X-BERT: eXtreme Multi-label Text Classification using
Bidirectional Encoder Representations from Transformers

Wei-Cheng Chang! Hsiang-Fu Yu? Kai Zhong? Yiming Yang! Inderjit Dhillon?3

!Carnegie Mellon University, 2Amazon, >University of Texas at Austin
g y y

Abstract

Extreme multi-label text classification (XMC) concerns tagging input text with the most relevant labels from
an extremely large set. Recently, pretrained language representation models such as BERT (Bidirectional Encoder
Representations from Transformers) have been shown to achieve outstanding performance on many NLP tasks
including sentence classification with small label sets (typically fewer than thousands). However, there are several
challenges in extending BERT to the XMC problem, such as (i) the difficulty of capturing dependencies or
correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale
to the extreme label setting because of the Softmax bottleneck scaling linearly with the output space. To overcome
these challenges, we propose X-BERT, the first scalable solution to finetune BERT models on the XMC problem.
Specifically, X-BERT leverages both the label and input text to build label representations, which induces semantic
label clusters to better model label dependencies. At the heart of X-BERT is a procedure to finetune BERT models
to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the
different BERT models trained on heterogeneous label clusters leads to our best final model, which leads to a
state-of-the-art XMC method. In particular, on a Wiki dataset with around 0.5 million labels, the precision@1
of X-BERT is 67.87%, a substantial improvement over the neural baseline fastText and a state-of-the-art XMC
approach Parabel, which achieve 32.58% and 60.91% precision@ 1, respectively.

1 Introduction

Extreme multi-label text classification (XMC) aims to tag each given text with the most relevant subset of labels
from an enormous label collection, where the number of labels could be in the millions or more. Recently, XMC
has attracted considerable attention due to the rapid growth of web-scale data in various industrial applications,
such as product categorization for e-commerce [1], Bing’s dynamic search advertising [28, 27], and tagging of
Wikipedia categories in the PASCAL Large-Scale Hierarchical Text Classification (LSHTC) challenge [25], to
name just a few.

XMC poses great computational challenges for developing effective and efficient classifiers owing to the extreme
number of instances and labels. Figure 1 illustrates an example of the long-tail label distribution of the Wiki-500K
dataset [31]. Much progress has been made to address the challenges of scalability and label sparsity in the XMC
problem. While one-vs-all (OVA) approaches [2, 3] often achieve strong performance, they suffer from scalability
issues. On the other hand, tree-based methods [28, 14] learn an ensemble of weak but fast classification trees, which
however leads to a large model size. Label-partitioning approaches [24, 27, 13] build balanced label trees where
only leaf nodes are trained with one-vs-all classifiers, achieving comparable accuracy to OVA approaches but not
losing computation speed. Nevertheless, most of the traditional methods for extreme multi-label text classification
use bag-of-word (BOW) variants as text representation, ignoring higher order context dependency of words, and
thus cannot capture the deeper semantics present in text data.

Deep learning models have been proposed to learn powerful input representations for text classification [17,
15, 19] as well as the XMC problem [20, 37]. Very recently, the Natural Language Processing (NLP) community
is witnessing a dramatic paradigm shift towards pretrained deep language representation models, which achieve
state-of-the-art across many NLP tasks such as question answering, semantic role labeling, parsing, sentence
classification with very few labels, and more. Bidirectional Encoder Representations from Transformers (a.k.a
BERT [7]) represent one of the latest developments in this line of work. BERT outperforms its predecessors,
ELMo [26] and GPT [29], exceeding state-of-the-art by a wide margin on multiple NLP tasks. Nevertheless, it is
challenging to finetune BERT models on the XMC task. The main challenges are the difficulty to capture label

0
O 10° 108
% — label_emb=None — label_emb=ELMo
4 10° 10° —— label_emb=PIFA
£ P — label_emb=RAND
o 10 104
c
E 10° 103
g 10°
“ 102
o
1

E 10 10!
2 0

10
E 100
g 0 100000 200000 300000 400000 500000 0 2000 4000 6000 8000

label ID (sorted by frequency) cluster ID (sorted by frequency)

Figure 1: On the left, Wiki-500K shows a long-tail distribution of labels. Note that only 1.6% of the labels have
more than 100 training instances, as indicated by the cyan blue regime. On the right is the distribution of the clusters
after semantic label indexing, with different label representations. 99.4% of the clusters have more than 100 training
instances, which mitigates the sparsity issue for training models in the matching stage.

dependency from heterogeneous sources and the tractability to scale to the extreme-label setting because the
additional Softmax layer scales linearly with the large output space.

In this paper, we propose X-BERT, a scalable deep learning approach to finetune BERT-like pre-trained
language models for XMC problems. To the best of our knowledge, X-BERT is the first successful finetuned BERT
model that outperforms state-of-the-art on the XMC benchmarks that have half a million labels. The contributions
of this paper are summarized as follows:

e We propose X-BERT, a scalable BERT finetuning model for XMC problems. X-BERT consists of a Semantic
Label Indexing component, a Deep Neural Matching component, and an Ensemble Ranking component.

e We leverage both label text description as well as input keywords to build heterogeneous label representations,
which induces semantic label clusters. With the label dependencies encoded in the label clusters, we finetune
BERT models to better match the input text to a set of label clusters. Finally, an ensemble of various
configurations of X-BERT further improves the performance.

e X-BERT achieves new state-of-the-art results over existing XMC approaches. Quantitatively, on a Wiki
dataset with around 0.5 millions of labels, the precision@1 of X-BERT reaches 67.87%, a substantial im-
provement over the deep learning baseline fastText [15] and competing XMC approach Parabel [27], which
achieve 32.58% and 60.91% precision@ 1, respectively. This amounts to an 11.43% relative improvement
over Parabel, which is indeed significant since the recent approach SLICE [13] is reported to lead to a
5.53% relative improvement.

e The dataset, code, and pretrained models are publicly available: https://github.com/OctoberChang/X-BERT.

2 Related Work

2.1 Extreme Multi-label Classification

We categorize XMC algorithms into four categories: one-vs-all approaches, partitioning methods, embedding-based
approaches, and deep learning approaches.

One-Vs-All (OVA) approaches. The naive one-vs-all approach treats each label independently as a binary
classification problem. OVA approaches [2, 20, 36, 35] have been shown to achieve high accuracies, but they suffer
from expensive computation for both training and prediction when the number of labels is very large. Therefore,
several techniques have been proposed to speed up the algorithm. PDSparse [36]/PPDSparse [35] introduce primal
and dual sparsity to speed up the training as well as prediction. DiSMEC [2], ProXML [3] and PPDSparse [35]
explore parallelism and sparsity to speed up the algorithm and reduce the model size. OVA approaches are also

widely used as building blocks for many other approaches. For example, in Parabel [27] and SLICE [13], linear
OVA classifiers with a small output domain are used.

Partitioning methods Consider the instance-label matrix, Y € {0, l}N XL where N is the number of training

samples and L is the number of labels. There are two ways to incorporate partitioning. One is partitioning the
input space (rows of Y) and the other is partitioning the label space (columns of Y). When Y is very sparse,
the input partition only contains a small subset of labels and the label partition only contains a small subset of
instances. Furthermore, by applying tree-based approaches on the label partition allows sublinear time prediction
with respect to the label size. For example, Parabel [27] partitions the labels through a balanced 2-means label tree
using label features constructed from the instances. Recently, several approaches are proposed to improve Parabel.
Bonsai [16] relaxed two main constraints in Parabel: 1) allowing multiway instead of binary partitioning of the
label space at each intermediate node; 2) removing strict balancing constraints on the partitions. HAXMLNet [38]
replaced the sparse bag-of-words features used in Parabel by neural representations from attention networks.
SLICE [13] considers building an approximate nearest neighbor (ANN) graph to group the labels. For a given
instance, the relevant labels can be quickly found from the nearest neighbors of the instance via the ANN graph.

Embedding-based Approaches Embedding models [4, 39, 5, 6, 12, 33] use a low-rank representation for the
label matrix, so that the similarity search for the labels can be performed in a low-dimensional space. In other
words, embedding-based methods assume that the label space can be represented by a low-dimensional latent space
where similar labels have similar latent representations. To achieve similar computational speedup in practice,
nevertheless, embedding-based models often show inferior performance compared to sparse one-vs-all approaches,
such as PPD-Sparse [35], and partitioning approaches such as Parabel [27], which may be due to the inefficiency
of the label representation structure.

Deep Learning Approaches For text inputs, deep learning representations are expected to better capture the
semantic information in the input than bag-of-words features, such as TF-IDF features. XML-CNN [20] employed
CNN models for representing text input, while AttentionXML [37] and HAXMLNet [38] used attention models to
extract the embeddings from text inputs. SLICE also used supervised pre-trained embeddings from XML-CNN
models for training. Recently pre-trained deep language models such as BERT [7], ELMo [26] and GPT [29] have
shown promising results on multiple NLP tasks. However, previous work has not been able to incorporate these
pre-trained large models for XMC, which presents substantial challenges in both training and inference.

3 Proposed Algorithm: X-BERT

Our approach is partly inspired from the information retrieval (IR) perspective, where the goal is to find relevant
documents, from an extremely large set, for a given query. To handle the vast number of documents, an IR engine
typically performs search in the following steps [10] — 1) indexing: build an efficient data structure to index the
documents; 2) matching: find the document index that this document instance belongs to; 3) ranking: sort the
documents in the retrieved index.

An XMC problem can be connected to an IR problem as follows: the large number of labels can be viewed
analogously to the large number of documents indexed by a search engine; and the instance to be labeled can be
viewed as the query. Due to the success of the three-stage framework of IR for extremely large number of targets,
some existing approaches are closely related to this framework, e.g., HAXMLNet and Parabel. In this paper, we
propose X-BERT (BERT for eXtreme Multi-label Text Classification) under the three-stage framework, which
consists of the following stages:

1. semantically indexing the labels,
2. matching the label indices using deep learning,

3. ranking the labels from the retrieved indices and taking an ensemble of different configurations from previous
steps.

3.1 Problem Definition

Notation and Definitions Formally, multi-label classification is the task of learning a function f that maps an
input (or instance) x € X to its target y = [y1,v2," - ,yr] € Y = {0,1}L, where L is the number of total unique
labels. Assume that we have a set of N training samples {(x;,y;)}Y;, where (x;,y;) € X x {0,1}£. We use
Y €0, 1}N XL whose i-th row is yZT , to represent the label matrix. For some special datasets, we have additional
label information. For example, each label in the Wikipedia dataset [25] is named by words, such as “Zoos in
Mexico” and “Bacon drinks”. So we will use {z;};—12,... 1, € Z¥ as the feature representations of the labels,
which may either come from the label information itself or from other approaches.

A Probabilistic Perspective. We formulate our framework for X-BERT in a probabilistic perspective. Assume
after indexing, we have K clusters of labels, {Z) } =12 ...k, where each Z, is a subset of the label indices, i.e.,
T, C [L]. For a given instance x, the probability of I-th label y; being relevant to x is P(y;|x). We can form the
probabilistic model as follows:

K
P(ylx) = P(yil|Zi.x,0,)P(Ti|x, O,,). (D
k=1

Here P(Z;|x, ©,,) is the matching model with ©,,, as the parameters and P(y;|Z;, x, ©,) is the ranking model
with ©,. as the parameters. For the ranking model, we impose that

Py = 1T1,x,0,) = 0, if | ¢ Ty,

i.e., during the ranking stage, only labels in the retrieved clusters are considered. The intuition is that when the
label size is enormous, there will be many similar labels which can be grouped. Our framework has the following
advantages:

1. Armed with heterogeneous label representations, we bootstrap the matching and ranking models with various
clustering indices Z, which leads to more diverse matching/ranking models for a better retrieval system.

2. Driven by the induced yet compact cluster space, the 12 layers of BERT are now a computational feasible
option as a realization of the matching model P(Zy|x, ©,,).

3. Constraining the ranking to a smaller set of labels helps exclude irrelevant labels if the clustering and the
matching models are sufficiently good.

We now briefly touch on each of these stages.

3.2 Semantic Label Indexing

Indexing documents in a search engine requires rich text information while the labels of XMC typically lack this
information. Thus, we aim to find meaningful label representations in order to build such a semantic indexing
system.

Label embedding via label text Instead of using label IDs, we need some semantic information about the labels.
Given text information about labels, such as a short description of categories in the Wikipedia dataset, we can
use this short text to represent the labels. In this work, we use one of the state-of-the-art word representations,
ELMo [26], to represent the words in the label. Note that without finetuning with proper loss, the token embedding
of BERT or other variants may not be suitable for the clustering problem. The label embedding is created by a mean
pooling over all word embeddings in the label text. In particular, assume the word sequence for the [-th label is
{wy, ..., wy}, the label embedding for the [-th label is z; = % Zle dELMo (W) Where ¢gLmo(w;) is the contextual
word representation of w;.

Label embedding via keywords from positive instances However, the short text information for labels may
not contain sufficient information and some words in the short text might be ambiguous and noisy. Therefore we
consider another label representation derived from the sparse text embedding of instances. Specifically, the label
embedding z; is the sum of the sparse TF-IDF features of all the relevant instances for the [th label:

z=vi/|vill, vi=">_ émmoe(xi), 1=1,...,L,

iy =1

We refer to this type of label embedding as Positive Instance Feature Aggregation, shorthand as PIFA, which is also
used in some state-of-the-art XMC methods [27, 13, 38, 16].

Label indexing With the above label representations, we build the indexing system by clustering the labels as in
label partitioning methods [27, 13, 38, 16]. For simplicity, we consider balanced k-means clustering [22, 27] as
the default setting. Due to the lack of a direct and informative representation of the labels, the indexing system
for XMC may be noisy compared to that for an IR problem. Fortunately, the instances in XMC are typically very
informative. Therefore, we can utilize the rich information of the instances to build a strong matching system as
well as a strong ranker to compensate for the indexing system.

3.3 Deep Neural Matching

The matching phase for XMC is to assign relevant clusters (i.e., indices) to each instance, which is reduced to yet
another multi-label classification (MLC) problem. The key to a successful search engine is a high-recall matching
model since the subsequent ranking phase is based on the retrieved documents from the matching phase. To build
a strong MLC-matching system, we aim to extract the discriminative information in the input text. Many deep
learning models have been proposed for the MLC problem such as Seq2Seq [23], CNN [17] and self-attention
models [19, 32, 37] to extract the sequential information in the input text. However, deep learning models suffer
from high computational complexity and are difficult to scale for XMC. Fortunately, in X-BERT, the number of
clusters can be controlled by the practitioner, hence we can govern the scale of MLC-matching problem so that our
deep learning models still enjoy reasonable training and inference time.

After label clustering, the labels are partitioned into K clusters {Z; }X_|, where Z;, C [L]. The deep neural
matching stage aims to find a powerful encoder g to create an instance embedding u = g(x), and learn shallow
neural networks that map the instance embedding u to the relevant clusters in {Z; } £, . Concretely, the cluster Zj,
is relevant to an instance x; if the instance has a positive label in Z, (i.e., y;; = 1, 31 € Zy,).

3.3.1 X-ttention

Deep neural models have demonstrated great success in many NLP applications, such as gated convolution networks
for sequence learning [9], self-attention mechanism for text classification [19, 37], as well as Transformer models
and its variants for machine translation [32]. Thus, we first consider the self-attention mechanism [19, 32] as a
realization for the encoder g(+), hence the name X-ttention.

Specifically, given an instance of T' tokens, represented as a sequence of word embeddings D = {wy, ..., wr},

we consider BILSTM [11] to extract higher-order dependencies in text: H = (hy,...,hy), h; = (h, hy),

where H € R?™*T and h_Z, }: € R™ are the hidden state of bidirectional LSTM for token ¢. To have a fixed
size embedding for a variable-length instance, X-ttention learns self-attention weights to linearly combine the
T hidden states in H. Concretely, self-attention mechanism takes H as input, and outputs a vector of weights a:
a = softmax (ngtanh(Wsl H)) , a € RT. A multi-head attention extends the self-attention by modeling multiple
7 semantic aspects of the document via weight matrix Wy € R"*%: A = softmax (Wotanh(Ws1 H)), A €
R"*T. Finally, the instance embedding u € R?"™ becomes u = g(x; W2, W1, OpiLstm) = vec(H AT).

3.3.2 X-BERT

Recently, the NLP community has witnessed a dramatic paradigm shift from task-specific neural architecture to
universal pretrained deep language representation models. Under this paradigm, a neural network is first pre-trained
on vast amounts of text under an unsupervised objective and then fine-tuned on task-specific data, which achieves
state-of-the-art across many natural language understanding tasks such as question answering, semantic role
labeling, parsing, sentence classification with very few labels, and more. Bidirectional Encoder Representations

Dataset ‘ Nirn Nyal Nyt #features #labels #labels/instance #instances/label #clusters

Eurlex-4K 13,905 1,544 3,865 33,246 3,714 5.32 19.93 64
Wiki10-28K 11,265 1,251 5,732 99,919 28,139 18.68 7.47 512
AmazonCat-13K | 1,067,616 118,623 306,782 161,925 13,234 5.04 406.77 256
Wiki-500K 1,411,760 156,396 676,730 517,631 479,315 4.90 14.44 8192

Table 1: Data Statistics. Ngpp,, Nyar, Nest refer to the number of instances in training, validation, and test set,
respectively.

from Transformers (a.k.a BERT [7]) stands as the latest development in this direction that significantly outperforms
many predecessors such as the Generative Pretrained Transformer (GPT) [29] and Embeddings from Language
Models (ELMo) [26].

In this paper, we propose to finetune the BERT model as an encoder g(+) for the XMC-matching problem, hence
the name X-BERT. To the best of our knowledge, BERT has not yet been explored for the XMC problem that has
hundreds of thousands labels or more. Following the setting of [7], we begin with the pre-trained BERT model with
12 layers of Transformer cells and take the final hidden state of the [CLS] token as instance embedding u € R™.
During fine-tuning, we optimize the model end-to-end using Adam with a warmup on the learning rate, with an
additional linear classifier parameters W € RX*™ followed by square hinge loss as the loss function.

While we consider BERT models as an instance of the proposed framework, it is important to note that X-BERT
can accommodate other advanced pretrained models such as XLNet [34] and Roberta [21], which we leave for
future exploration.

3.4 Ensemble Ranking

After the matching step, a small subset of label clusters is retrieved and the remaining task is to rank the labels in
these clusters. As a ranking model, our goal is to model the relevance between the instance and the retrieved labels.
Formally, given a label [and an instance x, we want to find a mapping h(x, [) that maps the instance feature x and
the label [to a score. In this paper, we mainly use the linear one-vs-all (OVA) approach, which is one of the most
straightforward and best-performing models. This model treats the assignment of an individual label to an instance
as an independent binary classification problem. The class label is positive if the instance belongs to the cluster;
otherwise, it is negative. If the instance feature is text, the input to the linear classifier can be the tf-idf feature. With
the probability score computed via (1), we further ensemble the scores from different X-BERT models, which are
trained on different semantic-aware label clusters by using either ELMo or PIFA embeddings.

4 Empirical Results

4.1 Datasets and Preprocessing

We consider four multi-label text classification datasets from the publicly available Extreme Classification Reposi-
tory [31] for which we had access to the raw text representation, namely Eurlex-4K, Wiki10-28K, AmazonCat-
13K and Wiki-500K. Summary statistics of the datasets are given in Table 1. We follow the training and test split
of [31] and set aside 10% of the training instances as the validation set for hyperparameter tuning.

We note that the data statistics and number of labels in Table 1 are slightly different from [31] due of two
reasons. First, since only the title of body text is provided in Wiki10-28K and Wiki-500K, we map the title with
the latest Wikipedia dump database, and extract the raw text of the document. This creates a subset of the original
dataset, yielding slightly smaller number of labels. Second, we adhere to the text preprocessing procedure of [23],
replacing numbers with a special token; building the uni-gram vocabulary for TF-IDF; and truncating the documents
after 300 words.

We also consider a proprietary E-commerce dataset!, namely Prod2Query-1M, which maps the product title
to relevant customer queries. Prod2Query-1M consists of 14 million instances (products) and 1 million labels
(queries) where the label is positive if a product is clicked at least once by the customer’s search query corresponding
to the label. We divide the dataset into 12.5 million training samples, 0.8 million validation samples and 0.7 million
testing samples.

1“E-commerce” is a placeholder to keep anonymity during the review period. We will include the details later.

Dataset ‘ Method ‘ Prec@1 Prec@3 Prec@5 ‘ Recall@1 Recall@3 Recall@5
PD-Sparse [36] 79.97 66.74 55.50 16.45 40.18 54.66
fastText [15] 73.97 62.25 51.97 15.07 37.30 51.05
FastXML [28] 76.17 61.86 50.75 15.54 37.01 49.75
Eurlex-4K Parabel [27] 82.48 69.95 58.49 16.87 41.98 57.46
X-BERT 86.00 74.52 62.64 17.63 44.83 61.59
PD-Sparse [36] 82.12 71.00 60.47 5.04 12.86 18.04
fastText [15] 65.28 53.48 45.36 3.97 9.62 13.42
FastXML [28] 83.20 68.68 58.39 5.03 12.28 17.13
Wiki10-28K Parabel [27] 82.78 71.70 62.48 5.02 12.88 18.46
X-BERT 85.75 75.19 65.13 5.24 13.57 19.24
PD-Sparse [36] 89.18 69.95 55.46 25.44 54.72 67.55
fastText [15] 81.56 70.65 58.35 22.81 54.36 69.91
FastXML [28] 92.68 77.17 62.05 26.44 58.70 73.18
AmazonCat-13K Parabel [27] 91.42 76.34 61.68 25.82 57.84 72.53
X-BERT 95.17 80.65 65.19 27.15 61.15 76.32
PD-Sparse [36] - - - - - -
fastText [15] 32.58 23.00 18.60 10.67 19.89 25.30
FastXML [28] 43.46 29.03 22.12 12.30 21.87 26.32
Wiki-500K Parabel [27] 60.91 41.33 31.67 18.74 33.21 39.75
X-BERT 67.87 46.73 35.97 21.21 37.70 45.20

Table 2: Overall Comparison of X-BERT over state-of-the-art methods. All comparing baselines presented in this
Table are re-run on our benchmark train/test set for fair comparison. Note that we defer the discussion of comparing
X-BERT to more recent state-of-the-art XMC methods in Table 4.

4.2 Algorithms and Hyperparameters

Comparing Methods. We now compare the proposed X-BERT to state-of-the-art XMC methods including
the input partitioning method FastXML [28], the label partitioning method Parabel [27], OVA-based approach
PD-Sparse [36], and the representative deep learning model fastText [15] on publicly available benchmark
multi-label datasets [31]. Crucially, all evaluation results of the methods in Table 2 are obtained by running their
available code on our benchmark dataset partitions. For more comprehensive evaluation with other state-of-the-art
approaches that have not released their code or are difficult to reproduce, we have a detailed comparison in Table 4.

Evaluation Metric. We follow [7] to obtain WordPiece tokenized text representation for X-BERT and use
TF-IDF unigram for feature-based methods (PD-Sparse, FastXML, and Parabel). We evaluate all methods with
example-based ranking measures including Precision@k (k = 1, 3,5) and Recall@k (k = 1, 3,5), which are
widely used in the XMC literature [28, 4, 14, 36, 27, 30].

Hyperparameters. For X-BERT, all hyperparameters are chosen from the held-out validation set. The number
of clusters are listed in Table 1, which are consistents to Parabel setting for fair comparison. The neural matcher
of X-BERT is an uncased BERT},s. pretrained model configuration, and use Adam [18] as the optimizer with
learning rate chosen from {5 x 107°,8 x 107°,10~}. The hyperparameters of other methods are set by following
their default setting. Specifically, the number of trees in FastXML is 7" = 100, and maximum instances in a leaf
node is m = 10. For Parabel, the number of trees is 7" = 1, 2, 3, and the maximum number of labels in a leaf node
is m = 100. Both FastXML and Parabel use C' = 1 as the loss penalty for the linear SVM with the squared hinge
loss, as implemented via LIBLINEAR [8]. For PD-Sparse, the regularization term A = 0.01, and the maximum
number of iterations is 20. For the deep learning baseline fastText, we set the learning rate to 1, the number of
hidden units to 100, and the maximum number of epochs to 1000.

Ablation Configuration Evaluation Metric

Dataset Configuration ID indexing matching ranking #trees| Prec@1 Prec@3 Prec@5 | Recall@1 Recall@3 Recall@5

0 ELMo,PIFA BERT linear 6 95.17 80.65 65.19 27.15 61.15 76.32

1 ELMo,PIFA BERT linear 2 94.62 80.02 64.51 26.95 60.71 75.61

2 ELMo BERT linear 2 9449 79.92 64.39 26.89 60.66 75.51

3 PIFA BERT linear 2 9434 79.67 64.22 26.84 60.42 75.24

4 ELMo BERT linear 1 93.46 78.64 63.06 26.54 59.71 74.08

AmazonCat-13K 5 PIFA BERT linfaar 1 93.50 7893 63.42 26.54 59.90 74.39
6 PIFA BERT tf-idf 1 56.35 44.43 36.39 15.65 35.05 46.04

7 ELMo Xttention linear 1 92.12 76.75 61.49 26.11 58.36 72.56

8 PIFA Xttention linear 1 9221 77.03 6191 26.13 58.58 72.93

9 ELMo linear linear 1 89.81 7424 59.57 25.27 56.34 70.37

10 PIFA linear linear 1 90.80 75.75 61.05 25.62 57.53 71.95

11 Random linear linear 1 88.91 72.78 58.05 24.99 55.32 68.84

0 ELMo,PIFA BERT linear 6 67.87 46.73 3597 21.21 37.70 45.20

1 ELMo,PIFA BERT linear 2 66.29 4531 3479 20.63 36.42 43.60

2 ELMo BERT linear 2 65.56 44.66 34.17 20.27 35.76 42.71

3 PIFA BERT linear 2 65.45 4475 34.38 20.28 35.90 43.01

4 ELMo BERT linear 1 63.74 43.07 32.80 19.61 34.32 40.80

Wiki-S00K 5 PIFA BERT linfea.r 1 64.01 43.48 33.26 19.74 34.74 41.44
6 PIFA BERT tf-idf 1 46.47 2733 19.79 15.19 23.45 26.70

7 ELMo Xttention linear 1 62.59 42.15 31.95 19.14 33.39 39.53

8 PIFA Xttention linear 1 62.99 42.67 32.63 19.35 34.00 40.60

9 ELMo linear linear 1 54.14 36.70 28.01 16.32 29.22 35.02

10 PIFA linear linear 1 59.21 40.19 30.85 18.12 32.17 38.62

11 Random linear linear 1 40.09 24.61 17.94 11.35 18.99 22.00

Table 3: Ablation study of X-BERT on AmazonCat-13K and Wiki-500K dataset. We outline four take away
messages: (1) Index= {1, 2,3} demonstrates a better performance of combining different label embeddings; (2)
Index= {4, 7,9} and Index= {5, 8, 10} both suggests that, performance-wise, pre-trained deep transformers >
BiLSTM-+self-attention > linear models (i.e. Parabel); (3) Index={5, 6} manifest the importance and learning
rankers instead of unsupervised TF-IDF ranking. (4) Index={10, 11} indicates the importance of semantic label
indexing instead of random clustering.

Eurlex-4K Wiki-500K
Relative Improvement Relative Improvement
Method Source over Parabel (%) Method Source over Parabel (%)
Prec@l Prec@3 Prec@5 Prec@1 Prec@3 Prec@5
X-BERT Table 2 +4.27% +6.53% +7.10% X-BERT Table 2 +1143% +13.07% +13.58%
SLICE [13, Table 2] +4.27% +3.34% +3.11% SLICE [13, Table 2] +5.53% +7.02% +7.56%

AttentionXML [37, Table 2] +0.91% +2.09% +0.86% || HAXMLNet [38, Table 3] +2.40% +5.75% +6.42%
ProXML [3, Table 5] 4+3.86% +2.90% +2.43% ProXML [3, Table 5] +2.22% +0.82% +2.92%
Bonsai [16, Table 2] +0.97% +1.46% +1.57% Bonsai [16, Table 2] +0.73% +0.40% +0.52%
PPD-Sparse [27, Table2] +1.92% +2.93% +2.92% || PPD-Sparse [27, Table 2] +2.39% +233% +2.88%
DiISMEC [27, Table 2] +1.73% +2.90% +2.80% DiISMEC [27, Table 2] +2.45% +239% +2.98%

PfastreXML [27, Table2] -8.27% -8.75% -8.73% | PfastreXML [27, Table2] -13.13% -18.58% -20.31%
XML-CNN [27, Table 2] -7.14% -8.59% -10.64% XML-CNN [27,Table2] -12.65% -20.52% -22.67%
fastText Table 2 -3.04% -459% -5.11% fastText Table 2 -46.51% -44.35% -41.27%
SLEEC [16, Table 2] -3.53% -6.40% -9.04% SLEEC [16, Table 2] -29.84% -40.73% -45.08%

Table 4: Comparison of Relative Improvement over Parabel. The relative improvement for each state-of-the-art
(SOTA) method is computed based on the metrics reported from its original paper as denoted in the Source column.
The proposed X-BERT outperforms all other SOTA approaches on two commonly used benchmark datasets:
Eurlex-4K and Wiki-500K.

4.3 Empirical Results

In this subsection, we first compare the proposed X-BERT approach with state-of-the-art XMC methods, and
present a detailed ablation study of X-BERT.

4.3.1 Overall Comparison.

Table 2 compares the proposed X-BERT with other strong XMC baselines on four benchmark datasets. Note
again that here we only present the evaluation results of XMC methods that have available code and reproducible
performance as reported in their paper when we run their implementation on our benchmark dataset partitions. X-
BERT outperforms the SOTA XMC model Parabel on all datasets. It is worth noting that, on the most challenging
dataset Wiki-500K, X-BERT improves over Parabel by around 7%/4% absolute improvement for precision@ 1
and precision@35. This significant gain stems from two novel techniques: the deep neural matcher and the ensemble
of various semantic label representations. Compared to the well-known neural baseline fastText, X-BERT achieves
far better performance, though at the cost of longer training time.

4.3.2 Results on Prod2Query-1M Dataset.

We applied the X-BERT model to a keyword recommendation system for e-commence ads campaign, where the
advertisers bid keywords for their products. The recommended keyword list is shown in a group of 25 per page. So
we calculate precision at 25, 50 and 100. We show the relative improvement of X-BERT over the current production
method in Table 5.

Metrics ‘ Prec@25 Prec@50 Prec@100
Relative Improvement ‘ +37.16% +25.25% +10.26%

Table 5: Relative improvement of X-BERT over the current production method on an e-commence dataset.

4.3.3 Ablation Study.

We carefully conduct an ablation study of X-BERT as shown in Table 3. We decompose the X-BERT framework
into three stages: indexing, matching, and ranking, as introduced in Table 3. The configuration Index O represents
the final best configuration as reported in Table 2. There are four takeaway messages from this ablation study, and
we describe them in the following four paragraphs.

Config. id 0 to 3 shows the effect of ensembling different label representations in the indexing stage. The benefit
of ensembling models with different random seeds can be seen from configuration id 0 to 1. In addition, from id
1 to 2 and 3, we observe that ensembling using heterogeneous label embeddings is more effective than using the
same label embedding of different random seeds, which is the technique used in Parabel models. This confirms
that the diversity of semantic label representations helps the neural matcher in capturing different relevant labels.

Next, we analyze how different matching models affect the performance, as shown in configuration id
4,5,7,8,9,10. It is clear that the finetuned BERT (id 4, 5) is more powerful than the self-attention models
(id 7, 8), and self-attention models are more effective compared to the hierarchical linear models (id 9, 10) that are
used in Parabel.

The importance of training parametric models in the ranking stage is emphasized in configuration id 5, 6.
TF-IDF essentially re-ranks the labels within the retrieved clusters by word matching with the queried documents
without learning any model. We see a considerable performance drop from training linear models to the TF-IDF
word matching in the re-ranking stage. This finding suggests the importance of learning more powerful parametric
models in the ranking stage; in the future we plan to go beyond linear to neural models for ranking.

Finally, we confirm the necessity of label embeddings and clustering algorithms by comparing to a random
clustering assignment heuristic, as shown in id 10, 11. While random assignment produces more evenly-distributed
clusters (See Fig. 1), it fails to form meaningful clusters, which poses difficulties in the matching and ranking
stages.

4.4 Cross-Paper Comparisons

Many XMC approaches have been recently proposed. While most of them contain an empirical comparison on a
few commonly used datasets, such as Eurlex-4K and Wiki-500K, the evaluation metric of the same method on the
“same dataset” varies from paper to paper. For example, the precision@ 1 of DISMEC is listed as 63.70% in [13,
Table 2] and 70.20% in [16, Table 2]. Similarly, the precision@1 of Parabel on Wiki-500K is listed as 59.34%
in [13, Table 2], 68.52% in [27, Table 2], while we see 60.91% as seen in Table 2. The inconsistency is likely due

to differences in data preprocessing, data split, or hyper-parameters. Thus, it is difficult to compare metrics directly
from different papers.

Here we propose an approach to calibrate these numbers so that various methods can be compared in a more
principled way. In particular, for each metric m(-), we use the relative improvement over a common anchor
method, which is set to be Parabel as it is widely used in the literature. Then for a competing method X with a
metric m(X) on a dataset reported in a paper, we can compute the relative improvement over Parabel as follows:
% x 100%, where m(Parabel) is the metric obtained by Parabel on the same dataset in the same
paper. Following the above approach, we include a variety of XMC approaches in our comparison. We report the
relative improvement of various methods on two commonly used data sets, Eurlex-4K and Wiki-500K, in Table 4.
From this table, we can clearly observe that X-BERT brings the most significant improvement over Parabel.

5 Conclusions

In this paper, we propose X-BERT, the first deep learning approach with finetuned BERT models that achieves
state-of-the-art performance in the XMC problem. The novel semantic label indexing stage endows heterogeneous
label partitions that bootstrap various BERT models, resulting in a powerful ensemble model for XMC problem.
Quantitatively, on the Wiki-500K dataset, the precision@1 is increased from 60.91% to 67.87% when comparing
X-BERT to the strong XMC method Parabel. This amounts to a 11.43% relative improvement over Parabel,
which is indeed significant compared to the recent state-of-the-art approach SLICE which has 5.53% relative
improvement over Parabel.

References

[1] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. Multi-label learning with millions of
labels: Recommending advertiser bid phrases for web pages. In WWW, pages 13-24. ACM, 2013.

[2] Rohit Babbar and Bernhard Scholkopf. DiSMEC: distributed sparse machines for extreme multi-label
classification. In WSDM, 2017.

[3] Rohit Babbar and Bernhard Scholkopf. Data scarcity, robustness and extreme multi-label classification.
Machine Learning, 2019.

[4] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local embeddings for
extreme multi-label classification. In NIPS, 2015.

[5] Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduction for multi-label classifica-
tion. In NIPS, 2012.

[6] Moustapha M Cisse, Nicolas Usunier, Thierry Artieres, and Patrick Gallinari. Robust bloom filters for large
multilabel classification tasks. In NIPS, 2013.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019.

[8] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library
for large linear classification. Journal of machine learning research, 9(Aug):1871-1874, 2008.

[9] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to
sequence learning. In /CML, 2017.

[10] Google. How search works. https://www.google.com/search/howsearchworks/, 2019. Accessed: 2019-1-18.

[11] Alex Graves and Jiirgen Schmidhuber. Framewise phoneme classification with bidirectional Istm and other
neural network architectures. Neural Networks, 18(5-6):602-610, 2005.

[12] Daniel J Hsu, Sham M Kakade, John Langford, and Tong Zhang. Multi-label prediction via compressed
sensing. In NIPS, 2009.

10

[13] Himanshu Jain, Venkatesh Balasubramanian, Bhanu Chunduri, and Manik Varma. Slice: Scalable linear
extreme classifiers trained on 100 million labels for related searches. In WSDM, 2019.

[14] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications. In KDD, 2016.

[15] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text
classification. In EACL, 2017.

[16] Sujay Khandagale, Han Xiao, and Rohit Babbar. Bonsai-diverse and shallow trees for extreme multi-label
classification. arXiv preprint arXiv:1904.08249, 2019.

[17] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.
[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2014.

[19] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. A structured self-attentive sentence embedding. In ICLR, 2017.

[20] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learning for extreme multi-label text
classification. In SIGIR, 2017.

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoOBERTa: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[22] Mikko I Malinen and Pasi Frénti. Balanced k-means for clustering. In Joint IAPR International Workshops,
2014.

[23] Jinseok Nam, Eneldo Loza Mencia, Hyunwoo J Kim, and Johannes Fiirnkranz. Maximizing subset accuracy
with recurrent neural networks in multi-label classification. In NIPS, 2017.

[24] Alexandru Niculescu-Mizil and Ehsan Abbasnejad. Label filters for large scale multilabel classification. In
AISTATS, 2017.

[25] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres, George Paliouras, Eric Gaussier,
Ton Androutsopoulos, Massih-Reza Amini, and Patrick Galinari. LSHTC: A benchmark for large-scale text
classification. arXiv preprint arXiv:1503.08581, 2015.

[26] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations. In NAACL, 2018.

[27] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel: Partitioned
label trees for extreme classification with application to dynamic search advertising. In WWW, 2018.

[28] Yashoteja Prabhu and Manik Varma. FastXML: A fast, accurate and stable tree-classifier for extreme
multi-label learning. In KDD, 2014.

[29] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by
generative pre-training. 2018.

[30] Sashank J Reddi, Satyen Kale, Felix Yu, Dan Holtmann-Rice, Jiecao Chen, and Sanjiv Kumar. Stochastic
negative mining for learning with large output spaces. In AISTATS, 2019.

[31] Manik Varma. The extreme classification repository: Multi-label datasets & code, 2018. Accessed: 2018-10-5.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[33] Jason Weston, Samy Bengio, and Nicolas Usunier. WSABIE: Scaling up to large vocabulary image annotation.
2011.

[34] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. XLNet:
Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237, 2019.

11

[35] Ian EH Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit Dhillon, and Eric Xing. PPDSparse: A
parallel primal-dual sparse method for extreme classification. In KDD, 2017.

[36] Ian EH Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S Dhillon. PD-Sparse: A primal
and dual sparse approach to extreme multiclass and multilabel classification. In ICML, 2016.

[37] Ronghui You, Suyang Dai, Zihan Zhang, Hiroshi Mamitsuka, and Shanfeng Zhu. AttentionXML: Extreme
multi-label text classification with multi-label attention based recurrent neural networks. arXiv preprint
arXiv:1811.01727v1, 2018.

[38] Ronghui You, Zihan Zhang, Suyang Dai, and Shanfeng Zhu. HAXMLNet: Hierarchical attention network for
extreme multi-label text classification. arXiv preprint arXiv:1904.12578, 2019.

[39] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit Dhillon. Large-scale multi-label learning with
missing labels. In ICML, 2014.

12

