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1. Overview In A/B testing, statistical power depends on both the variance of estimated impacts
and the distribution of true impacts. A low variance metric can have low power if true impacts on
the metric tend to be small, while a high variance metric can have high power if true impacts on the
metric tend to be large.

Traditional power calculations, however, focus solely on the variance of estimated impacts. They
compute the probability of detecting a fixed effect size or the smallest effect size that can be detected
with high probability (i.e., the “minimum detectable effect” or MDE). While such calculations cap-
ture the role of the variance of estimated impacts, they do not provide a way to measure expected
power taking into account uncertainty or beliefs about the distribution of true impacts.

In this paper, we present two approaches to connecting power calculations to beliefs about the
distribution of true impacts. First, we show how frequentists can compute “prior-informed aver-
age power” by taking a weighted average of conventional power across different effect sizes, with
weights based on how likely that effect size is believed to occur. Second, we show how Bayesians
can compute “Bayesian decision power” by taking a weighted average of the probability of meeting
a launch or dial down criteria across different effect sizes, with weights again based on how likely
that effect size is believed to occur. When true impacts are assumed to be normally distributed, both
approaches yield simple closed-form expressions that can be computed using data readily available
in most A/B testing tools.

These approaches enable A/B testing tools to provide more realistic and informative assessments
of statistical power. By incorporating beliefs about the distribution of true impacts, they can better
inform experiment design decisions such as traffic allocation and duration by leveraging the relative
power of different metrics. This is especially valuable given that many large A/B testing tools
already estimate beliefs regarding the distribution of true impacts via empirical Bayes methods but
rarely leverage them in thinking about power. We provide a simple way to close the gap, aligning
power calculations with the same beliefs regarding true impacts used in Bayesian inference.

2. Theory We are interested in measuring the impact of a feature change. We run an A/B test,
exposing the feature change to a random subset of traffic. The impact of the feature change A is a

random variable, whose realized values we denote by 6. The A/B test delivers an estimator A of A,

whose realized values we denote by 4, and an estimate 72 of its sampling variance, which we treat
as a known constant. Motivated by the randomization of the feature change and the central limit

theorem, we assume that Ais normally distributed, with mean § and variance 72

A|A =612~ N(6,72) (1)

We assume that the true impact A is distributed according to some assumed distribution G.

Given this setup, our goal is to measure our ability to detect impacts, taking into account the sam-
pling variance 72 and the likelihood of observing different effect sizes under G.

Frequentist power: Traditional power analyses compute the probability of rejecting the null hypoth-
esis given an assumed effect size A = §, sampling variance 72, and significance level o For a
two-sided t-test for equality in means, the usual formula approximating the power of the test is:
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s, 7%,a)=1—-o <<1>1 (1—a/2) - i) + @ (@1(1 —a/2) - f) . (2)

The primary limitation of eq. (2) is that it conditions on a single assumed effect size A = ¢, ignoring
the distribution of the true impact G. This can be misleading in two ways. First, power may be
significantly understated or overstated if the assumed effect size lies far from likely values under
G. Second, it can distort assessments of relative power when the distribution G varies significantly
across metrics — for example, when true impacts on some metrics tend to be significantly larger
than those on others.

Prior-informed average power: An alternative approach, aimed more toward frequentist practition-
ers, is to measure average power, marginalizing over the distribution of the true impact GG. For any
assumed distribution G, sampling variance 72, and significance level «., we define “prior-informed
average power” as:

(G, 72,a) = /H(a, 72, a)dG(9). (3)

Equation (3) explicitly links standard frequentist notions of statistical power to the beliefs regarding
the distribution of the true impact.

We can estimate prior-informed average power via Monte Carlo simulations as follows:

(i) Draw A from G
(ii) Draw A from N (0, 72) given A = §
(iti) Compute I1(4, 72, «)

(iv) Repeat steps (i)-(iii) a sufficiently large number of times and estimate I1(G, 72, «) as the
average of I1(d, 72, o) across replications

We prove in appendix A that in the special case where G = N (u,0?) = GV, II(G, 72, ) has a
simple closed-form expression:

Bayesian decision power: Another approach, aimed more toward Bayesian experimenters, is to
compute the probability of meeting a launch or dial-down criterion for their experiment. This is
accomplished by marginalizing over the distribution of the true impact G. We consider again the
special case where G = N(u,0?) = GV and we define w = 0?(0? + 72)~!. Further assuming
normality for the estimated impact A =4and sampling variance 72 via the CLT, also the posterior
distribution of A is Gaussian, with mean i = wh + (1 — w)p and variance 52 = w2, Launch and
dial-down decisions can then be made based on whether the posterior probability that A is positive,
®(fi/5), exceeds threshold « or falls below threshold 1 — 3, respectively.

We prove in appendix A that given the distribution of the true impact G, sampling variance 72,

and launch/dial-down thresholds («, 3), the probability of launching or dialing down (or “Bayesian
decision power”) is given by:

IGYN,7%,0,8) =1-®

T +0o2  T1dH(1-p) V2402 1d71(a)
5 — +o 5 - . (5
o o o o
Equation (5) allows a Bayesian decision maker to directly compute the probability of meeting launch
or dial-down criteria while accounting for both measurement precision and beliefs regarding the
distribution of the true impact.

During the design phase, experimenters can use prior-informed average power or Bayesian decision
power to help better inform design decisions such as how to allocate traffic across treatments and
determine experiment duration or how to choose across different metrics.
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3. Simulations We illustrate the above concepts via stylized simulations. We assume G =
N(0,0%) = G¥ and consider metrics with different specifications of the sampling variance 72
and prior variance 2. For the first metric (metric A), we consider relatively small sampling vari-
ance and effect size, with 7 = 0.002 and ¢ = 0.001. For the second metric (metric B), we consider
relatively large sampling variance and effect size, with 7 = 0.005 and o = 0.01.

Figure 1 shows that despite metric A’s smaller sampling variance (and therefore smaller minimum
detectable effect (MDE) size), it achieves lower prior-informed average power and Bayesian decision
power than metric B. This is because metric A’s true effects, while more precisely estimated, tend
to be smaller than those of metric B. This highlights how traditional power analysis, focused solely
on sampling variances or MDEs, can mislead practitioners when thinking about the ability to detect
impacts.

a) True Effects vs MDE b) Prior-informed average power c) Bayesian decision power 1
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Figure 1: Shortcomings of standard power analysis and proposed alternatives.

4. Conclusions In this paper, we present two approaches to connecting power calculations to
beliefs about the distribution of true impacts. The prior-informed average power approach enables
frequentists to move beyond MDEs by accounting for prior beliefs about true impacts. The Bayesian
decision power framework directly measures the probability of meeting launch criteria while incor-
porating these same beliefs. Both approaches yield practical tools for more realistic power assess-
ment, enabling experimenters to make better-informed decisions about experiment design.

A Appendix: Proof of Claims

Lemma A.1. Let Z be a standard normal random variable, with cumulative distribution function
®(z) and probability distribution function ¢(z). Then for any a,b € R :

/_o:o B(az + b)p(2)dz — B (\/117(9 . ©)

Proof. For independent standard normal random variables Z; and Zs:

/OO D(az +b)p(2)dz = E(P(aZy + b)) =Pr(Zs < aZy +b) =Pr(Zs —aZy <b), (1)

— 00

where X = Zy —aZ; ~ N(0,1 + a?). It follows that:

/_Z@(az+b)¢(z)dz =Pr <\/1)_i = < \/11@2> = (\/%) ®)

proving the thesis. O

Claim A.2. IfG = N(u,02) = G, then for sampling variance 72 and significance level o prior-
informed average power is given by:



ﬁ(GN,r%a):l—q)(Tq)_l\(/lT;Ta/;)_“) +®(_T¢_\1/(712_T0;/22)_“). )

100 Proof. Assume G = G*. Then for sampling variance 72 and significance level o prior-informed
101 average power is given by:

m(GYN, 72, a ):/wn(sf ,a)dGN (8) (10)
:/ZnaT o) ¢(50“)d5 (an
RS

+<I>< o (1—a/2)—f_>)i¢(5;'u>d5
/ B (az +b) + ® (az + ) 6(2)dz, (13)

102 where the last equality follows from substituting the terms § = zo + p, a = —0/7,b = ®~1(1 —
108 «/2) —p/7,and c = —®~1(1 — a/2) — p/7. The claim then follows from lemma A.1. O

104 Claim A.3. If G = N(u,0?) = G, then for sampling variance 72 and launch and dial-down
105 thresholds («, 1 — ) Bayesian decision power is given by:

I(GY, 7% a,B) =1+ (“\/72;702 - Tqu@) ) (Wm ¢ H(1-B)
g

(14)

106 Proof. Assume G = G and define S = (L + D) € {0, 1} to be indicator for whether the launch
107 criteria is met (L = 1) or the dial down criteria is met (D = 1). Then for sampling variance 72 and
108 launch and dial-down thresholds («, 1 — ) Bayesian decision power is given by:

oo

(6", 7% a.0) = |

oo o

Pr(S = 1|A = 6,72, GV, a, )~ ¢(5 ’“‘)da (15)

:/ [Pr(L = 1A =6,72,G", )

5 (16)

+Pr(D = 1|A =6,72,GV, B)] ¢< “)d&

g
109 Next, note that:
Pr(L=1A=46r7°G",a)="Pr (<I> (“) > a’A :5,72,GN,a> (17)
g

S+ (%) p— 71/ ZE e ()

= ( ) (18)
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Symmetrically:

Pr(D=1A=617*G",B) =Pr <<1> (

Q=2

) < 16’A6,72,GN,6)

5+ (5)p-m/orea-p)

T

=1-

Therefore:

5+ (T )M—T L ()

T

5+ (Z) p—ry/ e (1 p)

T

Plugging back into eq. (15) with:

d=2z0+
a=o/T

b:i<u+uh7H)—nfﬂ;T%f%®>
‘T % (uw(f%% -7y 02;72‘1"%1 - 6)) :

yields the following:

I (GN, 7%, a,8) = / Dlaz+b)p(z)dz+1— / b(az + ¢)p(z)dz.

— 00 — 00

oo

Applying lemma A.1 to both integrals yields:

-~ o B b B c
H(G T ,a,5)®<1+a2)+1 @(\/W).

Finally, plugging back in for a, b, and ¢ and simplifying yields equation (14).

19)

(20)

21

(22)

(23)
(24)

(25)

(26)

27)

(28)



