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1. Overview In A/B testing, statistical power depends on both the variance of estimated impacts1

and the distribution of true impacts. A low variance metric can have low power if true impacts on2

the metric tend to be small, while a high variance metric can have high power if true impacts on the3

metric tend to be large.4

Traditional power calculations, however, focus solely on the variance of estimated impacts. They5

compute the probability of detecting a fixed effect size or the smallest effect size that can be detected6

with high probability (i.e., the “minimum detectable effect” or MDE). While such calculations cap-7

ture the role of the variance of estimated impacts, they do not provide a way to measure expected8

power taking into account uncertainty or beliefs about the distribution of true impacts.9

In this paper, we present two approaches to connecting power calculations to beliefs about the10

distribution of true impacts. First, we show how frequentists can compute “prior-informed aver-11

age power” by taking a weighted average of conventional power across different effect sizes, with12

weights based on how likely that effect size is believed to occur. Second, we show how Bayesians13

can compute “Bayesian decision power” by taking a weighted average of the probability of meeting14

a launch or dial down criteria across different effect sizes, with weights again based on how likely15

that effect size is believed to occur. When true impacts are assumed to be normally distributed, both16

approaches yield simple closed-form expressions that can be computed using data readily available17

in most A/B testing tools.18

These approaches enable A/B testing tools to provide more realistic and informative assessments19

of statistical power. By incorporating beliefs about the distribution of true impacts, they can better20

inform experiment design decisions such as traffic allocation and duration by leveraging the relative21

power of different metrics. This is especially valuable given that many large A/B testing tools22

already estimate beliefs regarding the distribution of true impacts via empirical Bayes methods but23

rarely leverage them in thinking about power. We provide a simple way to close the gap, aligning24

power calculations with the same beliefs regarding true impacts used in Bayesian inference.25

2. Theory We are interested in measuring the impact of a feature change. We run an A/B test,26

exposing the feature change to a random subset of traffic. The impact of the feature change ∆ is a27

random variable, whose realized values we denote by δ. The A/B test delivers an estimator ∆̂ of ∆,28

whose realized values we denote by δ̂, and an estimate τ2 of its sampling variance, which we treat29

as a known constant. Motivated by the randomization of the feature change and the central limit30

theorem, we assume that ∆̂ is normally distributed, with mean δ and variance τ2:31

∆̂ | ∆ = δ, τ2 ∼ N (δ, τ2) (1)

We assume that the true impact ∆ is distributed according to some assumed distribution G.32

Given this setup, our goal is to measure our ability to detect impacts, taking into account the sam-33

pling variance τ2 and the likelihood of observing different effect sizes under G.34

Frequentist power: Traditional power analyses compute the probability of rejecting the null hypoth-35

esis given an assumed effect size ∆ = δ, sampling variance τ2, and significance level α. For a36

two-sided t-test for equality in means, the usual formula approximating the power of the test is:37



Π(δ, τ2, α) = 1− Φ

(
Φ−1 (1− α/2)− δ

τ

)
+Φ

(
−Φ−1(1− α/2)− δ

τ

)
. (2)

The primary limitation of eq. (2) is that it conditions on a single assumed effect size ∆ = δ, ignoring38

the distribution of the true impact G. This can be misleading in two ways. First, power may be39

significantly understated or overstated if the assumed effect size lies far from likely values under40

G. Second, it can distort assessments of relative power when the distribution G varies significantly41

across metrics — for example, when true impacts on some metrics tend to be significantly larger42

than those on others.43

Prior-informed average power: An alternative approach, aimed more toward frequentist practition-44

ers, is to measure average power, marginalizing over the distribution of the true impact G. For any45

assumed distribution G, sampling variance τ2, and significance level α, we define “prior-informed46

average power” as:47

Π̄(G, τ2, α) =

∫
Π(δ, τ2, α)dG(δ). (3)

Equation (3) explicitly links standard frequentist notions of statistical power to the beliefs regarding48

the distribution of the true impact.49

We can estimate prior-informed average power via Monte Carlo simulations as follows:50

(i) Draw ∆ from G51

(ii) Draw ∆̂ from N(δ, τ2) given ∆ = δ52

(iii) Compute Π(δ, τ2, α)53

(iv) Repeat steps (i)-(iii) a sufficiently large number of times and estimate Π̄(G, τ2, α) as the54

average of Π(δ, τ2, α) across replications55

We prove in appendix A that in the special case where G = N(µ, σ2) = GN , Π̄(G, τ2, α) has a56

simple closed-form expression:57

Π̄(GN , τ2, α) = 1− Φ

(
τΦ−1(1− α/2)− µ√

τ2 + σ2

)
+Φ

(
−τΦ−1(1− α/2)− µ√

τ2 + σ2

)
. (4)

Bayesian decision power: Another approach, aimed more toward Bayesian experimenters, is to58

compute the probability of meeting a launch or dial-down criterion for their experiment. This is59

accomplished by marginalizing over the distribution of the true impact G. We consider again the60

special case where G = N(µ, σ2) = GN and we define w = σ2(σ2 + τ2)−1. Further assuming61

normality for the estimated impact ∆̂ = δ̂ and sampling variance τ2 via the CLT, also the posterior62

distribution of ∆ is Gaussian, with mean µ̃ = wδ̂ + (1− w)µ and variance σ̃2 = wτ2. Launch and63

dial-down decisions can then be made based on whether the posterior probability that ∆ is positive,64

Φ(µ̃/σ̃), exceeds threshold α or falls below threshold 1− β, respectively.65

We prove in appendix A that given the distribution of the true impact G, sampling variance τ2,66

and launch/dial-down thresholds (α, β), the probability of launching or dialing down (or “Bayesian67

decision power”) is given by:68

Π̃(GN , τ2, α, β) = 1−Φ

(
µ
√
τ2 + σ2

σ2
− τΦ−1(1− β)

σ

)
+Φ

(
µ
√
τ2 + σ2

σ2
− τΦ−1(α)

σ

)
. (5)

Equation (5) allows a Bayesian decision maker to directly compute the probability of meeting launch69

or dial-down criteria while accounting for both measurement precision and beliefs regarding the70

distribution of the true impact.71

During the design phase, experimenters can use prior-informed average power or Bayesian decision72

power to help better inform design decisions such as how to allocate traffic across treatments and73

determine experiment duration or how to choose across different metrics.74
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3. Simulations We illustrate the above concepts via stylized simulations. We assume G =75

N(0, σ2) = GN and consider metrics with different specifications of the sampling variance τ276

and prior variance σ2. For the first metric (metric A), we consider relatively small sampling vari-77

ance and effect size, with τ = 0.002 and σ = 0.001. For the second metric (metric B), we consider78

relatively large sampling variance and effect size, with τ = 0.005 and σ = 0.01.79

Figure 1 shows that despite metric A’s smaller sampling variance (and therefore smaller minimum80

detectable effect (MDE) size), it achieves lower prior-informed average power and Bayesian decision81

power than metric B. This is because metric A’s true effects, while more precisely estimated, tend82

to be smaller than those of metric B. This highlights how traditional power analysis, focused solely83

on sampling variances or MDEs, can mislead practitioners when thinking about the ability to detect84

impacts.85
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Figure 1: Shortcomings of standard power analysis and proposed alternatives.

4. Conclusions In this paper, we present two approaches to connecting power calculations to86

beliefs about the distribution of true impacts. The prior-informed average power approach enables87

frequentists to move beyond MDEs by accounting for prior beliefs about true impacts. The Bayesian88

decision power framework directly measures the probability of meeting launch criteria while incor-89

porating these same beliefs. Both approaches yield practical tools for more realistic power assess-90

ment, enabling experimenters to make better-informed decisions about experiment design.91

A Appendix: Proof of Claims92

Lemma A.1. Let Z be a standard normal random variable, with cumulative distribution function93

Φ(z) and probability distribution function ϕ(z). Then for any a, b ∈ R :94

∫ ∞

−∞
Φ(az + b)ϕ(z)dz = Φ

(
b√

1 + a2

)
. (6)

Proof. For independent standard normal random variables Z1 and Z2:95 ∫ ∞

−∞
Φ(az + b)ϕ(z)dz = E(Φ(aZ1 + b)) = Pr(Z2 ≤ aZ1 + b) = Pr(Z2 − aZ1 ≤ b), (7)

where X = Z2 − aZ1 ∼ N(0, 1 + a2). It follows that:96

∫ ∞

−∞
Φ(az + b)ϕ(z)dz = Pr

(
X√
1 + a2

≤ b√
1 + a2

)
= Φ

(
b√

1 + a2

)
, (8)

proving the thesis.97

Claim A.2. If G = N(µ, σ2) = GN , then for sampling variance τ2 and significance level α prior-98

informed average power is given by:99
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Π̄(GN , τ2, α) = 1− Φ

(
τΦ−1(1− α/2)− µ√

τ2 + σ2

)
+Φ

(
−τΦ−1(1− α/2)− µ√

τ2 + σ2

)
. (9)

Proof. Assume G = GN . Then for sampling variance τ2 and significance level α prior-informed100

average power is given by:101

Π̄(GN , τ2, α) =

∫ ∞

−∞
Π(δ, τ2, α)dGN (δ) (10)

=

∫ ∞

−∞
Π(δ, τ2, α)

1

σ
ϕ

(
δ − µ

σ

)
dδ (11)

=

∫ ∞

−∞

(
1− Φ

(
Φ−1(1− α/2)− δ

τ

)
+Φ

(
−Φ−1(1− α/2)− δ

τ

))
1

σ
ϕ

(
δ − µ

σ

)
dδ

(12)

=

∫ ∞

−∞
(1− Φ (az + b) + Φ (az + c))ϕ(z)dz, (13)

where the last equality follows from substituting the terms δ = zσ + µ, a = −σ/τ , b = Φ−1(1 −102

α/2)− µ/τ , and c = −Φ−1(1− α/2)− µ/τ . The claim then follows from lemma A.1.103

Claim A.3. If G = N(µ, σ2) = GN , then for sampling variance τ2 and launch and dial-down104

thresholds (α, 1− β) Bayesian decision power is given by:105

Π̃
(
GN , τ2, α, β

)
= 1 + Φ

(
µ
√
τ2 + σ2

σ2
− τΦ−1(α)

σ

)
− Φ

(
µ
√
τ2 + σ2

σ2
− τΦ−1(1− β)

σ

)
.

(14)

Proof. Assume G = GN and define S = (L +D) ∈ {0, 1} to be indicator for whether the launch106

criteria is met (L = 1) or the dial down criteria is met (D = 1). Then for sampling variance τ2 and107

launch and dial-down thresholds (α, 1− β) Bayesian decision power is given by:108

Π̃
(
GN , τ2, α, β

)
=

∫ ∞

−∞
Pr(S = 1|∆ = δ, τ2, GN , α, β)

1

σ
ϕ

(
δ − µ

σ

)
dδ (15)

=

∫ ∞

−∞

[
Pr(L = 1|∆ = δ, τ2, GN , α)

+Pr(D = 1|∆ = δ, τ2, GN , β)
] 1
σ
ϕ

(
δ − µ

σ

)
dδ

(16)

Next, note that:109

Pr
(
L = 1|∆ = δ, τ2, GN , α

)
= Pr

(
Φ

(
µ̃

σ̃

)
> α

∣∣∣∆ = δ, τ2, GN , α

)
(17)

= Φ

δ +
(

τ2

σ2

)
µ− τ

√
σ2+τ2

σ2 Φ−1(α)

τ

 . (18)
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Symmetrically:110

Pr
(
D = 1|∆ = δ, τ2, GN , β

)
= Pr

(
Φ

(
µ̃

σ̃

)
< 1− β

∣∣∣∆ = δ, τ2, GN , β

)
(19)

= 1− Φ

δ +
(

τ2

σ2

)
µ− τ

√
σ2+τ2

σ2 Φ−1(1− β)

τ

 . (20)

Therefore:111

Pr(S = 1|∆ = δ, τ2, GN , α, β) = Φ

δ +
(

τ2

σ2

)
µ− τ

√
σ2+τ2

σ2 Φ−1(α)

τ

 (21)

+ 1− Φ

δ +
(

τ2

σ2

)
µ− τ

√
σ2+τ2

σ2 Φ−1(1− β)

τ

 . (22)

Plugging back into eq. (15) with:112

δ = zσ + µ (23)
a = σ/τ (24)

b =
1

τ

(
µ+ µ(τ2/σ2)− τ

√
σ2 + τ2

σ2
Φ−1(α)

)
(25)

c =
1

τ

(
µ+ µ(τ2/σ2)− τ

√
σ2 + τ2

σ2
Φ−1(1− β)

)
, (26)

yields the following:113

Π̃
(
GN , τ2, α, β

)
=

∫ ∞

−∞
Φ(az + b)ϕ(z)dz + 1−

∫ ∞

−∞
Φ(az + c)ϕ(z)dz. (27)

Applying lemma A.1 to both integrals yields:114

Π̃
(
GN , τ2, α, β

)
= Φ

(
b√

1 + a2

)
+ 1− Φ

(
c√

1 + a2

)
. (28)

Finally, plugging back in for a, b, and c and simplifying yields equation (14).115
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