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ABSTRACT

We propose a novel approach for ASR N-best hypothesis rescoring
with graph-based label propagation by leveraging cross-utterance
acoustic similarity. In contrast to conventional neural language
model (LM) based ASR rescoring/reranking models, our approach
focuses on acoustic information and conducts the rescoring collab-
oratively among utterances, instead of individually. Experiments on
the VCTK dataset demonstrate that our approach consistently im-
proves ASR performance, as well as fairness across speaker groups
with different accents. Our approach provides a low-cost solution for
mitigating the majoritarian bias of ASR systems, without the need to
train new domain- or accent-specific models.

Index Terms— automatic speech recognition, hypothesis
rescoring, graph-based learning, label propagation, cross-utterance

1. INTRODUCTION

AI virtual assistants are used widely today, allowing customers to
access a large variety of services and experiences by voice. Auto-
matic speech recognition (ASR), which converts spoken utterances
into textual form, is key to enable this human-machine interaction.

In a conventional ASR system, a two-pass system is employed
where the first pass produces N-best hypotheses [1], and the sec-
ond pass rescores/reranks them to produce the final ASR hypothesis.
Conventionally, an end-to-end deep neural acoustic model, such as
a recurrent neural network transducer (RNN-T) [2, 3], is used in the
first pass, while a language model (LM) [4] trained on a large text
dataset is employed for the rescoring stage. However, these con-
ventional components face several challenges. First, the first-pass
deep neural acoustic model is typically trained with datasets such as
LibriSpeech [5] to optimize an average loss over all training sam-
ples, which usually introduces a majoritarian bias and leads to worse
ASR performance for underrepresented groups (such as nonnative or
regional accents, idiosyncratic pronunciations, or special domains).
This fairness concern has been widely discussed in a variety of ma-
chine learning domains such as face recognition [6], recommenda-
tion systems [7], as well as ASR [8] and speaker recognition [9].
As only textual information is available to the LM, this majoritarian
bias introduced due to acoustic factors, such as accents, cannot be
fully addressed with LM-based rescoring. Second, the conventional
rescoring system only considers a single utterance during rescoring.
While some LM approaches take context into account, no acoustic
information beyond the current utterance is used, thereby making
it impossible to take advantage of acoustic patterns at the domain,
household, or user level.

We propose an ASR rescoring method in which multiple utter-
ances effectively collaborate in deciding the most likely hypotheses
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by leveraging cross-utterance acoustic similarity. Graph-based label
propagation (graph-LP) [10] has been widely used in fields like com-
puter vision [11, 12] and natural language processing [13], and has
recently been applied to speech classification tasks such as speaker
identification (SID) [14, 15]. The intuition behind graph-LP applied
to speech utterance classification is to exploit pairwise similarities
to ensure a consistent overall labeling of utterances. In the case of
SID, this can be used to extend a partial speaker labeling of utter-
ances to an unlabeled set, based on speaker embedding similarity.
Similarly, for ASR we should be able to obtain evidence about the
correctness of hypotheses by comparing utterances acoustically. If
two utterances sound similar then they should have similar hypothe-
ses, and conversely, if they sound dissimilar, their hypotheses should
be too. This could help especially in the case of idiosyncratic pro-
nunciations or accents. If two utterances contain a low-frequency
phrase in their hypotheses or any word with a nonstandard and there-
fore low-scoring pronunciation, and they share an acoustically sim-
ilar segment, then the correctness of those hypotheses is mutually
consistent and therefore more likely. However, unlike for standard
classification problems, directly applying graph-LP to the ASR task
is nontrivial, as the label space for ASR is infinite, consisting of all
strings over the vocabulary.

To make the problem tractable, we limit ourselves to a finite
set of labels, i.e., N-best hypotheses for each utterance, and take
their union across utterances as the label set. We create graphs with
utterances as the nodes, and utterance-utterance similarities as the
edge weights. We introduce a distance metric based on dynamic
time warping (DTW) [16] to measure the utterance-utterance sim-
ilarity, and apply graph-LP to predict the overall best hypotheses.
We demonstrate that this approach can improve the ASR model per-
formance and fairness, without tuning embedding or training any
domain- or accent-specific adapted models. To the best of our
knowledge, this is the first work utilizing utterance-utterance acous-
tic similarity to carry out cross-utterance ASR hypothesis rescoring.

In contrast to other recent work that considers the cross-
utterance information for ASR rescoring [17, 18, 19], which utilizes
context/semantic information and assumes utterances to be from the
same dialog, our approach utilizes acoustic information and can be
applied to utterances from disparate contexts. There has been prior
work on ASR rescoring that uses acoustic information [20, 21, 22],
but these approaches deal with utterances individually. In contrast,
our approach focuses on utterance-utterance acoustic similarity and
uses it for joint rescoring. Our method is not replacing the existing
LM-based rescoring systems (which can be applied prior to cross-
utterance rescoring), but provides an alternative and low-cost solu-
tion for leveraging non-local acoustic information in rescoring. Our
method would most naturally be employed in offline processing of
speech utterance collections, e.g., for teacher label creation in semi-
supervised learning.



2. PROPOSED METHOD

2.1. Problem setup

In large speech datasets, including those from AI virtual assistants,
it is common for groups of utterances to have some or all of their
words in common; we call these overlapped utterances and tran-
scripts, respectively. Our goal is to take advantage of this overlap
in joint rescoring of such utterance sets, using graph-LP. Given a
dataset with multiple groups of overlapped utterances, we build a
graph for each group, with utterances (u1, u2, . . . , uM ) correspond-
ing to the graph nodes. For a tractable graph-LP solution, we need
a label set for the graph nodes that is finite. Therefore, we use an
existing ASR model to generate N -best hypotheses, giving us a total
of M · N hypotheses. Since the utterances in the graph are sim-
ilar, these hypotheses may be redundant. We create a hypothesis
index set H = {1, 2, 3, . . . , C} referring to the unique hypothe-
ses across the M utterances. Each utterance ui will have a label
vector yi ∈ RC , indicating the likelihood of the possible hypothe-
ses. The label set Ŷ = {y1, . . . , yM} ⊂ RC is initialized based
on the ASR model’s predicted confidence in each hypothesis. Let
X = {x1, . . . , xM} be the acoustic embeddings of the utterances
and Ŷ (0) = {y0

1 , . . . , y
0
M} be the initial labels of the utterances.

The goal is to improve (rescore) Ŷ based on Ŷ (0) and X .

2.2. Utterance-utterance distance modeling

The utterance-utterance distance metric is the key for graph-LP
[14, 15]. Our goal is to improve the performance for any given ASR
system without tuning or retraining the embeddings. We employ an
RNN-T model to generate both utterance embeddings and hypothe-
ses. Frame-wise outputs from the RNN-T encoder are used as the ut-
terance embeddings. In order to model the aggregated distance over
all frames, we compute the distance between two sets of frame-level
embeddings, xi ∈ RT1×D and xj ∈ RT2×D , by using a dependent
dynamic time warping (d-DTW) distance [16] with length normal-
ization:

d-DTWnorm(xi, xj) =
min(p,q)∈P

√∑
(p,q) d(xip, xjq)2

max(len(xi), len(xj))
(1)

where, (p, q), p ∈ [1, T1], q ∈ [1, T2], is the warping path that
matches time indices in xi to time indices in xj . d(xip, xjq) is
the frame-wise distance function between the D-dimensional vec-
tors xip and xjq; we use Euclidean distance in our experiments.
max(len(xi), len(xj)) is the length normalization term, with len(·)
giving the number of frames in an utterance. We also tested other
embeddings and metrics, such as traditional DTW distance (with and
without length normalization). However, the metric defined above
was found to be suited best as our graph edge function, as it had
a high correlation with the Levenshtein distance between the corre-
sponding utterance transcripts, as discussed in Section 3.3.

2.3. Graph construction

We create a fully connected graph for each group of utterances with
similar audio transcripts. For each graph, a graph node represents an
utterance, and an edge connecting two nodes represents the acoustic
distance of the corresponding utterances, using d-DTW. In devel-
opment, we tried applying a soft radial basis function kernel to the
distances as the edge weight function, similar to [14]. However, we
found that binarizing the edge weights to 0/1 values gave better re-
sults. Specifically, we threshold the distances between utterances.

The final affinity matrix W with edge weights between nodes i, j, is
defined as:

Wij =

{
1 if d-DTWnorm(xi, xj) < Θ

0 if d-DTWnorm(xi, xj) ≥ Θ
(2)

where d-DTWnorm(xi, xj) is the normalized dependent DTW dis-
tance and Θ is the threshold to determine if two utterances are close
enough in the embedding space. We optimize Θ on a development
set.

2.4. Label propagation

Label propagation (LP) is a transductive graph-based semi-
supervised learning (graph-SSL) approach where labels are propa-
gated from “labeled” nodes to unlabeled nodes. LP tries to find a
joint labelling Ŷ ∗ for all graph nodes such that (a) Ŷ ∗ is close to
Ŷ (0); and (b) the labels are smooth over the graph, i.e., they do not
differ drastically between neighbours. This is typically done by op-
timizing the following objective function:

Ŷ ∗ = argmin
f

||f − Y ||22 + λ · trace(fTLsymf) (3)

where Y is the input of known labels, f is the labeling solution and
λ is a regularization hyperparameter. Lsym is the symmetric nor-
malized Laplacian graph matrix, i.e., Lsym = I−∆−1/2W∆−1/2,
where ∆ is the degree diagonal matrix with ∆ii =

∑M
j=1 Wij . To

solve Equation (3), an iterative algorithm by Zhou et al. [10] is used,
as follows:

Algorithm 1 Label propagation

1: Compute the affinity matrix W if i ̸= j & Wii = 0;
2: Compute matrix S = ∆−1/2W∆−1/2

3: Initialize Ŷ (0) with each row (Ŷ (0))i = yi, where yi is a soft
label vector for utterance i (see Section 2.5)

4: Iterate Ŷ (t+1) = αSŶ (t) + (1 − α)Ŷ (0) until convergence,
where α ∈ (0, 1)

5: Label each point ui with yi = argmax
j≤C

Ŷ
(∞)
ij

2.5. Graph-LP for cross-utterance ASR rescoring

Graph-LP relies on an initial label matrix Ŷ (0). Typically in graph-
SSL work [14, 15], ground truth or “labeled” samples are included
in the graph with hard (i.e., one-hot) initialized labels, to serve as
the “seeds” for propagating information to unlabeled samples. In
our scenario, there is no ground truth. Instead, we initialize the label
vector for all utterances with soft labels over the hypothesis set H.
To do this we use the log likelihood scores of hypotheses as com-
puted by the RNN-T model. Assume for a given utterance ui the
model predicts the hypotheses {h1, . . . , hB} with log likelihoods
{s1, . . . , sB}, where B is the beam size (B ≥ N ). For each hy-
pothesis k, we compute the score pk as

pk = softmax(sk) =
esj∑B

k=1 e
sk

(4)

These probabilities pk corresponding to the top N hypotheses are
used as the soft labels yi ∈ RC for utterance ui, such that yi >
0, ||yi||1 ≤ 1. We generate Ŷ (0) by computing yi for all utterances
ui in the graph. Algorithm 1 in Section 2.4 is then applied with Ŷ (0)

as initialization.



3. EXPERIMENTS

3.1. Datasets

We use the LibriSpeech [5] training dataset to train the ASR RNN-T
model for embedding and hypothesis generation. Evaluation is based
on the VCTK [23] dataset. We further divide the VCTK utterances
into development and test sets with a ratio of 1:2. The development
set is used for metric and hyperparameter selection, while the test set
is used for reporting ASR performance. LibriSpeech is commonly
used for ASR tasks in the literature, with the majority of the speech
coming from American English speakers reading audio books. The
VCTK dataset is a popular dataset for accent studies, with English
sentences sourced from newspapers read-out by speakers from 13
English-speaking regions. We chose these two datasets since they
are mismatched in both domain and accents. We did not tune or
adapt the ASR model to the VCTK data, to evaluate the efficacy of
our proposed approach in improving the ASR model trained on out-
of-domain data.

3.2. Baseline and embedding generation model

The baseline RNN-T ASR model uses a six-layer LSTM encoder
with a hidden dimension of 1024, and a transcription network with
two 1024-dimensional LSTM layers. We use a sentence-piece model
[24] to generate output targets for the ASR model. The model was
trained on the LibriSpeech dataset and has a word error rate (WER)
of 6.05% and 15.43% on LibriSpeech-Clean and LibriSpeech-Other
test sets, respectively. We evaluate the model on the VCTK dataset
and use that as the baseline for comparing with the proposed graph-
LP method, using both WER and sentence error rate (SER). Ad-
ditionally, we focus on overall model performance as well as per-
formance on different accent groups to test whether the proposed
method can improve model performance and fairness.

The baseline RNN-T model is also used to generate the inputs
for the graph-LP algorithm. The embeddings computed by the fi-
nal RNN-T encoder layer are used for utterance-utterance distance
calculation, as described in Section 2.2.

3.3. Metric selection for utterance-utterance distance

A good utterance-utterance distance function used for graph-LP
needs to satisfy the following property: For any pair of utterances
i, j in the graph, the distance in the embedding space should reflect
the distant between the corresponding ground-truth transcripts, e.g.,
embedding distance should be highly correlated with the Levenshtein
distance between transcripts.

The above property ensures that the distance function serves the
ASR task, rather than measuring similarity along other dimensions,
such as speaker ID or acoustic environment. To quantify this prop-
erty, we borrow the concept of equal error rate (EER) used for met-
ric learning and verification tasks [25]. We create trials of utterance
pairs from the development set with 10,000 positive and 50,000 neg-
ative pairs, where positive/negative pairs correspond to utterances
having the same/different ground-truth transcripts. The utterance-
utterance distance is calculated for each pair. We then find the thresh-
old at which false accept rate (FAR) and false reject rate (FRR) are
equalized, giving us EER = FAR = FRR. We also use t-SNE plots to
visualize utterance similarities.

We consider two groups of candidate methods for the utterance-
utterance distance function, as well as variants with and without
length normalization:

• Euclidean distance between the last frame embeddings emit-
ted by the RNN-T audio encoder

• Traditional DTW or dependent DTW (d-DTW ) distance be-
tween RNN-T audio encoder embeddings of all frames

The rationale behind this choice is as follows: (1) for RNN-based
models, the last frame embedding from the output layer in principle
could encapsulate the information of the whole audio; (2) the DTW-
based distance function evaluates the time-warped distance between
a given pair of sequences, intuitively reflecting the accumulated dis-
tance over all frames; (3) length normalization allows more consis-
tent distance thresholding across different utterance lengths.

Using the above candidate distance functions, we compute the
EER for all the methods. The EER value is used to select the
utterance-utterance distance metrics. The evaluation results for the
distance functions described above are reported in Section 4.2.

3.4. Graph-LP experiments

As described in Section 2.3, we aim to construct graphs by pooling
utterances with similar transcripts. However, given that ASR is the
task, we do not have prior access to the ground truth transcripts for
the test utterances. Instead, we pool the utterances based on their
baseline ASR hypotheses. To make the label propagation method
scalable, we only group utterances with similar hypotheses into one
graph. First, the tf-idf embeddings of all utterances are generated
using the ASR 1-best hypotheses. We then use the DBSCAN algo-
rithm [26] to identify utterance clusters and build a graph from all
the utterances in one cluster. Ideally, we want the sizes of generated
clusters to be within a suitable range. Too many utterances would re-
sult in large graphs with many nodes having low hypothesis overlap.
If the cluster size is too small, there may be not be enough informa-
tion added by considering multiple utterances in joint rescoring. We
tuned the parameters of the DBSCAN algorithm on the development
set to maximize the number of clusters with sizes in the range 4 to
800. Utterances that cannot be clustered are not included in graph-
LP and their hypotheses are left unchanged.

Given an utterance cluster, we select the top N = 3 hypotheses
for each utterance to construct the label set H. The label confidences
are calculated using the method described in Section 2.5 to generate
the initial labelings Ŷ (0). In the graph, we want label information
to flow strongly between similar utterances. Hence, we calculate
Wij using Equation (2). To reduce computation further, we remove
connections between nodes where the minimum word edit distance
between the top 3 hypotheses is > 4. Graph-LP is then applied to
generate the final labels for all the nodes. We allow label sharing,
i.e., the final label for an utterance can be outside its initial N -best
hypothesis set, potentially improving results.

4. RESULTS

4.1. Baseline model results

Performance of the baseline RNN-T model on the VCTK dataset
is shown in Table 1. We show word error rates by speaker ac-
cents. Here, WER-5best is the oracle WER of the 5-best hypothe-
ses. We can see a significant difference between performance on
American/Canadian compared to English, Scottish, and other re-
gional accents, attributable to the LibriSpeech training dataset con-
sisting mainly of American English speech. There is also a signif-
icant performance gap between the 1-best WER and 5-best WER
(13.98% → 7.89%), showing the potential for improvement with
hypothesis rescoring.



Table 1: Baseline RNN-T WER results on the VCTK dataset.
Accent # Speakers # Utterances WER-1best WER-5best
English 33 27207 15.22 8.84
Scottish 19 15184 16.59 10.18
American 21 16760 9.41 4.35
Irish 9 7230 15.48 8.80
Canadian 8 6286 9.10 4.19
Northern Irish 6 5148 15.41 8.38
South African 4 3366 11.82 5.95
Indian 3 2322 18.51 12.44
Others 5 3643 16.21 9.17
Overall 108 87146 13.98 7.89

(a) Last frame embedding distance (b) All frame embedding d-DTW

Fig. 1: t-SNE visualization of utterance-utterance distances. Dots
represent utterances in embedding space, with color and shape cod-
ing the transcript and accent of an utterance, respectively. (a) Eu-
clidean distance based on last-frame embeddings. (b) d-DTW dis-
tance based on all-frames embeddings.

Table 2: EERs (%) of various acoustic utterance distance metrics
without and with length normalization. LFE: Euclidean distance of
last frame embeddings; DTW: traditional dynamic time warping dis-
tance; d-DTW: dependent DTW distance.

Metric LFE DTW d-DTW
without length normalization 38.78 17.40 7.48
with length normalization 36.38 6.34 4.50

4.2. EER and metric selection results

Figure 1 visualizes a sample of VCTK utterances using t-SNE, based
on various distance metrics. It clearly shows the clustering of simi-
lar utterances in the label space when using d-DTW distance based
on all frame embeddings. We also observe that clusters that have
more transcript overlap are closer together (e.g., blue versus red sam-
ples). This is not the case when using a distances based only on the
last-frame RNN-T encoder embeddings, for which no clustering of
utterances with identical audio transcripts is observed. From the vi-
sualization, we infer that the last-frame embedding distance is an un-
suitable metric for constructing our graphs. Table 2 shows the EERs
for same-ground-truth classification with several alternative distance
metrics, with and without length normalization. Length-normalized
d-DTW achieves the lowest EER; it is used in all graph-LP results
reported here. The devtest-optimized distance threshold in Equa-
tion (2) is Θ = 1.5, leaving about 47% of edges remaining.

4.3. Graph-LP rescoring results

Table 3 shows results for graph-LP-based cross-utterance rescoring
as described in Section 3.4. We observe significant improvements
in WER across cluster sizes, with an overall improvement of 43.5%
for WER and 40.5% for SER, respectively. Clusters of larger size
seem to show a bigger performance gain. This is consistent with

Table 3: Baseline and graph-LP results based on hypothesis tf-idf
clustering. WER and SER are in %. The last row includes test utter-
ances that were not included in any clusters and graph-LP.

# # Baseline Graph-LP
Cluster size (n) Clusters Utterances WER SER WER SER
n ≤5 1782 7112 8.54 36.38 6.24 26.73
5 < n ≤10 1352 10008 10.26 40.49 6.77 27.17
10 < n ≤50 837 14191 10.41 42.15 5.27 21.82
n >50 37 4722 10.16 55.78 4.50 28.80
All clustered 4008 36033 9.99 42.33 5.64 25.19
All utterances - 58098 13.97 50.31 11.14 39.67

Table 4: Effect of label (hypothesis) sharing on graph-LP results.
Utterance set Without sharing With sharing

WER SER WER SER
All clustered 8.75 35.36 5.64 25.19
All utterances 13.17 45.98 11.14 39.67

Table 5: Baseline and graph-LP results by regional accents. WER
and SER are in %.

Baseline Graph-LP
Accent # Utterances WER SER WER SER
English 12960 10.84 45.58 5.82 25.83
Scottish 7174 11.78 48.69 5.76 26.33
American 5807 6.67 30.15 5.02 23.23
Irish 2899 10.46 45.50 5.68 26.04
Canadian 2151 6.77 30.96 5.01 22.55
Northern Irish 1657 9.94 40.13 5.82 22.75
South African 1164 7.82 34.62 4.68 21.82
Indian 937 13.26 48.88 7.94 31.06
Others 1284 10.43 46.11 5.99 25.62
Overall 36033 9.99 42.33 5.64 25.19

the notion that the more related utterances are involved in graph-
LP, the more additional information can be aggregated, compared to
single-utterance recognition. Moreover, as shown in Table 4, sharing
labels (hypotheses) among all utterances in the same cluster gives a
substantial benefit, reducing WER by 35.5% and SER by 28.8%.
Label sharing effectively recovers plausible hypotheses left out of
the original N-best lists, and graph-LP allows evaluating them even
though they do not have a likelihood based on the first-pass ASR.

Table 5 shows ASR results for different accent groups. (Note
that Tables 3 and 5 are based on the test set only, rather than all of
VCTK as in Table 1.) WER and SER across all accent groups are
improved. Moreover, accent groups other than American/Canadian
show larger improvements, leading to a much smaller gap between
the high and low performance groups. These results demonstrate that
the proposed approach is effective at mitigating the majoritarian bias
of the original ASR system, improving both accuracy and fairness.

5. CONCLUSIONS

We have proposed a cross-utterance ASR hypothesis rescoring ap-
proach based on graph-based label propagation (graph-LP). Our ap-
proach improves ASR performance by leveraging (1) cross-utterance
information, especially acoustic similarity, modeled by a DTW-
based distance metric and (2) joint cross-utterance rescoring enabled
by graph-LP and a shared hypothesis set among utterances. The
approach is designed to help ASR systems adapt to idiosyncratic
pronunciations, accents, or out-of-domain content. Experiments on
the VCTK dataset demonstrate that the proposed approach consis-
tently improves overall error rates, as well as for speaker groups with
specific accents. Our method is well-suited to offline ASR settings,
without requiring adaptation or fine-tuning of the baseline model.
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