reversals

4



Self-Improving Multi-Agent Framework for Financial Reasoning in the Enterprise

in March?” (multiple candidate fields and values)
• Exploratory open-ended analysis (4%) e.g., “What’s

unusual this month?” (requires multi-dimensional break-
downs)

• Conflicting conventions (8%) e.g., definitions of “cash”
that vary by region or team

• Reasoning-based conflict (2%) e.g., ground truth is incor-
rect, and the agent must detect and defend a more accurate
answer

Each question is annotated with a target answer, a reference
reasoning path, including which filters, fields, or pivot views
an experienced analyst would use to reach that answer and
a question classification tag.

In open-ended analysis category, we simulate subtle anoma-
lies in 2 of the 4 months. For example, a configuration error
in the booking system for US game subscriptions caused
credit memo issuance to go unposted from January 15–20.
The issue was identified during Jan month-end, so miss-
ing entries were posted on Feb 3rd 3. In the remaining 2
months, no such anomaly is present—the correct answer is,
in fact, “no obvious anomaly.” For questions with “no obvi-
ous anomaly”, we focus more on the reasoning path than the
final answer and we would rate the answer as accurate only
if the agent explores in depth before drawing conclusions.

3.2. Evaluation Metrics

We design our evaluation framework to measure the ca-
pabilities of the Analyst Agent as a human-like financial
analyst—not just as a LLM model. In enterprise settings,
the best analysts are not only accurate, but cautious, struc-
tured, and communicative. To reflect this broader capability
set, we go beyond conventional accuracy and introduce five
metrics: accuracy, clarification score, validation and learn-
ing Score, reasoning score and tool call efficiency4. These
metrics evaluate not just what the agent gets right, but how
it reasons, explores, collaborates, and grows.

3.2.1. ACCURACY

Accuracy remains a foundational metric—but we adapt it to
reflect the multi-turn ambiguity of real-world analysis.

• First response accuracy: Does the agent arrive at the

3To simulate the anomaly in the data, we deleted the related
transactions from Jan 15th to 20th, and insert the related trans-
actions to Feb 3rd with the same transaction date but a different
accounting date. This mocks re-driving traffic for missing transac-
tions.

4For all metrics other than accuracy and tool call efficiency,
we rely on LLM as a judge. Accuracy relies on both regex rules
and LLM as a judge. All inconsistencies are reviewed manually.
Questions other than recurring and ambiguous categories are all
cross-validated by human.

correct answer immediately?
• Second response accuracy: Does it improve after one

round of clarification?
• Five-response accuracy: Captures eventual convergence

within allowed interactions with the Accountant Agent

We use a combination of rule-based matching and LLM-
based judgment, with manual adjudication for edge cases
(e.g., rounding errors from decimal mismatches). This hy-
brid setup ensures robustness in evaluation.

3.2.2. VALIDATION AND LEARNING SCORE

In low-documentation environments, agents must actively
solicit user feedback to learn and adapt. This metric captures
whether the Analyst Agent seeks confirmation on its findings
and invites corrections to update its long-term memory.

3.2.3. CLARIFICATION SCORE

Clarification is central to enterprise communication. When
faced with ambiguity, top analyst explains what they’ve
tried, flags ambiguities early and clearly, enumerates pos-
sible interpretations and ask targeted follow-up questions.
We grade clarification quality using a 5-level rubric using
LLM as a judge (see Appendix F), ranging from overcon-
fident overcommitment to structured, analyst-like clarifica-
tion. This score helps assess trustworthiness and judgment
under uncertainty—critical traits for real-world deployment.

3.2.4. REASONING SCORE

Reasoning score measures how well the agent thinks like a
top analyst. It includes:

• Justified tool usage: Are tool calls meaningfully
grounded?

• Path breadth: Does the agent explore multiple possible
breakdowns or definitions?

• Sequential logic: Are steps linked coherently and refined
as results arrive?

• Exploration coherence: Is the reasoning path understand-
able, even if not optimal?

This score, rated by LLM (Appendix G), evaluates how the
agent works, not just whether it gets the answer.

3.2.5. TOOL CALL EFFICIENCY

This is our proxy for latency and cost efficiency. It measures
total tool calls per questions, unique tool calls and redun-
dancy and re-tries. Efficient, well-reasoned paths indicate
maturity. Excessive retries may reflect tool failures, con-
fusion, or shallow reasoning—patterns we discuss in later
analysis.
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3.3. Evaluation Experiments

We conduct five experiments to test different learning setups
using Claude Sonnet 3.7 functional calling API. Table 1
describes our experiment setups.

3.4. Quantitative Evaluation Results

As shown in Table 2, accuracy improved dramatically across
all stages—particularly for ambiguous and recurring ques-
tions. First response accuracy improved from 44.5% to
81.3% and second response accuracy improved from 72.5%
to 93.3%. Broken down by month (see Table 4), it is clear
that with long-term memory, month 3 and 4 and have gener-
ally higher accuracy compared to the first two month. This
is the expected effects of institution knowledge gain. It is
also worth noting that accuracy within 1st response in the
first month also improved by 8%+ just by long-term mem-
ory, an effect of “gaining business sense” (see section D.5
for details).

For clarification score, the improvements from 78.9% (base-
line) to 88.1% (best tool) is mainly attributed to Analyst
Agent being able to clearly present the ambiguities in data
(see sample session log in Appendix E). With long-term
memory, Analyst Agent is more likely to spot ambiguities
as it can see partially overlapping concepts in the notes.
With refined tool that allows the Analyst Agent to filter and
search across the datasets, Analyst Agent is able to quickly
uncover ambiguities like multiple fields all contain values
for the same concept.

Reasoning score improved from 84.1% (baseline) to 90.4%
(best tool). While reasoning ability stems from the foun-
dation model, reasoning quality in practice is a function of
tools, context, and memory. With memory and better tools,
reasoning didn’t get smarter—it got more fluent. We
observed improved reasoning scores over time due to three
key factors:

1. Tool improvements: New tools like com-
pare trend across time or enhanced pivot filters
allowed the agent to express multi-step logic more
efficiently. Rather than chaining 3 pivot calls to compare
monthly trends, the agent could now compare trends in
one shot, freeing up tool calls for deeper analysis.

2. Long-term memory: The agent learned common rea-
soning patterns from past answers—e.g., “this account is
usually analyzed by financial event”—and reused them
effectively.

3. Fewer dead-ends: With better tools and business sense,
the agent spent less time on fruitless queries and more
time refining valid hypotheses, leading to clearer, more
coherent reasoning chains.

3.5. Failure Modes and Qualitative Observations

Despite strong quantitative gains, several recurring failure
patterns emerged. We observe that agent errors often stem
from misunderstandings of tool parameters (e.g., how filter-
ing logic works), insufficient exploration depth for broad
anomaly detection tasks, or new tool failures due to imper-
fect refinement. Interestingly, agents sometimes demon-
strated “human-like” missteps: over-trusting ambiguous
parameter description, overcompliance with authority, or
adapting workaround strategies when tools behaved unex-
pectedly. These behaviors suggest that while the agent
approaches human analyst behaviors, it also inherits human-
style limitations without explicit additional safeguards. We
document detailed examples and discussions in Appendix
D.

4. Conclusion
We propose a human-centric framework for building a fi-
nancial research agent that learns and evolves like a real
analyst. Through staged onboarding, on-the-job training,
and memory-driven refinement, the agent builds domain
knowledge, collaborates with simulated coworkers, and im-
proves its tools over time. Our multi-agent setup—with
the Analyst Agent supported by Accountant and Engineer
Agents—mirrors real enterprise workflows and enables be-
havior that feels grounded and realistic: clarifying ambigu-
ity, reusing prior logic, validating reasoning, and escalating
tool limitations when needed.

Our findings suggests a shift in how we build enterprise
agents: from hardcoded safeguards and workflows to or-
ganizational scaffolding—structured memory, transparent
tools, and iterative feedback. Rather than preventing hal-
lucinations at all costs, we focus on designing agents that
communicate clearly, learn over time, and, like their human
counterparts, improve with each cycle.

5. Related Work
5.1. LLM Tool Use

The integration of external tools with Large Language Mod-
els (LLMs) has significantly enhanced their capabilities
in complex tasks. There are two main work streams to
incorporate tools into LLM, fine tuning and in-context learn-
ing. Toolformer ((Schick et al., 2023)) introduced a self-
supervised approach, enabling LLMs to decide when and
how to use external tools during inference. Toolkengpt
((Hao et al., 2024)) augments frozen language models with
many tools via tool embeddings.

For in-context learning, the ReAct framework ((Yao et al.,
2022)), synergizes reasoning and acting in LLMs by in-
terleaving thought processes with actions (tool calling) .
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Table 1. Summary of Experimental Settings
Experiment Description
Baseline No memory, basic tools, Claude Sonnet 3.7 function call with hardcoded tool config.

Notes are transient—each question is independent.
Memory Adds persistent memory via edit notes, visible in the system prompt.
Memory + Onboarding Agent rewrites tool descriptions in onboarding to build stronger mental models.
Memory + Onboarding +
Dynamic Tool Refinement

Every 10 questions post–month one, the agent may collaborate with the Engineer Agent
to revise tools.

Memory + Onboarding +
Single Tool Refinement

One tool refinement opportunity after month one, simulating a structured “retro” session.
This experiment is run 10 times and we report the best, worst, and average results.

Table 2. Full Evaluation Results Across Agent Variants

Metric Baseline Memory + Onboarding + Dynamic
Refinement

+ Single
Refinement

(Worst)

+ Single
Refinement

(Best)

+ Single
Refinement

(Avg)

Accuracy
Correct 1st Response 44.50% 62.50% 65.50% 80.50% 72.70% 81.30% 74.80%
Correct Within 2 Responses 72.50% 81.00% 84.00% 91.90% 84.70% 93.30% 88.10%
Correct Within 5 Responses 83.50% 89.00% 89.00% 98.70% 95.30% 98.00% 95.80%

Behavior Metrics
Validate and Learn 98.50% 98.50% 97.00% 99.30% 99.30% 99.30% 98.60%
Clarification Score 78.90% 83.10% 85.10% 85.90% 87.70% 88.10% 86.80%
Reasoning Score 84.10% 85.60% 86.80% 88.90% 90.20% 90.40% 89.40%
Avg Tool Calls 6.02 3.53 4.43 3.16 4.21 2.65 3.83
Unique Tool Calls 5.18 2.75 3.47 2.94 3.99 2.47 3.52
Unique/Total Ratio 0.86 0.78 0.78 0.93 0.95 0.93 0.92

Chameleon ((Lu et al., 2023)) extends this by introducing
plug-and-play modules for compositional reasoning, allow-
ing LLMs to compose various tools for complex tasks. Hug-
gingGPT ((Shen et al., 2023)) leverages LLMs to orchestrate
a variety of models, using language as a universal interface
to manage and execute tasks across different modalities.
ToolLLM ((Qin et al., 2023)) proposed depth-first search-
based decision tree algorithm to improve reasoning in or-
chestrating multiple rounds of tool interactions. Reflexion
((Shinn et al., 2023)) presents a framework where language
agents improve through linguistic feedbacks, reflecting on
their actions to enhance decision-making without updat-
ing model weights. Recently, SOTA commercial models
like ChatGPT ((OpenAI, 2023)) and Anthropic ((Anthropic,
2024)) releases native function call capabilities, enabling
users to incorporate functionals call by simply provide tool
descriptions.

5.2. Self-Refinement and Tool Creation

Self-Refine ((Madaan et al., 2023)) proposes an iterative
refinement approach where LLMs improve their outputs
through self-feedback loops, enhancing performance with-
out additional training. ReST Meets ReAct ((Aksitov et al.,
2023)) integrates the ReAct framework with the ReST (Re-

inforced Self-Training) method, enabling agents to itera-
tively refine their reasoning and actions via feedback and
reinforcement learning. Self-Taught Reasoner ((Zelikman
et al., 2022)) iteratively fine-tune LLM on self-generated
rationales that lead to correct answers. SiriuS ((Zhao et al.,
2024)) introduces a self-improving, reasoning-driven op-
timization framework for multi-agent systems where the
agents are fine-tuned on successful past interactions aug-
mented by feedback. In the robotics domain, REMAC
((Yuan et al., 2024)) uses Vision Language Model (VLM)
and incorporates a self-reflection module for progress eval-
uation and plan refinement, and a self-evolvement module
dynamically adapting plans based on scene-specific reason-
ing.

On the tool creation side, the LATM ((Cai et al., 2023))
framework envisions LLMs as tool makers, where models
create reusable tools to solve problems, reducing reliance
on pre-existing tools and enhancing efficiency.

5.3. Memory in LLM Agents

Effective memory mechanisms are crucial for LLM agents
to maintain context and learn over time. AIOS ((Mei et al.,
2024)) proposes an LLM-based agent operating system that
isolates resources and services into a kernel, providing fun-
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damental services like memory management and context
handling to enhance agent efficiency. Voyager ((Wang et al.,
2023)) uses a skill library for storing and retrieving complex
behaviors so it can be reuses in future games. RET-LLM
((Modarressi et al., 2023)) introduces a general read-write
memory unit for LLMs, allowing explicit storage and re-
trieval of knowledge in the form of triplets, improving per-
formance in tasks requiring temporal understanding. Xu et
al. (2025) introduced A-MEM ((Xu et al., 2024)), an agen-
tic memory system inspired by the Zettelkasten method,
which dynamically organizes memories through contextual
descriptions, keywords, and tags.
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A. Example of long-term memory
Numbers for illustrations only.

<account_12345>
<write-off>

Use field business_event containing
’write_off’.
For each related category, find the
related reversal entries and compute
the net write off after reversal.
No need to remove reversals from field
‘‘line_intent". Those are already
‘‘netted out" when grouping by
business_event.
In Jan 2023, total write off is 12.52
million

</write-off>
</account_12345>

B. Sample Evaluation Data
See table 3.

C. Accuracy by Month
See Table 4 and Figure 1.

D. Qualitative Observations and Failure
Modes

Despite substantial gains in accuracy and reasoning met-
rics, our experiments reveal several important failure modes
and qualitative behavioral patterns, many of which mirror
those seen in junior human analysts operating in real-world
finance teams.

D.1. Tool Misunderstanding and Interface Gaps

One of the most consistent sources of failure stems from
the agent misunderstanding tool capabilities—particularly
when tool instructions are underspecified. For example, An-
alyst Agent assumed a contains-based keyword filter was
available for pivot table tool, when in fact the implemen-
tation only supported exact match logic. This mismatch
led the agent to repeatedly attempt queries that returned no
results. In some cases, the agent was able to recover by
switching to other tools (e.g. trend analysis tool) or running
the pivot table tool without filtering, but in others, it timed
out before reaching a meaningful answer due to the limited
tool call budget.

These failures highlight the importance of precise tool docu-
mentation, and more broadly, the challenge of agent align-
ment in systems where tools evolve dynamically. Notably,
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Table 3. Examples from the Evaluation Dataset
Question Reference Reasoning Path Target Answer Question Type
For account 12345, what is the
ratio of invoices issued to cash
applied (excluding reversals)
in September 2024?

Filter business event =
“invoice issuance”, net of any
“reversal” entries for numerator;
filter business event =
“cash application”, net of
“reversal” entries for
denominator.

295.50% Recurring analytical
tasks

For account 12345, what is the
total credit memo issued for
pay by invoice in Dec 2024?

Filter business activity
on keywords
“credit memo issuance” and filter
transaction description
on “PBI”. PBI stands for Pay by
Invoice.

22,719.53 (credit) Recurring analytical
tasks

What’s the total cash activities
this month?

Filter financial event on
cash application, cash
unapplication, cash
identification, and cash
unidentification.

1,234,567.89 Conflicting conventions
(definitions of “cash”
varies across questions)

What’s the top 3 sources of
write-off?

Filter business event by
write-off. For each category,
compute the net write-off after
reversal entries. Don’t need to
consider reversals using field
line intent, as those are
already “netted out” when you
group by business event.
Rank items by absolute values
and return the top 3.

1. bad debt write-off
2. bankruptcy
write-off
3. overpayment
write-off

Reasoning-based conflict
(Correct answer:
1. bad debt write-off
2. credit memo write-off
3. overpayment
write-off)

Is there anything unusual with
credit memo issuance this
month?

Break down the credit memo
issuance by issuer, accounting
date, transaction date. Compare
trends to prior month. No
missing or unusual spikes/dips
observed.

There is no obvious
unusual data points

Exploratory open-ended
analysis

Note: Numbers for illustration only, not actual financial numbers.

the agent did not hallucinate outputs in these cases—it re-
ported tool failure honestly—but its ability to reason through
next steps was often constrained by call budget or unclear
fallback strategies.

D.2. Tool Failures and Resilience

We also observed failure cases where the tools themselves
contained implementation bugs. For instance, in one ex-
periment involving dynamic tool refinement, the newly de-
veloped generate current month pivot tool silently failed
when sort=True was passed—an edge case not covered dur-
ing the agent-driven UAT testing phase. As a result, the
agent repeatedly called the tool with the same parameters,
observed identical responses, and eventually concluded (cor-

rectly) that the tool was broken. Interestingly, this mirrors
how human analysts often behave in buggy environments:
retrying an action multiple times before reporting the issue.
While the repeated retries lowered the reasoning efficiency
score, it also illustrated the agent’s contextual awareness
and internal error detection loop.

These incidents emphasize the need for richer test coverage
during agent-driven development, as well as the potential
value of integrating tool health monitoring and rollback
mechanisms into agent frameworks.
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Table 4. Accuracy Over Time by Experiment Type (First and Second Response)

Experiment 1st Response Accuracy 2nd Response Accuracy
Month 1 Month 2 Month 3 Month 4 Month 1 Month 2 Month 3 Month 4

Baseline 42.0% 46.0% 48.0% 42.0% 76.0% 76.0% 72.0% 66.0%
Memory 54.0% 64.0% 64.0% 68.0% 80.0% 84.0% 82.0% 78.0%
Memory + Onboarding 50.0% 64.0% 74.0% 74.0% 82.0% 78.0% 88.0% 88.0%
Memory + Onboarding + Dynamic Tool Refinement 50.0% 78.0% 82.0% 81.6% 82.0% 90.0% 92.0% 93.9%
Memory + Onboarding + Refined Tools (Best) 50.0% 74.0% 84.0% 86.0% 82.0% 90.0% 94.0% 96.0%
Memory + Onboarding + Refined Tools (Worst) 50.0% 68.0% 76.0% 74.0% 82.0% 80.0% 90.0% 84.0%
Memory + Refined Tools (Avg) 50.0% 71.1% 76.9% 75.8% 82.0% 86.9% 88.9% 88.2%

Note: All tool refinement experiments start in Month 2, using the notes and tool description from Memory + Onboarding Experiment.

Figure 2. A multi-agent collaboration diagram between Analyst Agent, Engineer Agent, and Accountant Agent.

D.3. Limitations of Exploratory Analysis

Open-ended questions such as “What’s unusual this month?”
proved to be the most difficult for the agent, even in configu-
rations that included long-term memory and enhanced tools.
We deliberately embedded subtle simulated anomalies in
two of the four test months—for instance, a booking config-
uration issue in a specific product line that suppressed credit
memo issuance bookings during a short mid-month window.
Although the agent was able to detect these anomalies in a
small fraction of trials, its success rate at first response was
only 15%.

In sessions without injected anomalies, the correct answer
was “no major issue detected.” In these cases, we expected
the agent to perform a reasonable level of diligence be-
fore reaching that conclusion—for example, exploring ac-
tivity by region, product, channel and date. Some sessions
showed shallow trend comparison (e.g., “credit memo is-
suance decreased 10% from last month.”) without deeper

slicing. While this behavior is not incorrect, it falls short
of the standard expected from experienced human analysts.
It suggests that exploration depth remains a challenge,
especially under interaction caps and limited computational
budget.

We view these results as a limitation of the current
“live agent” setup, and believe that anomaly detec-
tion—particularly over large spaces—is better suited for
offline processing using dedicated time-series analysis meth-
ods, with the agent acting as an interpreter and explainer
rather than a primary anomaly detector.

D.4. Behavior Under Conflicting Ground Truth

In one scenario, the ground truth answer provided by the
Accountant Agent was intentionally incorrect, represent-
ing a reasoning conflict between institutional memory and
formal logic. In this case, the Analyst Agent correctly iden-
tified the logical inconsistency, explained its analysis steps
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clearly, and pushed back on the Accountant’s suggestion.
This behavior demonstrates that the agent is capable of
taking a position when its internal reasoning path is
well-supported.

However, in contrast, when the agent encountered conflict-
ing definitions across time—such as different interpretations
of “cash” between questions—it consistently apologized and
adopted the most recent user-provided definition without
challenging the inconsistency. This over-deference appears
to stem from the foundation model’s safety bias and over-
compliance with authority figures. While it reflects a desir-
able alignment in many LLM use cases, it can reduce perfor-
mance in high-stakes analytical workflows where selective
skepticism is necessary. Additional experiment suggests
this behavior can be corrected with more precise prompting
(e.g., “If your memory and the user’s instruction conflict,
clarify explicitly”).

D.5. Learning and “Business Sense”

With long-term memory and tool refinement, the agent be-
gan to demonstrate emergent “business sense.” It prioritized
high-signal fields like financial event, reused filters that had
worked in prior questions, and selected breakdown strate-
gies based on accumulated intuition. For example, even
when a filtering tool failed to return results due to techni-
cal limitations, the agent commented, “Interesting, let me
double-check to make sure I’m not missing anything”, and
proceeded to verify the answer using other tools. This kind
of reflex—interpreting tool silence as an exploration sig-
nal rather than a terminal state—is a subtle but important
behavioral marker of analyst-like thinking.

We also observed emergent redundancy: the agent would
cross-validate results using multiple tools, even if one tool
had already returned a plausible answer. While this in-
creases tool usage slightly, it enhances robustness and aligns
with standard double-check behavior in real finance teams.

E. Sample Session Logs
All numbers and category names are for illustrations only.
Tool response and reasoning is omitted.

Baseline:

• Question: For account 12345, what was the total bad debt
write-off amount in October 2024?

• Tool Calls:
– review field profile
– generate current month pivot

• 1st Response:
Based on the data I’ve analyzed for account 12345 in
October 2024, the total bad debt write-off amount was
-22,164.89 (combining AutoInvoice and OFA journal cat-

egories):
– AutoInvoice: -1,553.12
– OFA: -20,611.77

These represent the “bad debt write off” category, dis-
tinct from fraud or operational write-offs.

• Evaluator Comments: The Agent Analyst reviewed sam-
ple values from each field and selected a field that only
contain refined bad debt write-off categories from two
posting systems. As a result, it made three mistakes:

– Missed write-offs from other posting sources.
– Fraud and operational write-offs should also be in-

cluded.
– The analysis did not clarify whether the number is

gross or net of reversals.

Dynamic Tool Refinement:

• Question: For account 12345, what was the total bad debt
write-off amount in October 2024?

• Tool Call:
– generate current month pivot

• 1st Response:
The total bad debt write-off amount was -$1,812,635.84.
I also notice there were bad debt write-off reversals of
$72,229.49 during the same period, which would par-
tially offset the write-offs if you’re looking at the net
impact. With reversals, total net bad debt write-off is
-1,740,406.35.

• Evaluator Comments:
– Used correct pivot view based on long-term memory.
– Presented both gross and net values with clear ratio-

nale.

F. Clarification score card
• Level 1: No Clarification (Overcommitment) e.g. The

analyst didn’t confirm the accounting policy in her first
response to the accountant and the relevant information is
not in analyst’s notes.

• Level 2: Passive Clarification (Throws Back the Question)
e.g. I’m not sure about the definition of the write-off. Can
you clarify what you mean by write-off?“

• Level 3: Basic Clarification (Identifies Confusion but No
Clear Reasoning) e.g. I can see multiple fields contain
key words write-offs. Can you clarify the definition of
write-off?

• Level 4: Structured Clarification (Explains Approaches
Tried and Ambiguities Found) e.g. I checked two ways to
calculate write-offs: (1) use transaction type filtering on
keyword write off (2) using field financial event filtering
on key word write off. The first gives 102MM, the latter
gives 33MM. Which one is correct?
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• Level 5: Analyst-Like Clarification (Explains Ap-
proaches, Reasoning and Clearly States all Ambiguities)
e.g. Both fields transaction type and financial event con-
tain entries related to write-off and write-off reversals.
Using transaction type, the total write-off is 102MM,
write-off reversal is 70MM, net write-off is 32MM. Us-
ing financial event, the total write-off is 33MM, write-off
reversal is 14MM, net write-off is 19MM. Could you let
me know which one are you referring to?

G. Reasoning score card
To assess the reasoning behavior of the Analyst Agent, we
used a structured rubric across four dimensions. The final
reasoning score is sum of individual reasoning score divided
by max reasoning score (9).

Justified Tool Usage

Are tool calls well-motivated?

• 0: Tools are called randomly or without context.
Example: For the question “What’s the total write-off this
month?”, the analyst says “Let me build a pivot on busi-
ness activity first.” without checking if the field contains
write-offs.

• 1: Tools are relevant, but not clearly connected to reason-
ing or intermediate results.
Example: Analyst queries knowledge base about “write-
off”, then builds a pivot on business activity without ref-
erencing the KB result.

• 2: Each tool call is clearly justified by prior reasoning.
Example: Analyst first checks the knowledge base, uses
its result to verify field values, and then constructs a pivot
using filtered fields explicitly mentioned in the knowledge
base.

Path Breadth

Does the analyst consider multiple potential paths when
ambiguity is present?

• 0: Analyst commits to a single approach without explor-
ing alternatives.

• 1: Analyst tries one additional alternative if ambiguity is
detected.

• 2: Multiple views are explored and compared.
Example: Analyst compares business activity and finan-
cial event fields and explains differences.

• 3: Analyst resolves ambiguity and explicitly selects the
most appropriate path.
Example: “Given financial event covers more categories
than business activity, I prefer using it and will clarify any
discrepancies.”

Sequential Logic

Does the analyst reason step-by-step based on prior out-
puts?

• 0: Steps are disjointed or redundant.
Example: Repeating the same KB lookup and pivot gen-
eration without progressing.

• 1: Some logical flow, but with inefficient order or back-
tracking.

• 2: Clear, progressive reasoning where each step builds on
the last.

Exploration Coherence

Is the reasoning path logical and interpretable by a hu-
man?

• 0: Tool usage appears random or unjustified.
• 1: Path is interpretable, but some reasoning gaps remain.
• 2: The entire process is clearly motivated and profession-

ally reasoned.
Example: Analyst uses pivot tables tied to possible inter-
pretations, selects a preferred result, and explains ambigu-
ities.
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