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Abstract. In an e-commerce business, the ability to parse postal ad-
dresses into sub-component entities (such as building, locality) is essen-
tial to take automated actions at scale for successful delivery of ship-
ments. The entities can be leveraged to build applications for logistics
related operations, e.g. geocoding, assessing address completeness. Train-
ing an accurate address parser requires a significant number of manually
labeled examples which is very expensive to create, especially when try-
ing to build model(s) for multiple countries with unique address struc-
ture. To tackle this problem, in this paper, we present a novel Unsu-
pervised Domain Adaptation (UDA) framework to transfer knowledge
acquired by training a parser on labeled data from one country (source
domain) to another (target domain) with unlabeled data. We specif-
ically propose a multi-task student-teacher model comprising of three
components: 1) specialized teachers trained on source data to create a
pseudo labeled dataset, 2) consistency regularization, that uses a new
data augmentation technique for sequence tagging data, and 3) bound-
ary detection, leveraging signals in addresses like commas and text box
boundaries. Multiple experiments on diverse address datasets 1 demon-
strate that our approach outperforms state-of-the-art UDA baselines for
Named Entity Recognition (NER) task in terms of F1-score by 2-9%.

Keywords: Named Entity Recognition · Address parsing · Unsuper-
vised Domain Adaptation

1 Introduction

Address is the most critical customer data to make successful and reliable deliv-
eries of products in an e-commerce business. Some of the challenges we observe
with respect to address quality such as misspellings, non-standard address con-
notations lead to delivery delays/failures, adversely impacting crucial business
metrics. These problems are more pertinent to emerging countries where ad-
dresses are not standardized. Address parsing helps in identification of unique
sub-components which in turn can be leveraged for multiple downstream tasks,

1 In this paper, we do not reveal the name of the e-commerce countries on which
we evaluate our models due to business confidentiality. We also mask finer address
details with (XX) to preserve customer’s privacy.
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such as assessing completeness of addresses, predicting geocodes from address
text, identifying high density communities in cities to pilot new services. For ex-
ample, if you consider an address karkarbagh colony, near sbi bank, the parser can
signal a missing building entity which can be used to power customer nudges to
request additional information during address creation/order placement, thereby
improving address quality.Address parsers are essentially NER models that re-
quire huge amounts (>50K) of labeled addresses with tags such as building name,
locality, road and house unit information for model training. While address ref-
erence data from open-sources like OpenAddresses [6] and OpenStreetMap [7] are
available, they differ vastly from the noisy/unstructured addresses commonly en-
tered by customers and hence, lead to dismal performance in a practical setting.
On the other hand, obtaining manually annotated address label data is expen-
sive, time-consuming and prone to human errors. To tackle the labeled data
scarcity issue, we leverage annotated data available for existing source countries
when training an address parser for a new target country. There are various
challenges involved while transferring knowledge from one country to another: 1)
different countries have different address structures. For example, the most com-
mon address writing format in India (IN) is building name, road name followed
by locality, while in the case of United Arab Emirates (UAE), it is road name
followed by building name, and locality, 2) different countries may have addresses
in different languages. Even if they are written in the same language (as in our
experiments fixed to English), they have a very low vocabulary overlap. Hence,
to solve these problems, we propose a novel multi-task student teacher based
UDA architecture for address parsing that uses labeled data from source coun-
try to learn a target country address parser. Our approach involves three steps.
Firstly, we perform domain adaptive pre-training for the base teacher model
using both source and target addresses. We then train multiple teachers using
source labeled data for address parsing to help deal with structural differences
between countries. Finally, the student model is trained on two student-teacher
tasks, consistency regularization and entity boundary detection. While consis-
tency regularization task helps in making the student model robust to noise,
boundary detection task provides additional information to the student about
the target address structure, thereby improving overall model performance. To
summarize, we make the following contributions in this work:

– We propose a novel multi-task student-teacher based UDA framework for
address parsing that uses two teachers - one teacher is learned directly on
source data while the other uses shuffled data.

– We present a new data augmentation technique applicable to sequence tag-
ging data like addresses to perform consistency regularization on the student
model.

– We introduce boundary detection as an additional task that leverages self-
supervised signals in addresses like customer commas and address text box
boundaries.

– We evaluate our approach on proprietary e-commerce data and external
datasets, and demonstrate its superiority over state-of-the-art baselines. Ab-
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lation study further confirms the effectiveness of each of the proposed com-
ponents.

2 Related Work

Address Parsing: In [11], the authors develop a multinational address parser
using subword embeddings and recurrent neural network architecture. They
build a single model capable of parsing addresses from multiple countries at
the same time. Specifically, they use MultiBPEmb [4] to vectorize each word
and the subword embeddings are fed into a BiLSTM encoder. The last hidden
state of each word is fed to a feed-forward layer that is fed as input to a Seq2Seq
module. [12] improves upon the above multi-national parser by adding an at-
tention mechanism while label decoding, along with domain adversarial training
for domain invariant features. Although the models are meant for multi-national
parsing, the addresses on which they are trained with are structured addresses
[10] that lack real life noise provided by customers for e-commerce delivery. Fur-
ther, training a single parser model for multiple countries leads to deteriorated
results for emerging countries, given the differences in address formats between
countries. Also, since we do not have access to annotated data from multiple
countries (˜20 as assumed in the paper), we focus on single-source single-target
address parsing in our experiments.

UDA-NER: As shown in [3], domain adaptive fine tuning using Masked
language Modelling (MLM) on the target data and source data before fine tuning
on the source NER data can help in boosting the zero shot performance on the
target data (with a different distribution as compared to the source). In [9], the
authors propose a teacher-student learning method for cross-lingual NER where
the student model is trained using mean squared error loss with the teacher’s
output probability distribution (soft pseudo labels) as the ground truth. They
also extend the methodology to multi-source cross lingual NER by weighing
each of the source teachers’ soft labels using the similarity between the source
and target language vectors. Similarly, in [1], the authors use a student-teacher
framework for cross-lingual NER, where a teacher is trained on source labeled
data and, in parallel, a language discriminator and encoder are trained on the
token-level adversarial task. All the above works on UDA/cross-lingual NER
deal with open domain text. Addresses, on the other hand, are quite different
as compared to open-domain text as they have a unique linguistic, and possess
a notion of structure that can vary across countries. Hence, directly applying
existing methods for our use-case is not optimal which is further validated in the
results section.

3 Proposed Methodology

The core architecture of an address parser is that of a name entity recognition
model, which is a token wise classifier on the top of an encoder f(θ) (RoBERTa-
base [5]). For a given address text x = {xi}Li=1, the encoder maps it into a set of
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hidden state vectors h = {fθ(xi)}Li=1. For a token xi ∈ x, its hidden state vector
hi is used to derive the probability distribution over the entity labels (see Section
4.1) using a linear classification layer and softmax function. We have access to
a source labeled data Dl

src in which each source address has been assigned a
label sequence, unlabeled source Dul

src and unlabeled target Dul
tgt addresses. We

assume that source and target use the same set of entity labels.

3.1 Adaptive Pre-training using MLM

We first adapt an open source RoBERTa-base 2 model to the addresses in source
and target using MLM task [2]. We take 20K unlabeled addresses from both Dul

src

and Dul
tgt after which we concatenate-shuffle them. The training procedure used

here follows the same masking criteria and training settings as done in [3]. The
adapted model f(θadd) helps to understand the linguistics within addresses and
the vocabulary of both source and target data.

3.2 Student-Teacher Framework

Post adaptive pre-training, we use a student-teacher framework for unsupervised
domain adaptation.

Multi-Teacher Training As discussed earlier, source and target can have very
different structures. For e.g. in UAE, road occurs at the start for most of the
addresses, while in India building occurs at the start. Training a teacher directly
on source data will force the model to memorize such source-specific address
structure patterns and produce noisy outputs on target data. This leads to a
poor quality student model. To tackle this issue, we introduce an additional
teacher trained on an entity level shuffled source data Dl

shuf . To create Dl
shuf ,

we randomly pick up annotated entity ent at index i from a source address with
tags {xsrc, ysrc} ∈ Dl

src and place it at another random position j (j ̸= i) to
obtain a new shuffled address with tags {xshuf , yshuf}. Since the entities are
shuffled, the source addresses will have higher variance in terms of structure,
thereby enforcing the teacher model to pay attention to an entity itself without
getting affected by its neighbours. Thus, we train two teacher models, main
teacher f(θT ) and shuffled-data teacher f(θTshuf

) onDl
src andDl

shuf respectively
using a cross-entropy loss function. The two teacher models during training are
initialized using the weights of f(θadd) and the word embeddings layer is frozen
to ensure that the models do not forget the target information that was learnt
during MLM training.

Student-Teacher tasks Using each of the two teachers, for a given address
x′ where x′ ∈ Dul

tgt, we obtain two sets of pseudo labels for i-token x′
i: output

probability distribution of the entity labels P (x′
i; θT ) from the main teacher

2 https://huggingface.co/docs/transformers/model_doc/roberta

https://huggingface.co/docs/transformers/model_doc/roberta
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and P (x′
i; θTshuf

) from the shuffled-data teacher. The student-teacher loss is
formulated as the mean squared error (MSE) between the output distributions
of the entity labels by the student model f(θS) and pseudo labels generated by
the teacher as done in [9]. For each of the losses, those tokens are only considered
on which the corresponding teacher has a maximum output probability more
than a certain threshold t (set to 0.85). The shuffled-data teacher is a structure
agnostic model whose pseudo labels when combined with the main teacher’s
pseudo labels enhance the quality of the student model.

Algorithm 1: Data Augmentation for CR

Input: Unlabeled target data Dul
tgt

1 Main teacher model f(θT )

Output: Augmented Target data Dul
aug

2 EntDic← {}
3 YHL ← []

4 for x′ in Dul
tgt do

5 yhl, yprobs ← get hard labels with max prob. with f(θT )
6 types, starts, ends, probs←

find all entities with avg probs from yhard and yprobs
7 for ind← 0 to len(types) do
8 if probs[ind] >= 0.90 then
9 EntDic[types[ind]].append(x′[starts[ind] : ends[ind])

10 YHL.append(yhl)

11 Dul
aug ← []

12 for (x′, yhl) in (Dul
tgt, YHL) do

13 types, starts, ends←
find type, start ind, end ind of all entities from yhl

14 for ind← 0 to len(types) do
15 type← types[ind]
16 randEnt← ϕ
17 while (end[ind]− start[ind]) ̸= len(randEnt) do
18 randEnt← sample an entity from EntDic[type]
19 x′ ← replace the entity at ind by randEnt

20 x′aug ← x′
21 Dul

aug.append(x′aug)

3.3 Consistency Regularisation task

Consistency regularization (CR) [8] is a well-studied technique used in semi-
supervised and self-supervised settings that encourages the prediction of the
network to be similar in the vicinity of the observed training examples. We
leverage this technique to make the student model more robust to noisy pseudo
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labels predicted by the main teacher f(θT ). Here, we introduce a new data
augmentation technique which allows us to create synthetic target addresses
with the same labels as pseudo labels produced by f(θT ) for the original target
address. Basically, we first create a dictionary with all the high confidence (>
0.90) entities predicted by f(θT ) on Dul

tgt. The dictionary contains an entity type
mapped to list of confident predicted entities. The confidence of an entity is
measured by the average maximum probability of the first sub-word of each of
the entity tokens. Then for each pseudo-labeled target address x′ ∈ Dul

tgt, we
replace every entity within the address with another random entity of the same
entity type (also same length to ensure label consistency) in the dictionary to get
x′
aug. See algorithm 1 for the pseudo code to perform the data augmentation. The

loss between the probability distribution of i token of x′ denoted as P (x′
i; θS)

and i token of x′
aug denoted as P (x′

iaug; θS) is formulated as a MSE loss. The
synthetic address provides an entity level viewpoint to the student model. In
other words, if a particular entity occurs at a differently in another address, it
still refers to the same entity. The loss function for the above task is given by

LCR =
∑

x′,x′
aug∈Dul

tgt

L∑
i=1

MSE(P (x′
i; θS), P (x′

iaug; θS)) (1)

3.4 Boundary Detection task

Address inputs have self-supervised signals like commas provided by customers
while entering address text. In our case, we also have access to data in separate
text fields (line 1, line 2 etc.) as entered during address creation, which automat-
ically provides logical boundaries within the address. The key motivation behind
introducing this module is that such implicit signals separating entities within
addresses can potentially help the student model to identify correct entity spans
in the target domain. Specifically, we sample an equal amount of addresses with
boundary signals from the target address database as that of Dul

tgt. Since these
boundary signals can be noisy because of insufficient commas entered by cus-
tomers, we only consider those addresses with more than two commas. We refer
to this data as Dbs. Note that the separation between text fields is also converted
to comma during pre-processing. We then define the boundary detection task
on the student model as token level binary classification task to predict commas
(labeled as 1) after a token in an address:

LBS =
∑

xc∈Dbs

L∑
i=1

BCE(P (xc
i ; θSC), y

c
i )) (2)

where xc is an address text, xc
i is the token at i index, yi ∈ {0, 1}, θSC refers to

the parameters of the student encoder model along with the dense layer of binary
classification and BCE refers to binary cross entropy loss function. Note that
both the NER tasks and the boundary detection task share a common encoder.
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Fig. 1. Student training using multiple tasks

The student model is trained in a multi-task fashion on 4 losses - 1) student-
teacher loss with main teacher pseudo labels, 2) student-teacher loss with shuffled-
data teacher pseudo labels, 3) consistency regularization loss, and 4) boundary
detection task loss. We weigh the 3 new tasks with α, β and γ respectively. Fig.
1 depicts the training of the student model using multiple tasks.

LFinal = LT + α ∗ LTshuf
+ β ∗ LCR + γ ∗ LBS (3)

4 Experiments, Data and Results

4.1 Data

We use proprietary e-commerce addresses from 3 countries, namely C1, C2 and
C3 as well as external labeled addresses [10] from USA (US), Australia (AU)
and Great Britain (GB), to evaluate our model. For the in-house datasets, the
train and test data are manually annotated with 4 broad entity types, namely
bld (building name, number and apartment names), loc (locality, sub-locality,
community), road (road name, road number) and unit (apartment number, door
number and floor number) in BIO format. We also have access to unlabeled raw
customer addresses (with/without boundary signals as entered by the customers)
in the e-commerce databases. We test our model under 6 different source to target
transfer settings. The external addresses on the other hand are tagged with
6 entity types, namely Unit, StreetNumber, StreetName, Province, PostalCode
and Municipality. We intentionally choose more structured countries here to
validate the robustness of our approach across emerging as well as established
marketplaces. Since we do not have boundary separated customer addresses for
this dataset, we synthesized boundaries after each entity in the labeled addresses
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using the BIO format. Note that we only test on countries with English addresses.
Dataset statistics for each of the countries are mentioned in the table 1. We reveal
only the approximate size of the e-commerce datasets due to confidentiality
issues.

Table 1. Labeled, unlabeled and boundary data size (in K)

Country C1 C2 C3 US GB AU

Train size 100 20 10 30 30 30
Test size 10 5 1 4 4 4

Unlabeled size 200 100 100 30 30 30
Boundary size 200 100 100 30 30 30

4.2 Experiment Setup

We use Hugging Face RoBERTa-Base as the backbone model. The maximum
sequence length is fixed to 70 while batch size as 32; For MLM, the number
of epochs is set to 3 while for student and teacher training, it is fixed to 7.
We used early stopping with a patience of 2 to terminate the student-teacher
training using the validation loss. For MLM, the learning rate is fixed at 3e-5,
while for teacher a peak learning rate of 5e-5 and 1e-4 for student is used with
a linear schedule and warm steps of 0.1 as in [9]. α, β and γ set to 1(default).
A weight decay of 0.01 is used during training and dropout is fixed to 0.1 for
student/teacher. AdamW is used as the optimizer and the model is trained on a
single Nvidia Tesla T4 GPU. We use micro average F1-score across entity labels
as our evaluation metric. Each number reported in section 4.4 is an average of
5 runs with different seeds.

4.3 Baselines

We compare our approach against the following baselines:

– Lower Bound (LB): We train an open-source RoBERTa model on the
source data and test it on target addresses in a zero-shot fashion.

– DAPT refers to [3]. Here, we pre-train the model using 20K samples from
source and target domain.

– SSTS: [9] is the teacher-student learning approach for NER in a knowledge
transfer setting

– SSTS-DAPT: We first run MLM on RoBERTa (DAPT) and then use it to
initialize the teacher.

– AdvP: [1] is the recent state-of-the-art for UDA-NER.
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Table 2. Performance comparison of all the methods on 9 transfer settings from both
e-commerce addresses and [10] addresses measured by micro-average F1-Scores.

E-commerce DeepParse
Country Pair C1-C2 C1-C3 C3-C1 C3-C2 C2-C1 C2-C3 US-GB GB-US AU-US

LB 0.398 0.314 0.320 0.479 0.428 0.393 0.390 0.601 0.354
DAPT 0.602 0.467 0.450 0.465 0.609 0.443 0.630 0.815 0.574
SSTS 0.434 0.391 0.383 0.490 0.453 0.432 0.372 0.598 0.364
AdvP 0.486 0.391 0.379 0.478 0.462 0.456 0.408 0.602 0.358

SSTS-DAPT 0.609 0.494 0.502 0.501 0.647 0.437 0.671 0.828 0.570
Our Approach 0.666 0.511 0.540 0.527 0.693 0.512 0.762 0.816 0.604

wo ST 0.644 0.495 0.522 0.522 0.676 0.483 0.649 0.864 0.567
wo CR 0.658 0.509 0.533 0.513 0.680 0.510 0.758 0.795 0.598
wo BS 0.653 0.491 0.528 0.523 0.677 0.505 0.735 0.818 0.589

Table 3. Performance of [11] on
e-commerce datasets (F1-Scores)

Method C1 C2 C3

[11] 0.15 0.23 0.12

Table 4. Entity level results for GB-US transfer.

Entity Precision Recall F1-Score

Municipality 0.964 0.968 0.966
PostalCode 0.986 0.997 0.992
Province 0.969 0.982 0.975

StreetName 0.909 0.939 0.924
StreetNumber 0.991 0.993 0.992

Unit 0.952 0.970 0.961

4.4 Results, Ablation Studies, Parameter study and Case study

Performance Analysis As it can be observed from table 2, our approach (or
its ablation) outperforms all the baselines on each of the 9 transfer settings. No-
ticeably, SOTA for UDA-NER like SSTS and AdvP are outperformed by DAPT.
We do see that performing student-teacher training on a source/target domain
adapted model (SSTS-DAPT) gives a performance boost, suggesting the bene-
fits of adaptive pre-training. Our final proposed approach, however outperforms
the best baselines by 2% to 9% which shows the advantages of adding the new
tasks. We show the entity type level scores (precision, recall and F1-score) using
our approach for one of the DeepParse addresses transfer settings (GB-US) in
table 4. The scores mentioned in the table are from the seed with a max overall
F1-Score out of the 5 seed runs. Lastly, we test the performance of the multi-
national parser mentioned in [11] on our e-commerce address dataset shown in
the table 3. Since the parser emitted different set of tags as in the e-commerce
dataset, we created a mapping between the tag sets (like StreetNumber, Street-
Name mapped to road, municipality to loc, unit to unit and bld to O). The low
F1-Scores for the datasets show the lack of generalization of the parser to real
life customer addresses, thus justifying our claims in Section 2.
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Fig. 2. F1 scores on the test data for C1-C2 when α, β or γ is varied from [0, 2]

Ablation and Parameter Studies We perform ablation studies on all the
transfer settings shown in table 2 by removing each of the proposed components
- 1) shuffled-data teacher wo ST, 2) consistency regularization wo CR, and 3)
boundary detection wo BS. We see a consistent drop in the F1 scores for almost
all of the datasets when removing a module. Specifically, the average drop in the
scores for wo ST is 2.3%, wo CR is 0.8% and wo BS is 1.2% this. Thus, structural
differences between the addresses of different countries can be handled well using
shuffled-teacher and boundary detection, while consistency regularization helps
dealing with noisy pseudo labels. We also study the impact of the 3 hyperparam-
eters α, β and γ used in Eq. 3. We performed a grid search where we vary the
values of α, β and γ in range [0,2]. Here, we varied one of the hyper-parameters
at a time while the others are set to default value of 1. As seen in Fig. 2, we
observe an increasing trend in the F1-Score for C1 to C2 transfer with increase
in parameter values till 1 and then a slight decreasing trend is observed.

Case study Finally as shown in table 5, we perform a case study for UAE to IN
transfer on 2 concrete examples where we compare the parsed outputs of SSTS
and our method. In case 1, SSTS wrongly labels 13 XX as road which suggests
that the teacher memorized the address structure of UAE (where customers
usually enter road names at the start). This was corrected by our approach that
correctly labels it as bld which can be attributed to the structural in-variance
brought in by the shuffled-teacher. Also, it detects tarsali sussen road partially
while our approach fully recognized the entity. The boundary detection task helps
here in detecting the full entity by signalling the student model right boundaries
in a target address. In example 2, SSTS missed marg (hindi for road) which
is a word used specifically in IN (not used in UAE) and mis-classifies it as loc
while our approach correctly recognized it as road. This shows the importance
of domain adaptive pre-training using MLM on source and target addresses.
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4.5 Training/Inference time

On a total 10K sample size of source and target addresses, MLM based domain
adaptive pre-training took 30 mins/epoch. For every address, we created 10
augmentations as done in [2], thus effective training size being 100K. We used
4 GPUs for this training procedure. Teacher training on 10K samples took 1
min/epoch while student training with the 3 tasks on 20K samples took 6.10
min/epoch. The evaluation time on 4K samples was completed in 9s.

Table 5. Qualitative analysis of UAE-IN parsed results

1 Ground Truth: [13 XX]bld [motinagar 2]loc [tarsali
sussen road]road
SSTS: [13 XX]road [motinagar 2]loc [tarsali]loc [sussen
road]road
Our Approach: [13 XX]bld [motinagar 2]loc [tarsali
sussen road]road

2 Ground Truth: [XX floor]unit [a764]unit [tulsi marg]road
[sector19]loc uttar pradesh
SSTS: [XX floor]unit [a764]unit [tulsi marg]loc
[sector19]loc uttar pradesh
Our Approach: [XX floor]unit [a764]unit [tulsi marg]road
[sector19]loc uttar pradesh

5 Industrial Usecase

The address parser is catering to two use-cases in production for an emerging
country C, namely 1) address quality scoring, and 2) community identification for
launching new services. We trained an address parser for country C using labeled
data from another country C1 and integrated parser based address completeness
detection with the existing address quality scoring model for country C. This
integration led to a 3% increase in the recall of the model for detecting junk
addresses. The parser also assisted in identification of high-density communities
for the launch of new value added e-commerce services. Our approach resulted
in 67% and 133% more communities as compared to those identified earlier by
operations team via manual process.

6 Conclusion and future work

In this paper, we propose a student-teacher based framework to transfer knowl-
edge from training address parser on source country with labeled data to a target
country with unlabeled data. Our approach uses multiple techniques like training
shuffled-data teacher using shuffled source data, data augmentation for sequence
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tagging data for consistency regularization and learning from boundary signals
to improve the target parser. Experiments on multiple e-commerce datasets and
external data validate the effectiveness of our approach. In future, we plan to ex-
tend the solution to handle source and target countries with different languages
and also, leverage multiple sources for training the model for the target country.
Also, we wish to explore cases when we do have a limited amount of labeled data
for the target country and how to include it in our training framework.
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