
Debugging Network Reachability with Blocked
Paths

S. Bayless1, J. Backes1, D. DaCosta1, B. F Jones1, N. Launchbury1, P.
Trentin1, K. Jewell1, S. Joshi1, M. Q. Zeng1, N. Mathews1

1Amazon Web Services

Abstract

In this industrial case study we describe a new network troubleshooting analysis
used by VPC Reachability Analyzer, an SMT-based network reachability
analysis and debugging tool. Our troubleshooting analysis uses a formal model of
AWS Virtual Private Cloud (VPC) semantics to identify whether a destination is
reachable from a source in a given VPC configuration. In the case where there is
no feasible path, our analysis derives a blocked path: an infeasible but otherwise
complete path that would be feasible if a corresponding set of VPC configuration
settings were adjusted.

Our blocked path analysis differs from other academic and commercial offer-
ings that either rely on packet probing (e.g., tcptrace) or provide only partial
paths terminating at the first component that rejects the packet. By providing
a complete (but infeasible) path from the source to destination, we identify for
a user all the configuration settings they will need to alter to admit that path
(instead of requiring them to repeatedly re-run the analysis after making par-
tial changes). This allows users to refine their query so that the blocked path
is aligned with their intended network behavior before making any changes to
their VPC configuration.

1 Introduction

This paper describes a new network connectivity troubleshooting analysis used
by VPC Reachability Analyzer, a service that analyzes Amazon Web Ser-
vices’ (AWS) Virtual Private Cloud (VPC) configurations.

VPCs are user-configured networks of virtual compute devices and resources.
AWS VPC offers dozens of networking components and controls to give users
flexibility in configuring their networks. Access to these resources is logically iso-
lated within virtual networks configured by the users. As VPCs grow in size and
complexity, users can increasingly benefit from automation to identify and re-
solve misconfigurations, as well as to validate that applications maintain security
and availability invariants through infrastructure changes.

VPC Reachability Analyzer uses the Tiros [2] formal model of AWS
VPC networking semantics to identify whether a destination is reachable from a
source in a given VPC configuration. If the destination is reachable, then Tiros



2 Bayless et al.

identifies a feasible path from the source to the destination, where a path is
a sequence of network components associated with incoming and/or outgoing
packet header assignments (protocol, addresses, ports). The outgoing packet
header of one component is the incoming packet header of the next component.
Paths may also identify relevant VPC configuration details such as the specific
routes, firewall rules, or other settings admitting the packet at each step. Each
component in a VPC may accept or reject incoming and outgoing packet headers;
a feasible path is a path in which every component on the path accepts both its
incoming and outgoing packet header.

Tiros’s analysis is static, i.e., Tiros does not inject traffic into VPC con-
figurations, and is complete for the subset of AWS VPC semantics it supports:
if there exists a path connecting the source and destination, Tiros will find it.
Since 2018, Tiros has powered the commercially available Network Reachabil-
ity assessment in Amazon Inspector [1], statically identifying ports on EC2
Instances (virtual machines) accessible outside of their VPCs.

In this work, we extend Tiros by introducing a new diagnostic blocked path
analysis when there is not a feasible path, to help users understand why their
query is infeasible. A blocked path is a path as defined above, in which at least
one component rejects its incoming or outgoing packet, along with one or more
blocking reasons: elements of the VPC configuration preventing one or more
components on the path from accepting packets. The blocked path identifies a
sufficient set of blocking reasons, such that if each were addressed the query
would be satisfiable.

Previous tools for connectivity diagnosis typically provide a partial path, up
to the first component/rule that rejects the packet; in some cases those tools
also identify a single blocking reason. Remediations based on a partial path may
address that initial blocking reason only to discover that remediations are still
necessary, or that the remediation may be working towards a path that the
user ultimately will reject. Providing a complete blocked path connecting the
source and destination allows users to ensure that their intent is aligned with
our diagnosis before taking any corrective actions.

Our contributions in this work are:

1. Identifying the notion of a blocked path as a useful medium for conveying a
network diagnosis and aligning it with a user’s intent,

2. Demonstrating how blocked paths can be efficiently derived at scale,
3. Describing VPC Reachability Analyzer, a commercial tool based on

these insights.

2 Background

2.1 Related Works

Many previous works have proposed network reachability diagnosis tools, includ-
ing both widely-used industry tools and academic literature. These tools can be
broadly divided into model-based and non-model-based approaches.



Debugging Network Reachability with Blocked Paths 3

Non-model-based network diagnostic tools include system applications such
as iptrace and tcptrace, commercial tools such as Cisco Packet Tracer [7],
and academic works such as Tulip [12]. These tools trace live packets through
a network or routing device, identifying the sequence of addresses of devices
that accept the packet. Packet tracing tools lack visibility into the configuration
settings that block and route packets.

Model-based tools [2, 5, 6, 13, 16] statically analyze reachability between a
specified source and destination in a network or routing device. Rather than
transmitting live packets, these tools use formal methods such as constraint
solvers to rigorously identify feasible paths. Existing model-based tools provide
control-plane level information when there is a feasible path, but produce either
no information for unreachable paths, or identify only the first (out of potentially
many) reasons why a path is blocked.

Our blocked path analysis is based on deriving minimal correction subsets
(described below), which several previous works have proposed for general-
purpose SAT-based error diagnosis or repair [4, 9, 17, 8].

2.2 Minimal Correction Subsets

The blocked path analysis we describe in Section 3 relies on two related concepts:
Maximal Satisfiable Subsets (MSS) and Minimal Correction Subsets (MCS),
which we define below. Following the definitions from [14]:

Definition 1 (MSS). S ⊆ F is a Maximal Satisfiable Subset of constraints F
iff S is satisfiable and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

Definition 2 (MCS). C ⊆ F is a Minimal Correction Subset of constraints F
iff F \ C is satisfiable and ∀c ∈ C, (F \ C) ∪ {c} is unsatisfiable.

The complement of an MCS, F \MCS(F), is guaranteed to be a maximal
satisfiable subset of F ; for this reason the MCS is sometimes called the coMSS.1

In general, the MCS and MSS are not guaranteed to be unique. There is
a close connection between the definition of a Maximal Satisfiable Subset and
MaxSAT [10]: The largest MSS (and therefore smallest MCS) corresponds to
a solution to MaxSAT. Indeed, one approach for computing the MCS is to
compute MaxSAT and take the complement. Efficient algorithms for directly
computing the (not necessarily smallest) MCS without computing MaxSAT are
available and are typically much faster than computing MaxSAT; a good survey
of MCS algorithms including an empirical evaluation can be found in [14].

In constraint optimization problems, it is common to consider hard and soft
constraints, in which only the soft constraints may be relaxed. Definition 2 as-
sumes that all constraints are soft, but can be easily extended to support a mix

1 Note that a minimal correction subset is a distinct concept from an unsatisfi-
able core [11]. An unsatisfiable core is always unsatisfiable, but its complement
F \ CORE(F) is not guaranteed to be satisfiable; in contrast, an MCS may or
may not be satisfiable, but its complement is guaranteed to be satisfiable.



4 Bayless et al.

of soft and hard constraints (where the MCS must contain only soft constraints).
In this case, the MCS is only well defined if the hard constraints are satisfiable.

In Section 4, we will use a function computeMCS(Soft ,Hard) that supports
both hard and soft constraints. computeMCS returns a minimal correction set
C = MCS(Soft ∪ Hard), with C ⊆ Soft . Our implementation of computeMCS
uses a simple binary search, similar to FastDiag [4], or Algorithm BFD from [14].
We add activation literals to the soft constraints to allow the underlying solver
instance to be re-used incrementally while testing different subsets of soft con-
straints for satisfiability.

2.3 Network Reachability

We use the SMT-encoding of AWS VPC network semantics previously described
in Tiros [2]. In this section, we briefly review this graph-based encoding; we refer
readers to [2] for more details.

We take as input a configuration describing one or more user VPCs, and
a user-specified reachability query, consisting of a source and destination com-
ponent in the VPC. For example, the source of the query may be an internet
gateway, and the destination may be an EC2 Instance. A query may also op-
tionally specify additional constraints, such as the protocol, a range of source
or destination addresses or ports for the packet, or an intermediate component
that must (or must not) be on the path.

Packet Header
protocol bv:8
srcAdr bv:32
dstAdr bv:32
srcPort bv:16
dstPort bv:16

((dstAdr 6= 10.0.1.15) =⇒ ¬edge1)

((srcAdr 6= 10.0.1.15) =⇒ ¬edge2)

Fig. 1. Simplified example symbolic graph representation of a VPC (left), with sym-
bolic packet header consisting of bitvectors (right). Edges in the graph are associated
with theory atoms, and are traversable only if those atoms are assigned true. Two
example constraints, enforcing that a network interface is only accessible if the packet
is addressed to/from that interface are shown. These constraints relate edge atoms in
the symbolic graph to the bitvectors in the symbolic packet header to enforce AWS
VPC semantics.



Debugging Network Reachability with Blocked Paths 5

We encode VPC configurations as constrained symbolic graphs using the
SMT solver MonoSAT [3], with fixed-width bitvectors representing the pro-
tocol, port, and addressing information in a symbolic packet header. Figure 1
shows a symbolic graph along with a packet header and example constraints.

VPC components are represented as a nodes in the symbolic graph. Each
component has semantics governing which packets it will accept; these seman-
tics are encoded as constraints that restrict which edges incident to that com-
ponent’s node are traversible, depending on the assignment of the packet header
variables. A satisfying assignment to the full set of constraints corresponds to a
feasible path. In such an assignment, the bitvector variable assignments provide
the packet header(s) and the graph theory model provides a path of network
component nodes connecting the source and destination of the users query.

Some components (such as NAT gateways) transform and retransmit packets.
Tiros supports this by unrolling the VPC configuration graph into multiple
copies with separate packet header variables. Edges from packet-transforming
components connect to their components in the next unrolled section of the
graph. Tiros unrolls the graph to a sufficient depth to model the behavior of
the components for each query.

Query source and destination reachability is enforced with a single graph
theory reachability predicate requiring a feasible path in the VPC configuration
graph from the source to the destination of the query. Query restrictions requir-
ing intermediate components are enforced using additional reachability predi-
cates. Query restrictions requiring that a given resource not occur on a path are
enforced by excluding that resource from the VPC configuration graph repre-
sentation. Packet header restrictions are enforced using bitvector constraints.

If the constraints are satisfiable, Tiros extracts a reachable path satisfying
the query from the satisfying assignment to the constraints. In the next section,
we will discuss how we extend Tiros to also provide diagnostic feedback in the
case where the constraints are unsatisfiable.

3 Blocked Paths for Network Configuration Diagnosis

We introduce the notion of blocked path for analyzing infeasible network con-
nections. As shown in Figure 2, a blocked path is an infeasible but otherwise
complete path from a source to a destination, in which one or more edges or
nodes are annotated with blocking reasons: configuration settings or network
semantics that explain why that transition in the path is infeasible.

Unlike a live packet trace, a blocked path continues past components that
reject or redirect the packet so as to reach the user’s intended destination, po-
tentially transiting through multiple infeasible steps along the way.

Definition 3 (Blocked path).

1. A blocked path is a complete (but infeasible) path from a source to a desti-
nation in a network, satisfying the user’s query.



6 Bayless et al.

2. A blocked path is actionable: it is a path that could, with the right control
plane configuration adjustments, be a feasible path.

3. A blocked path identifies a sufficient set of blocking reasons (network seman-
tics or control-plane settings) that would need to be addressed to admit the
packet along that blocked path. This may include multiple blocking reasons
along the path, as opposed to just the first blocking reason.

Fig. 2. Two alternative blocked paths from an EC2 instance to an internet gateway.
These blocked paths take different routes, and have different blocking reasons (shown
in red) that explain why those paths are infeasible. In the first blocked path, there
are two blocking reasons: the security group egress rule rejects packets destined for
the Internet, and the internet gateway requires that the source instance must have a
public IP address. Note that although the packet would be rejected by the security
group, the blocked path continues past the security group to identify a complete (but
infeasible) path to the internet gateway. The second blocked path transitions through
an intermediate NAT gateway, which satisfies the security group rule and also has a
public IP address. However, this path is still blocked, because the route table does not
have an applicable route to the NAT gateway.

Validating User Intent

Showing a complete path from the source to destination, along with all the rele-
vant configuration settings blocking that path, allows users to confirm that this



Debugging Network Reachability with Blocked Paths 7

course of action matches their intended network behavior before making any
changes. However, in many cases there are multiple ways to adjust a configura-
tion to admit a path, resulting in different blocked paths.

For example, Figure 2 shows two example blocked paths to an internet gate-
way from an EC2 instance lacking a public IP address. Our analysis might ini-
tially produce for the user the shorter blocked path. Two remediation steps are
required to admit this shorter path: The user must adjust the security group
rule of the instance to admit egress packets to the public internet, and the user
must also associate a public IP address with the source instance. Upon seeing
the complete blocked path, the user may immediately determine that this would
be the wrong solution for their network.

If the proposed blocked path doesn’t match the user’s intent, we allow users
to submit a refined query so as to generate an alternative blocked path. For
instance, the user may specify allowed address or port ranges for the packet, or
specify components that must or must not appear on the path. Similarly, the
user may submit a refined query specifying that a NAT gateway must be an
intermediate component on the path. In this case, we might produce the longer
blocked path from Figure 2.

Actionable Blocked Paths

In some cases, there may not exist any combination of VPC configuration ad-
justments that would allow a query to be satisfied. For example, under typical
conditions in VPCs, route tables cannot be adjusted to redirect packets that are
destined for a local address within the VPC. It is possible for users to specify
queries that cannot be satisfied without violating this local route restriction.

In principle, it is possible to derive a blocked path with non-user-configurable
blocking reasons, however the resulting paths may behave in misleading or con-
fusing ways, and in general will not be possible for users to actually achieve
in any real configuration of their VPC. If possible, we want to ensure that the
path contains only user-configurable blocking reasons, so that we produce an
actionable finding for users. However, we still want to be able to provide useful
diagnostics in cases where no actionable blocked path is possible (e.g., to explain
to the user that the local route restriction will prevent their path).

In Section 4, we describe how we determine when it is not possible to produce
a blocked path without including non-configurable blocking reasons. In this case,
we produce a partial path up to that first non-configurable blocking reason.

Additionally, in some cases a user may specify a query that remains unsat-
isfiable even if all of the network semantics in our model are relaxed. This can
occur if the user specifies components that do not exist, or that are in isolated,
disconnected networks (for which no relaxation of the edge constraints will ad-
mit a path). In this case, our blocked path analysis fails, and Tiros falls back
on other techniques to produce diagnostic information.

In Section 5 we show that in most cases, our analysis succeeds and produces
an actionable blocked path.



8 Bayless et al.

4 Deriving Blocked Paths from Unsatisfiable Queries

We group VPC configuration semantics into three disjoint sets of constraints:
(U ∪N ∪H). Set U contains constraints that enforce user-configurable control-
plane settings (such as a user-defined route or firewall rule), while set N contains
non-configurable for user-visible network semantics (such as the local route re-
striction).

Set H contains elements of the constraints that are either not user-visible
(such as internal implementation details) or that should never be relaxed (such
as the reachability predicate or any other constraints defined by the user’s query).
For example, many of our constraints involve containment comparisons between
CIDRs and bitvectors representing IP addresses. An individual CIDR compari-
son is encoded as a fresh literal represnting the truth value of the comparison,
along with multiple clauses that enforce the comparison semantics. The interme-
diate clauses that enforce the comparison semantics are implementation details
that we include in set H, ensuring they are not included in the blocking reasons.

When a query is unsatisfiable, we derive a blocked path and corresponding
blocking reasons from a Maximal Satisfiable Subset and Minimal Correction
Subset of (U ∪N ∪H), with set H being treated as hard constraints that must
not be included in the MCS.

If possible, we want to produce an MCS containing only configurable blocking
reasons from U . This ensures that the resulting blocked path is actionable. If we
directly compute the MCS of the full constraint set U ∪N ∪H, with both U and
N as soft constraints, non-configurable constraints from N may be included in
the MCS even in cases where there exists an MCS containing only constraints
from U . On the other hand, we still want to be able to produce an MCS in the
case where the non-configurable and hard constraints (N∪H) are, by themselves,
unsatisfiable.

In Algorithm 1, we resolve this by breaking the computation of the MCS into
two steps, initially computing an MCS of N ∪H, and only allowing constraints
from N into the blocking reasons if MCS(N ∪H) is non-empty.

When N ∪H is satisfiable, Algorithm 1 produces a blocked path that only
contains the configurable blocking reasons from U .

Algorithm 1 constructs two correction sets, MCSN ⊆ N and MCSU ⊆ U ,
with MCSN∪MCSU a valid MCS of (U∪N∪H). We then extract a path p from a
satisfying assignment to the corresponding MSS (U∪N∪H)\(MCSN∪MCSU ).
Finally, as shown below, we return either a complete or a partial blocked path,
by associating blocking reasons from the MCS with nodes on that path.

Algorithm 1 relies on two helper methods, ExtractPath and BuildPath.
ExtractPath retrieves the satisfying theory model (a sequence of edges) for
the query reachability predicate from a satifiable formula, using the graph theory
in the SMT-solver MonoSAT, and associates packet header assignments with
each step of that path from the corresponding bitvector assignments. BuildPath
maps the literals of the MCS to descriptive strings representing blocking reasons,
and associates those strings with steps on the blocked path.



Debugging Network Reachability with Blocked Paths 9

Algorithm 1 Blocked Path Analysis

1: function DeriveBlockedPath(U,N,H) . Precondition: U ∪N ∪H is UNSAT.
2: if UNSAT(H) then
3: throw Error: No blocked path can be produced.
4: else
5: // Note: If N ∪H is SAT, then MCSN = ∅.
6: MCSN ← computeMCS(N,H)
7: // Note: (N ∪H) \MCSN is SAT; MCSU is well-defined.
8: MCSU ← computeMCS(U, (N ∪H) \MCSN )
9: p← ExtractPath((U ∪N ∪H) \ (MCSN ∪MCSU ))

10: return BuildPath(p,MCSN ,MCSU )
11: end if
12: end function

We can see that MCSN∪MCSU meets the definition of a minimal correction
set of U ∪N ∪H by observing that:

SAT((U ∪N ∪H \ (MCSN )) \ (MCSN ∪MCSU )) line 8

=⇒ SAT((U ∪N ∪H) \ (MCSN ∪MCSU )))

∀c ∈MCSN ,UNSAT((N ∪H) \ (MCSN \ {c}) line 6

∀c ∈MCSU ,UNSAT((U ∪N ∪H) \ (MCSU \ {c})) line 8

=⇒ ∀c ∈ (MCSN ∪MCSU ),UNSAT((U ∪N ∪H) \ ((MCSN ∪MCSU ) \ {c}))

If N ∪ H is satisfiable, then MCSN is empty and MCSU , containing only
configurable constraints, is an MCS of (U ∪ N ∪ H). In this case, BuildPath
constructs a complete blocked path consisting entirely of configurable blocking
reasons.

If N ∪ H is unsatisfiable, then MCSN is non-empty and MCSN ∪MCSU

contains at least one non-actionable constraints. In this case, the path p may
behave unexpectedly and may not be realizable in a VPC configuration after
adjustment. If MCSN is non-empty, BuildPath forms the blocked path as
above, but returns only the prefix of that blocked path up to and including the
first edge or node associated with a non-actionable setting.

Above, we discussed the cases where N ∪ H is satisfiable or unsatisfiable.
There is also a third possibility: The hard constraints H, representing the con-
straints enforcing the user’s query or implementation details of our model, may
by themselves be unsatisfiable. For example, H may be unsatisfiable if the user
specifies a source and destination that are in separate, disconnected networks.

If H is unsatisfiable, Algorithm 1 fails, and is unable to produce even a
partial blocked path. In this case, we fall back on other techniques to provide
useful diagnostic information for users. In practice, the typical reason that H is
unsatisfiable is that the source and destination are in disconnected VPCs (so the
reachability constraint is unsatisfiable). We use a static analysis pass to identify
this case and handle it separately in our service.



10 Bayless et al.

In the case that Algorithm 1 produces a complete (resp. partial) blocked
path, the underlying MCS algorithm guarantees that the blocked path will have
the fewest possible number of blocking reasons from among all complete (resp.
partial) blocked paths. In general this blocked path is not unique.

In our implementation of Algorithm 1, the graph-based decision heuristic in
MonoSAT will prioritize finding shortest-length paths in most cases, but does
not guarantee that a shortest-length path is always found.

5 Evaluation

VPC Reachability Analyzer, a commercial offering available from AWS
since December 2020, uses the blocked path analysis we have described to derive
findings for queries between unreachable endpoints.

To demonstrate the practical impact of this blocked path analysis, we ran-
domly selected 1000 unreachable queries processed by VPC Reachability
Analyzer. We executed the blocked path analysis for those queries on an
‘m5.24xlarge’ EC2 instance using GNU Parallel [15], running Amazon Linux
2, using MonoSAT version 1.6.0.

1 2 3 4 5 6
0

20

40

60

80

100

Number of Blocking Reasons per Path

%
o
f

B
lo

ck
ed

P
a
th

s

Fig. 3. Number of blocking reasons per blocked path (among the 63% of unreachable
queries for which the blocked path analysis produced a complete blocked path). 97%
percent of blocked paths have three or fewer blocking reasons; 60% have just a single
blocking reason.

Excluding the time to complete the blocked path analysis, the average time
required to initially determine satisfiability of the constraints was 2.1 seconds
(P50: 1.7 s, P99: 7.4 s). The blocked path analysis was as fast or faster than the
initial solving time, requiring 0.3 seconds on average (P50: 0.05 s, P99: 6.6 s).

As described in Section 4, in some cases, the blocked path analysis can pro-
duce only a partial path, or no results at all. Of those 1000 unreachable queries,
63.2% resulted in complete blocked paths, 7.4% resulted in partial blocked paths,
and the remainder (29.4%) produced no analysis (in which case VPC Reach-



Debugging Network Reachability with Blocked Paths 11

ability Analyzer applies other techniques so that it can still provide useful
diagnostics).2

As can be seen in Figure 3, most blocked paths have just one blocking reason,
and 97% have at most three. This demonstrates that our analysis produces
actionable, concise findings on real production data, a key requirement of a
useful diagnosis service.

6 Conclusion

The blocked path analysis we have introduced provides key advantages over
previous network diagnostic techniques. By showing users a blocked path from
a source to a destination, we allows users the opportunity to refine their query
such that their intended path is aligned with our analysis. Furthermore, showing
all blocking reasons on a blocked path allows users to understand the VPC
configuration adjustments necessary to realize a path for their query.

Our blocked path analysis is a fully static analysis (requiring no packets to be
injected into the network), can be computed efficiently using standard techniques
from the formal methods literature, and is now used successfully in production
by VPC Reachability Analyzer.

References

1. Amazon Inspector. https://docs.aws.amazon.com/inspector/, accessed: December
2018

2. Backes, J., Bayless, S., Cook, B., Dodge, C., Gacek, A., Hu, A.J., Kahsai, T., Kocik,
B., Kotelnikov, E., Kukovec, J., McLaughlin, S., Reed, J., Rungta, N., Sizemore,
J., Stalzer, M., Srinivasan, P., Suboti, P., Varming, C., Whaley, B.: Reachability
analysis for AWS-based networks. In: International Conference on Computer Aided
Verification. pp. 231–241. Springer (2019)

3. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories.
In: Proceedings of AAAI. pp. 3702–3709 (2015)

4. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing: AI EDAM 26(1), 53 (2012)

5. Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Mahajan, R.,
Millstein, T.: A general approach to network configuration analysis. In: Proceed-
ings of the 12th USENIX Conference on Networked Systems Design and Implemen-
tation. pp. 469–483. NSDI’15, USENIX Association, Berkeley, CA, USA (2015),
http://dl.acm.org/citation.cfm?id=2789770.2789803

6. Jayaraman, K., Bjørner, N., Outhred, G., Kaufman, C.: Automated analysis and
debugging of network connectivity policies. Microsoft Research pp. 1–11 (2014)

2 Of the queries for which no blocked path analysis was performed, 80% were due to
users specifying endpoints in disconnected VPCs. We perform a disconnected com-
ponent analysis to identify this case. Others were due to users specifying resources
they lack access to, or that we do not support.



12 Bayless et al.

7. Jazib Frahim, Omar Santos, A.O.: Cisco ASA All-in-One Firewall, IPS, and VPN
Adaptive Security Appliance, 3rd edition. Cisco Press (2014)

8. Junker, U.: Preferred explanations and relaxations for over-constrained problems.
In: AAAI-2004 (2004)

9. Koitz, R., Wotawa, F.: Sat-based abductive diagnosis. In: DX@ Safeprocess. pp.
167–176 (2015)

10. Li, C.M., Manya, F.: Maxsat, hard and soft constraints. Handbook of satisfiability
185, 613–631 (2009)

11. Lynce, I., Marques-Silva, J.P.: On computing minimum unsatisfiable cores (2004)
12. Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: User-level internet path

diagnosis. ACM SIGOPS Operating Systems Review 37(5), 106–119 (2003)
13. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, B., King, S.T.:

Debugging the data plane with anteater. In: Proceedings of the ACM
SIGCOMM 2011 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Toronto, ON, Canada, Au-
gust 15-19, 2011. pp. 290–301 (2011). https://doi.org/10.1145/2018436.2018470,
http://doi.acm.org/10.1145/2018436.2018470

14. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: Twenty-Third International Joint Conference on
Artificial Intelligence. Citeseer (2013)

15. Tange, O.: GNU Parallel 2018. Ole Tange (Mar 2018).
https://doi.org/10.5281/zenodo.1146014, https://doi.org/10.5281/zenodo.1146014

16. Tian, B., Zhang, X., Zhai, E., Liu, H.H., Ye, Q., Wang, C., Wu, X., Ji, Z., Sang, Y.,
Zhang, M., et al.: Safely and automatically updating in-network acl configurations
with intent language. In: Proceedings of the ACM Special Interest Group on Data
Communication, pp. 214–226 (2019)

17. Walter, R., Felfernig, A., Küchlin, W.: Constraint-based and sat-based diagnosis
of automotive configuration problems. Journal of Intelligent Information Systems
49(1), 87–118 (2017)


