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Abstract

Scene Text Recognition (STR), the task of recognizing
text against complex image backgrounds, is an active area
of research. Current state-of-the-art (SOTA) methods still
struggle to recognize text written in arbitrary shapes. In this
paper, we introduce a novel architecture for STR, named
Selective Context ATtentional Text Recognizer (SCATTER).
SCATTER utilizes a stacked block architecture with inter-
mediate supervision during training, that paves the way to
successfully train a deep BiLSTM encoder, thus improving
the encoding of contextual dependencies. Decoding is done
using a two-step 1D attention mechanism. The first atten-
tion step re-weights visual features from a CNN backbone
together with contextual features computed by a BiLSTM
layer. The second attention step, similar to previous pa-
pers, treats the features as a sequence and attends to the
intra-sequence relationships. Experiments show that the
proposed approach surpasses SOTA performance on irreg-
ular text recognition benchmarks by 3.7% on average.

1. Introduction
We address the task of reading text in natural scenes,

commonly referred to as Scene Text Recognition (STR).
Although STR has been active since the late 90’s, only re-
cently accuracy reached a level that enables commercial ap-
plications, this is mostly due to advances in deep neural net-
works research for computer vision tasks. Applications for
STR include, among others, recognizing street signs in au-
tonomous driving, company logos, assistive technology for
the blind and translation apps in mixed reality.

Text in natural scenes is characterised by a large variety
of backgrounds, and arbitrary imaging conditions that can
lead to low contrast, blur, distortion, low resolution, uneven
illumination and other phenomena and artifacts. In addition,
the sheer magnitude of possible font types and sizes add
another layer of difficulty that STR algorithms must over-
come. Generally, recognizing scene text can be divided into
two main tasks - text detection and text recognition. Text
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Figure 1: The proposed SCATTER training and inference ar-
chitecture. We introduce intermediate supervision combined with
selective-decoding to stabilize the training of a deep BiLSTM en-
coder (The circle represents where a loss function is applied). De-
coding is done using a selective-decoder that operates on visual
features from the CNN backbone and contextual features from the
BiLSTM encoder, while employing a two-step attention.

detection is the task of identifying the regions in a natural
image, that contain arbitrary shapes of text. Text recogni-
tion deals with the task of decoding a cropped image that
contains one or more words into a digital string of its con-
tents.

In this paper, we propose a method for text recogni-
tion; we assume the input is a cropped image of text taken
from a natural image, and the output is the recognized text
string within the cropped image. As categorized by previ-
ous works [1, 16], text images can be divided into two cate-
gories: Irregular text for arbitrarily shaped text (e.g. curved
text), as seen in Fig. 1, and regular text for text with nearly
horizontally aligned characters (examples are provided in
the supplementary material).

Traditional text recognition methods [37, 38, 42] detect
and recognize text character by character, however, these
methods have an inherent limitation – they do not utilize



sequential modeling and contextual dependencies between
characters.

Modern methods treat STR as a sequence predic-
tion problem. This technique alleviates the need for
character-level annotations (per-character bounding box)
while achieving superior accuracy. The majority of these
sequence-based methods rely on Connectionist Temporal
Classification (CTC) [31, 7], or attention-based mecha-
nisms [33, 16]. Recently, Baek et al. [1] proposed a modular
four-step STR framework, where the individual components
are interchangeable allowing for different algorithms. This
modular framework, along with its best performing compo-
nent configuration, is depicted in Fig. 1 (a). In this work,
we build upon this framework and extend it.

While accurately recognizing regular scene text remains
an open problem, recent irregular STR benchmarks (e.g.,
ICD15, SVTP) have shifted research focus to the prob-
lem of recognizing text in arbitrary shapes. For instance,
Sheng et al. [30] adopted the Transformer [35] model for
STR, leveraging the transformers ability to capture long-
range contextual dependencies. The authors in [16] passed
the visual features from the CNN backbone through a 2D
attention module down to their decoder. Mask TextSpot-
ter [17] unified the detection and the recognition tasks with
a shared backbone architecture. For the recognition stage,
two types of prediction branches are used, and the final pre-
diction is selected based on the output of the more confi-
dent branch. The first branch uses semantic segmentation
of characters, and requires additional character-level anno-
tations. The second branch employs a 2D spatial attention-
decoder.

Most of the aforementioned STR methods perform a se-
quential modeling step using a recursive neural network
(RNN) or other sequential modeling layers (e.g., multi-
head attention [30]), usually in the encoder and/or the de-
coder. This step is performed to convert the visual feature
map into a contextual feature map, which better captures
long-term dependencies. In this work, we propose using a
stacked block architecture for repeated feature processing, a
concept similar to that used in other computer-vision tasks
such as in [40] and later in [27, 26]. The authors above
showed that repeated processing used in conjunction with
intermediate supervision could be used to increasingly re-
fine predictions.

In this paper, we propose the Selective Context
ATtentional TExt Recognizer (SCATTER) architecture.
Our method, as depicted in Fig. 1, utilize a stacked block
architecture for repetitive processing with intermediate su-
pervision in training, and a novel selective-decoder. The
selective-decoder receives features from two different lay-
ers of the network, namely, visual features from a CNN
backbone and contextual features computed by a BiLSTM
layer, while using a two-step 1D attention mechanism. Fig-
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Figure 2: Average test accuracy (IIT5K, SVT, IC03, IC13,IC15,
SVTP, CUTE) at intermediate decoding steps, compared across
different network depths used in training. Given a computation
budget, improved results can be obtained by first training a deeper
network, and then running only the first decoder(s) during infer-
ence.

ure 2 shows the accuracy levels computed at the intermedi-
ate auxiliary decoders, for different stacking arrangements,
thus demonstrating the increase in performance as addi-
tional blocks are added in succession. Interestingly, training
with additional blocks in sequence leads to an improvement
in the accuracy of the intermediate decoders as well (com-
pared to training with a shallower stacking arrangement).

This paper presents two main contributions:
1. We propose a repetitive processing architecture for

text recognition, trained with intermediate selective
decoders as supervision. Using this architecture we
train a deep BiLSTM encoder, leading to SOTA results
on irregular text.

2. A selective attention decoder, that simultaneously de-
codes both visual and contextual features by employ-
ing a two-step attention mechanism. The first attention
step figures out which visual and contextual features
to attend to. The second step treats the features as a
sequence and attends the intra-sequence relations.

2. Related Work

STR has attracted considerable attention over the past
few years [34, 36, 3, 20]. Comprehensive surveys for scene
text detection and recognition may be found in [43, 1, 21].
As mentioned above, STR may be divided into two cate-
gories: regular and irregular texts (further examples are pro-
vided in the supplementary material). Earlier papers [37,
38, 42], focused on regular text and used a bottom-up ap-
proach, which involved segmenting individual characters
with a sliding window, and then recognizing the charac-
ters using hand-crafted features. A notable issue with the
bottom-up approaches above, is that they struggle to use
contextual information; instead they rely on accurate char-
acter classifiers. Shi et al. 2015 [31] and He et al. [11]
considered words as sequences of varying lengths, and em-
ployed RNNs to model the sequences without explicit char-



acter separation. Shi et al. 2016 [32] presented a suc-
cessful end-to-end trainable architecture using the sequence
approach, without relying on character level annotations.
Their solution employed a BiLSTM layer to extract the se-
quential feature vectors from the input feature maps, these
vectors are then fed into an attention-Gated Recurrent Unit
(GRU) module for decoding.

The methods mentioned above introduced significant im-
provements in STR accuracy on public benchmarks. There-
fore, recent work has shifted focus to the more challenging
problem of recognizing irregularly shaped text, hence pro-
moting new lines of research. Topics such as input rectifi-
cation, character-level segmentation, 2D attentional feature
maps and self attention have emerged, pushing the envelope
on irregular STR. Shi et al. 2018 [33] rectified oriented or
curved text based on a Spatial Transformer Network (STN).
Liu et al. 2018 [19] introduced a Character-Aware Neural
Network (Char-Net) to detect and rectify individual charac-
ters. A combination of a CTC-Attention mechanism within
an encoder-decoder framework, that was used for speech
recognition tasks, was used for STR in [45], showing the
benefits of joint CTC-Attention learning. The authors in [7]
proposed two supervision branches to tackle explicit and
implicit semantic information. In [4] a gate was inserted
to the recurrent decoder, for controlling the transmission-
weight of the previous embedded vector, demonstrating that
context is not always needed for decoding. The authors of
Mask TextSpotter [17] unified text detection and text recog-
nition in an end-to-end fashion. For recognition they used
two separate branches, a branch that uses visual (local) fea-
tures and a branch which utilizes contextual information in
the form of 2D attention.

More recent approaches have proposed leveraging var-
ious attention mechanisms for improved results. Li et
al. [16] combined both visual and contextual features while
utilizing a 2D attention within the encoder-decoder. Other
researchers borrowed ideas from the Natural Language Pro-
cessing (NLP) domain and adopted a transformer-based ar-
chitecture [35]. One of them is Sheng et al. [30], that used
a self-attention mechanism for both the encoder and the de-
coder.

Our method differs from above approaches, by being the
first to utilize a stacked block architecture for text recogni-
tion. Namely, we show that repetitive processing for text
recognition, trained with intermediate selective decoders as
supervision (similar to [40, 27, 26]), increasingly refines
text predictions.

3. Methodology
As presented in Fig. 3, our proposed architecture consists

of four main components:
1. Transformation: the input text image is normalized

using a Spatial Transformer Network (STN) [13].

2. Feature Extraction: maps the input image to a feature
map representation while using a text attention mod-
ule [7].

3. Visual Feature Refinement: provides direct super-
vision for each column in the visual features. This
part refines the representation in each of the feature
columns, by classifying them into individual symbols.

4. Selective-Contextual Refinement Block: Each block
consists of a two-layer BiLSTM encoder that outputs
contextual features. The contextual features are con-
catenated to the visual features computed by the CNN
backbone. This concatenated feature map is then fed
into the selective-decoder, which employs a two-step
1D attention mechanism, as illustrated in Fig. 4.

In this section we describe the training architecture of
SCATTER , while addressing the differences between train-
ing and inference.

3.1. Transformation

The transformation step operates on the cropped text im-
age X , and transforms it into a normalized image X ′. We
use a Thin Plate Spline (TPS) transformation, a variant of
the STN, as used in [1]. TPS employs a smooth spline in-
terpolation between a set of fiducial points. Specifically, it
detects a pre-defined number of fiducial points at the top
and bottom of the text region, and normalizes the predicted
region to a constant predefined size.

3.2. Feature Extraction

In this step a convolutional neural network (CNN) ex-
tracts features from the input image. We use a 29-layer
ResNet as the CNN’s backbone, as used in [5]. The out-
put of the feature encoder is 512 channels by N columns.
Specifically, the feature encoder gets an input image X ′

and outputs a feature map F = [f1, f2, ..., fN ]. Follow-
ing the feature map extraction, we use a text attention mod-
ule, similar to [7]. The attentional feature map can be re-
garded as a visual feature sequence of length N , denoted as
V = [v1, v2, ..., vN ], where each column represents a frame
in the sequence.

3.3. Visual Feature Refinement

Here, the visual feature sequence V is used for interme-
diate decoding. This intermediate supervision is aimed at
refining the character embedding (representations) in each
of the columns of V , and is done using CTC based decod-
ing. We feed V through a fully connected layer that outputs
a sequence H of length N . The output sequence is fed into
a CTC [8] decoder to generate the final output. The CTC
decoder transforms the output sequence tensor into a condi-
tional probability distribution over the label sequences, and
then selects the most probable label. The transcription pro-
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Figure 3: The proposed SCATTER architecture introduces, context refinement, intermediate supervision (additional decoders), and a novel
selective-decoder.

cedure is given by

l = B(argmax
π

p(π|H)) , (1)

where the probability of π is defined as

p(π|H) =

N∏
t=1

ytπt
. (2)

Here ytπt
is the probability of generating the character πt

at time stamp t, and B is a mapping function that removes
all repeated characters and blanks. The CTC algorithm as-
sumes that the columns are conditionally independent, and
at each time stamp the output is a single character proba-
bility score. The loss for this branch, denoted by LCTC, is
the negative log-likelihood of the ground-truth conditional
probability, as in [31].

3.4. Selective-Contextual Refinement Block

The features extracted by the CNN are limited to its re-
ceptive field, and may suffer due to the lack of contextual
information. To mitigate this drawback, we employ a two-
layer BiLSTM [9] network over the feature map V , out-
putting H = [h1, h2, ..., hn]. We concatenate the BiLSTM
output with the visual feature map, yielding D = (V,H), a
new feature space.

The feature space D is used both for selective decod-
ing, and as an input to the next Selective-Contextual Re-
finement block. Specifically, the concatenated output of the
jth block can be written as Dj = (V,Hj). The next j + 1
block uses Hj as input to the two-layer BiLSTM, yield-
ing Hj+1, and the j + 1 feature space is updated such that
Dj+1 = (V,Hj+1). The visual feature map V does not un-
dergo any further updates in the Selective-Contextual Re-
finement blocks, however we note that the CNN backbone
is updated with back-propagated gradients from all of the
selective-decoders. These blocks can be stacked together
as many times as needed, according to the task or accuracy
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Figure 4: Architecture of the Two-Step Attention Selective-
Decoder.

levels required, and the final prediction is provided by the
decoder from the last block.

3.4.1 Selective-Decoder

We employ a two-step attention mechanism, as illustrated
in Fig. 4. First, we use a 1D self attention operating on
the features D. A fully connected layer is used to compute
an attention map from these features. Next, an element-
wise product is computed between the attention map and
D, yielding the attentional features D′. The decoding of D′

is done with a separate attention-decoder, such that for each
t-time-step the decoder outputs yt, similar to [5, 2].

Decoding starts by computing the vector of attentional
weights, αt ∈ RN :

et,i = wT tanh(Wst−1 + V d′i + b) (3)

αt,i = exp(et,i)/

n∑
i∗=1

et,i∗ , (4)

where b, w,W, V are trainable parameters, st−1 is the hid-
den state of the recurrent cell within the decoder at time t,
and d′ is a column ofD′. The decoder linearly combines the



columns of D′ into a vector G, which is called a glimpse:

gt =

n∑
i=1

αt,id
′
i . (5)

Next, a recurrent cell of the decoder is fed with

(xt, st) = RNN
(
st−1,

(
gt, f(yt−1)

))
, (6)

where (gt, f(yt−1)) denotes the concatenation between gt
and the one-hot embedding of yt−1.

The probability for a given character p(yt) can now be
recovered by:

p(yt) = softmax(Woxt + bo) . (7)

The loss for the jth block is the negative log-likelihood, de-
noted as LAttn,j , as in [5, 2].

3.5. Training Losses

The objective function is given by

L = λCTC · LCTC +
∑
j=1

λjLAttn,j , (8)

where LCTC is the loss function of the CTC decoder and∑
j=1 λjLAttn,j is the sum of the losses from all of the

Selective-Contextual Refinement blocks, as defined above.
The λ notation depicts a hyper-parameter used to balance
the trade-off between the different supervisions, and specif-
ically, λCTC , λj are empirically set to 0.1, 1.0 respectively
for all j.

3.6. Inference

Once training is done, for test time we remove all of the
intermediate decoders, as they are used only for additional
supervision and refinement of intermediate feature. The vi-
sual features V are processed by the BiLSTM layers in all
blocks, and are also fed directly, via a skip connection, to
the final selective-decoder. The final selective decoder is
used to predict the output sequence of characters. A visual-
ization of these changes can be seen in Fig. 3, where all the
green colored operations are disabled during inference, and
in Fig. 1 (b).

4. Experiments
In this section we empirically demonstrate the effective-

ness of our proposed framework. We begin with a brief dis-
cussion regarding the datasets used for training and testing,
and then describe our implementation and evaluation setup.
Next, we compare our model against state-of-the-art meth-
ods on public benchmark datasets, including both regular
and irregular text. Finally, we address the computational
cost of our method.

4.1. Datasets

In this work, all SCATTER models are trained on three
synthetic datasets. The model is evaluated on four regu-
lar scene-text datasets: ICDAR2003, ICDAR2013, IIIT5K,
SVT, and three irregular text datasets: ICDAR2015, SVTP
and CUTE.

The training dataset is a union of three datasets:
MJSynth (MJ) [12] is a synthetic text in image dataset

which contains 9 million word box images, generated from
a lexicon of 90K English words.

SynthText (ST) [10] is a synthetic text in image dataset,
designed for scene-text detection, and recognition. We use
a variant of the SynthText dataset composed of 5.5M sam-
ples, as used in [1]. This variant does not include any non-
alphanumeric characters.

SynthAdd (SA) [16] is a synthetic text in image dataset,
that contains 1.2 million word box images. This dataset was
generated using the same synthetic engine as in ST, aiming
to mitigate the lack of non-alphanumeric characters (e.g.,
punctuation marks) in the other datasets.

All experiments are evaluated on the seven real-word
STR benchmark datasets described below. As in many STR
manuscripts (e.g, [33, 1, 16]) the benchmark datasets are
commonly divided into regular and irregular text, accord-
ing to the text layout.

Regular text datasets include the following:
IIIT5K [25] consists of 2000 training and 3000 test-
ing images that are cropped from Google image searches.
SVT [37] is a dataset collected from Google Street View
images and contains 257 training and 647 testing word-box
cropped images. ICDAR2003 [23] contains 867 word-box
cropped images for testing. ICDAR2013 [15] contains 848
training and 1,015 testing word-box cropped images.

Irregular text datasets include the following: IC-
DAR2015 [14] contains 4,468 training and 2,077 testing
word-box cropped images, all captured by Google Glass,
without careful positioning or focusing. SVTP [28] is a
dataset collected from Google Street View images and con-
sists of 645 cropped word-box images for testing. CUTE
80 [29] contains 288 cropped word-box images for testing,
many of which are curved text images.

4.2. Implementation Details

As baseline, we use the code of Baek et al.1 [1], and our
architectural changes are implemented on top of it. All ex-
periments are trained and tested using the PyTorch2 frame-
work on a Tesla V100 GPU with 16GB memory. As for the
training details, we do not perform any type of pre-training.
We train using the AdaDelta optimizer, and the following
training parameters are used: a decay rate of 0.95, gradient
clipping with a magnitude of 5, a batch size of 128 (with a

1https://github.com/clovaai/deep-text-recognition-benchmark
2https://pytorch.org/



Table 1: Scene text recognition accuracies (%) over seven public benchmark test datasets (number of words in each dataset are shown
below the title). No lexicon is used. In each column, the best performing result is shown in bold font, and the second best result is shown
with an underline. Average columns are weighted (by size) average results on the regular and irregular datasets. ”*” indicates using both
word-level and character-level annotations for training.

Method
Regular test dataset Irregular test dataset

IIIT5K SVT IC03 IC13 Average IC15 SVTP CUTE Average
3000 647 867 1015 5529 2077 645 288 3010

CRNN (2015) [31] 78.2 80.8 89.4 86.7 81.8 - - - -
FAN (2017) [5]* 87.4 85.9 94.2 93.3 89.4 70.6 - - -

Char-Net (2018) [19]* 83.6 84.4 91.5 90.8 86.2 60.0 73.5 - -
AON (2018) [6] 87.0 82.8 91.5 - - 68.2 73.0 76.8 70.0
EP (2018) [2]* 88.3 87.5 94.6 94.4 90.3 73.9 - - -

NRTR (2018) [33] 86.5 88.3 95.4 94.7 89.6 - - - -
Liao et al. (2019) [18] 91.9 86.4 - 86.4 - - - 79.9 -
Baek et al. (2019) [1] 87.9 87.5 94.9 92.3 89.8 71.8 79.2 74.0 73.6
ASTER (2019) [33] 93.4 89.5 94.5 91.8 92.8 76.1 78.5 79.5 76.9

SAR (2019) [16] 91.5 84.5 - 91.0 - 69.2 76.4 83.3 72.1
ESIR (2019) [44] 93.3 90.2 - 91.3 - 76.9 79.6 83.3 78.1

MORAN (2019) [24] 91.2 88.3 95.0 92.4 91.7 68.8 76.1 77.4 71.2
Yang et al. (2019) [41] 94.4 88.9 95.0 93.9 93.7 78.7 80.8 87.5 79.9

Mask TextSpotter (2019) [17]* 95.3 91.8 95.0 95.3 94.8 78.2 83.6 88.5 80.0

SCATTER (1 Block) 92.9 89.2 96.5 93.8 93.2 81.8 84.5 85.1 82.7
SCATTER (2 Block) 93.5 89.2 95.9 94.7 93.6 81.5 86.2 86.8 83.0
SCATTER (3 Block) 93.9 89.3 96.1 94.6 93.7 82.8 85.7 83.7 83.4
SCATTER (4 Block) 93.4 90.3 96.6 94.3 93.7 82.0 87.0 86.5 83.5
SCATTER (5 Block) 93.7 92.7 96.3 93.9 94.0 82.2 86.9 87.5 83.7

sampling ratio of 40%, 40%, 20% between MJ, ST and SA
respectively). We use data augmentation during training,
and augment 40% of the input images, by randomly resiz-
ing them and adding extra distortion. Each model is trained
for 6 epochs on the unified training set. For our internal
validation dataset, we use the union of the IC13, IC15, IIIT,
and SVT training splits, to select our best model, as done
in [1]. All images are resized to 32× 100 during both train-
ing and testing, following common practice. In this paper,
we use 36 symbol classes: 10 digits and 26 case-insensitive
letters. As for special symbols for CTC decoding, an addi-
tional “[UNK]” and a ”[blank]” token are added to the la-
bel set. For the selective-decoders three special punctuation
characters are added: “[GO]”, “[S]” and “[UNK]” which
indicate the start of the sequence, the end of the sequence
and unknown characters (that are not alpha-numeric), re-
spectively.

At inference, we employ a similar mechanism to [16, 39,
22], where images with a height larger than their width, are
rotated by 90 degrees clockwise and counter-clockwise re-
spectively. The rotated versions are recognized alongside
the original image. A prediction confidence score is cal-
culated as the average decoder probabilities until the ’[S]’
token. We then choose the prediction with the highest con-
fidence score as the final prediction. Unlike [33, 16, 30], we
do not use beam-search for decoding, although the authors

in [16] have reported it improves accuracy by approximately
0.5%, due to the added latency it incurs.

4.3. Comparison to State-of-the-art

In this section, we measure the accuracy of our pro-
posed framework on several regular and irregular scene text
benchmarks while comparing the results to the latest SOTA
recognition methods. As seen in Table 1, our SCATTER
architecture with 5 blocks outperforms the current SOTA,
the Mask TextSpotter [17] algorithm, on irregular scene text
benchmarks (i.e., IC15, SVTP, CUTE) by an absolute mar-
gin of 3.7% on average. Our approach provides an accuracy
increase of +4.0 pp (78.2% vs. 82.2%) on IC15, +3.3 pp
(83.6% vs. 86.9%) on SVTP, and is the second best to Mask
TextSpotter [17] on the CUTE (88.5% vs. 87.5%) dataset.
Additionally, the proposed method outperforms the other
methods both on SVT and IC03 regular scene text datasets,
and achieves comparable SOTA performance on the other
regular scene text datasets (i.e.,IIIT5K and IC13).

To summarize, our model achieves the highest recogni-
tion score on 4 out of 7 benchmarks, and the second best
score on 2 more benchmarks. Unlike other methods, which
perform well on either regular or irregular scene text bench-
marks, our approach is a top performer on all benchmarks.

We would like to briefly discuss key differences be-
tween Mask TextSpotter [17] and this work. The algorithm



Table 2: Ablation studies by changing the model hyper-parameters. We refer to our re-trained model using the code of Baek et al. 2019
as Baseline. Using intermediate supervision helps to boost results and enables stacking more blocks. Increasing the number of blocks has
positive impacts on the recognition performance. * Regular Text and Irregular Text columns are weighted (by size) average results on the
regular and irregular datasets respectively.

Sec Method
CTC Attention Selective LSTM N Regular test dataset Irregular test dataset Regular Irregular

Decoder Decoders Decoders Layers Blocks IIIT5K SVT IC03 IC13 IC15 SVTP CUTE Text* Text*
[1] 0 1 - 2 - 87.9 87.5 94.9 92.3 71.8 79.2 74.0 89.8 73.7

Baseline 0 1 - 2 - 93.0 88.6 94.3 92.9 78.0 81.5 80.1 92.7 79.1
(a) Baseline 1 1 - 2 - 92.7 90.0 95.0 93.4 78.3 83.4 80.0 92.9 79.5

SCATTER 0 - 1 2 1 93.1 89.3 95.7 93.7 80.6 84.0 86.5 93.1 81.8
SCATTER 1 - 1 2 1 92.9 89.2 96.5 93.8 81.8 84.5 85.1 93.2 82.7

SCATTER 0 - 1 4 2 92.9 89.6 95.3 93.2 79.3 84.2 83.7 92.9 80.1
(b) SCATTER 0 - 2 4 2 93.1 90.7 94.9 93.6 81.6 84.7 85.8 93.2 82.6

SCATTER 1 - 1 4 2 93.0 90.6 95.5 92.8 82.0 84.0 86.8 93.1 82.9
SCATTER 1 - 2 4 2 93.5 89.2 95.9 94.7 81.5 86.2 86.8 93.6 83.0

SCATTER 1 - 3 6 3 93.9 89.3 96.1 94.6 82.8 85.7 83.7 93.7 83.4
(c) SCATTER 1 - 4 8 4 93.4 90.3 96.6 94.3 82.0 87.0 86.5 93.7 83.5

SCATTER 1 - 5 10 5 93.7 92.7 96.3 93.9 82.2 86.9 87.5 94.0 83.7
SCATTER 1 - 6 12 6 93.2 90.9 96.2 94.1 82.0 86.2 84.8 93.6 83.2

GT: enterprise

Pred: entorprise

GT: chanterelle

Pred: shanterelle

GT: uturn

Pred: ulturn

GT: avis

Pred: cavis

GT: go

Pred: gol

GT: tv

Pred: tvp

GT: barbeque

Pred: barbecue

GT: celebrating

Pred: calebrating

Figure 5: Failure cases of our model. “GT” stands for the ground-
truth annotation, and “Pred” is the predicted result.

in [17] relies on annotations that contain character level an-
notations, information that our algorithm does not require.
These annotations contribute an average increase of 0.9 pp,
and 0.6 pp on regular and irregular text datasets as reported
in the original paper. Hence, without the character level
annotations, our model achieves slightly better results on
regular text (93.9% vs. 94%) and significantly better results
on irregular text (79.4% vs. 83.7%). Our approach, on the
other hand, does not require these annotations, which are
expensive and hard to annotate, especially for real-world
data.

In Fig. 5 we display failure cases of our method. The
failure cases are mostly composed of blurry images, partial
character occlusions, difficult lighting conditions, and miss-
recognition of punctuation marks.

4.4. Computational Costs

During inference, only the selective decoder of the final
block is kept active, as shown in Fig. 1. The total com-
putational cost of our proposed architecture with a single

block is 20.1 ms. The additional computational cost of each
intermediate contextual refinement block during inference
translates to a 3.2 ms per block. For a 5 block architecture
(our best setup) this translates to a total increase of 12.8 ms
and a total forward pass of 32.9 ms.

Furthermore, given a computational budget on inference
time, performance can be improved by training the system
with a large number of blocks and pruning them for infer-
ence. For example, an architecture trained with five blocks,
and then pruned to a single block, is capable of outperform-
ing an architecture solely trained with a single block. Fig-
ure 2(2c) demonstrates a network trained with five blocks
and the average test accuracy of intermediate decoders. This
showcases that pruning leads to an increase of +0.4 pp and
+1.3 pp on regular an irregular datasets respectively (un-
der the same computational budget). This novel feature of
SCATTER allows for faster inference if needed and in some
cases pruning can even boost results.

5. Ablation Experiments
In this section, we perform a series of experiments to

better understand the performance improvements and ana-
lyze the impact of our key contributions. Throughout this
section, we use a weighted-average (by the number of sam-
ples) of the results on the regular and irregular test datasets.
For completeness, the first and second rows in Table 2 show
the reported results in [1], and the improved results of our
re-trained model of [1] with our custom training settings.

5.1. Intermediate Supervision & Selective Decoding

Section (a) of Table 2 shows an improvement in accuracy
by adding the intermediate CTC supervision and the pro-



posed selective-decoder. Between row two and three of sec-
tion (a) we add a CTC decoder for intermediate supervision
which improves the baseline results by +0.2 pp and +0.4 pp
on regular and irregular text respectively. The fourth row
demonstrates the improvement compared to the baseline re-
sults by replacing the standard attentional decoder with the
proposed selective-decoder, (+0.4 pp and +2.7 pp on regular
and irregular text respectively).

Section (b) of Table 2 shows a monotonic increase in the
accuracy using the SCATTER architecture with 4 BiLSTM
layers by changing the number of intermediate supervisions
(ranging from 1 to 3). The relative increase in accuracy of
section (b) is +0.7 pp and +2.9 pp on regular and irregular
text respectively.

5.2. Stable Training of a Deep BiLSTM Encoder

As mentioned in the introduction, previous papers use
only a 2-layer BiLSTM encoder. The authors in [45] report
a decrease in accuracy when increasing the number of lay-
ers in the BiLSTM encoder. We reproduce the experiment
reported in [45] of training a baseline architecture with an
increasing number of BiLSTM layers in the encoder (results
are in the supplementary material). We observe a similar
phenomena as in [45], i.e a reduction in accuracy when us-
ing more than two BiLSTM layers. Contrary to this discov-
ery, Table 2 shows that the overall trend of increasing the
number of BiLSTM layers in SCATTER , while increas-
ing the number of intermediate supervisions improves ac-
curacy. Recognition accuracy improves monotonically up
to 10 BiLSTM layers, both for regular and irregular text
datasets.

As evident from Table 2 (c), when training with more
than 10 BiLSTM layers in the encoder, accuracy results
slightly (-0.4 pp and -0.5 pp on regular and irregular text re-
spectively) decrease on both regular and irregular text (sim-
ilar phenomena was observed on the validation set). It is
expected that increasing the network capacity leads to more
challenging training procedures. Other training approaches
might need to be considered to successfully train to conver-
gence a very deep encoder. Such approaches may include
incremental training, where we first train with a shallower
network using a small number of blocks and incrementally
stack more blocks during training.

Examples of intermediate predictions are seen in Ta-
ble 3, showcasing SCATTER ability to increasingly refine
text prediction.

5.3. Oracle Decoder Voting

In Table 4 the test accuracy is shown for the interme-
diate decoders on a SCATTER architecture trained with 5
blocks. The last row summarizes the potential results of
an oracle, that for every test image chooses the correct pre-
diction, if one exists in any of the decoders. If an optimal

Table 3: The table shows example for when repeated processing
used in conjunction with intermediate supervision increasingly re-
fines text predictions.

Test Image Intermediate Decoder Final Ground
1 2 3 4 Decoder Truth

goptes coptes copies copies copies copies

bm bn bmy bmy bmw bmw

o0 100 100 1000 10000 10000

Table 4: Performance of each decoder and the oracle. The oracle
performance is calculated given the ground truth.

Decoder IIIT5K SVT IC03 IC13 IC15 SVTP CUTE
CTC 89.6 84.6 93.5 90.9 69.9 77.4 77.8
Attn1 93.5 90.3 95.9 93.9 82.9 86.4 87.5
Attn2 93.5 90.4 96.3 94.1 82.6 86.0 86.8
Attn3 93.7 91.0 95.7 94.3 82.7 85.1 87.2
Attn4 93.7 91.2 96.5 94.4 83.3 85.8 86.8
Final 93.7 92.7 96.3 93.9 82.2 86.9 87.5

Oracle 96.3 95.1 97.1 95.5 87.1 89.9 90.3

strategy to select between the different decoders predictions
exists, the results on all datasets achieve a new state-of-the-
art. The possible improvement in accuracy achievable by
such an oracle ranges between +0.8 pp, and up to +5 pp
across the datasets. A possible prediction selection strategy
might be based on ensemble techniques, or a meta model
that predicts which decoder to use for each specific image.

6. Conclusions and Future Work

In this work we propose a stacked block architecture
named SCATTER , which achieves SOTA recognition accu-
racy and enables stable, more robust training for STR net-
works that use deep BiLSTM encoders. This is achieved by
adding intermediate supervisions along the network layers,
and by relying on a novel selective decoder.

We also demonstrate that a repetitive processing archi-
tecture for text recognition, trained with intermediate selec-
tive decoders as supervision, increasingly refines text pre-
dictions. In addition, other approaches of attention could
also benefit from stacked attention decoders, as our pro-
posed novelty is not limited to our formulation of attention.

We consider two promising directions for future work.
First, in Fig. 2 we show that training deeper networks and
then pruning the last decoders (and layers) is preferable over
training a shallower network. This could lead to an increase
in performance given a constraint on computational budget.
Finally, we see potential in developing an optimal selection
strategy between the predictions of the different decoders
for each image.
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