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Abstract

Visual compatibility recommendation systems aim to
surface compatible items (e.g. pants, shoes) that har-
monise with a user-selected product (e.g., shirt). Exist-
ing methods struggle in three key aspects: they rely on
global CNN representations that overlook fine-grained lo-
cal cues critical for visual pairing; they force all cate-
gories into a single latent space, ignoring the fact that
compatibility rules differ across product-type pairs; and
they demand costly, expert-annotated outfit labels. We in-
troduce MEDAL(Meta-space Distillation and Alignment ),
a self-supervised framework that addresses all three chal-
lenges simultaneously. MEDAL (i) employs a local-global
augmentation curriculum inside a teacher—student ViT
to emphasise patch-level texture and pattern similari-
ties while suppressing confounding global shape cues;
(ii) partitions the joint feature manifold into learnable,
pair-specific meta-spaces so that, for example, {shirt,pants}
and {pants,shoes] relationships are modelled with distinct
projection masks; and (iii) replaces manual labels with dis-
tantly supervised KD, harvesting pseudo-compatible sets
via object detection on web images, thus scaling to mil-
lions of real-world examples. We further fuse perceptually
uniform LUV colour histograms to capture global colour
harmony often missed by pure vision transformers. Exten-
sive experiments on Polyvore disjoint/non-disjoint and a
2M-image in-house dataset show state-of-the-art gains of
up to +3.72/+2.7FITB and +9.58R@ 10 over the strongest
baseline, whilst cutting annotation cost to zero. Qualitative
studies confirm that MEDAL retrieves stylistically coherent
outfits and correctly penalises mismatched colour palettes.

1. Introduction

In fashion recommendation systems, two fundamental tasks,
outfit compatibility prediction (CP) and complementary item
retrieval (CIR) underpin the ability to generate personalized,
coherent ensembles. CP evaluates whether a set of items

forms a visually cohesive outfit, quantifying their collective
aesthetic appeal, while CIR addresses the challenge of com-
pleting partial outfits by retrieving compatible items from
large-scale databases. For instance, given a combination
such as a top, pants, and shoes, CIR systems recommend har-
monizing accessories like handbags, thereby supporting both
retailers in delivering engaging, tailored suggestions and
consumers in assembling stylish, well-coordinated outfits.
When trained on extensive fashion datasets, such systems
effectively learn style preferences and the underlying princi-
ples of outfit coordination, leading to recommendations that
are increasingly aligned with individual tastes.

Early research [8, 133} 138] focused on leveraging CNN-
based feature extractors [9, |32] for fashion recommendation,
but these models were ultimately limited in their capacity
and generalizability to complex, diverse e-commerce set-
tings. More recent efforts [3} 20, 22| [34]] have turned to
transformer encoders to model entire outfits holistically, of-
ten fusing visual and textual modalities to capture intricate
relationships among garments and accessories. Neverthe-
less, most current visual compatibility models are built atop
classification-based, pre-trained architectures that prioritize
global features such as overall shape and style. This ap-
proach fails to account for the fact that, in practice, local
features including texture, pattern, and colour gradients are
often more decisive when determining the compatibility of
items like shirts and pants. Patch-level embeddings and
end-to-end learning pipelines are therefore better suited for
capturing the nuanced cues that govern visual compatibility.

A further limitation of existing models [8, [18},[20] is their
reliance on a single joint embedding space for all compatible
items, despite the clear observation that compatibility rules
can vary significantly across different product categories.
For example, the visual signals that define shirt—pants com-
patibility differ markedly from those that guide pants—shoes
matching. This “one-space-fits-all” strategy can result less
generalizability, especially as the diversity of compatible
items increases. Compounding these modelling challenges,
datasets such as Hypatia-OutfitBuilder [10] and Polyvore [8§]
contain too few samples for robust generalization to real-



world scenarios, while manual annotation is expensive and
requires domain expertise.

To address these limitations, we propose a framework that
combines local and global data augmentation specifically tai-
lored for visual compatibility learning. Our teacher-student
architecture aligns locally and globally augmented views of
compatible pairs, optimizing the embedding space to priori-
tize local feature matching while preserving global context.
Rather than using a single joint space, our approach defines
pairwise meta-spaces, allowing the model to learn special-
ized, compact representations for each type of compatible
pair. To overcome annotation bottlenecks, we adopt dis-
tantly supervised learning by mining complete outfit images
from the web. Individual clothing items are extracted using
the Grounding-DINO [21]] detector, forming sets considered
as compatible pairs. We further refine these sets and aug-
ment existing datasets such as Hypatia-OutfitBuilder using
the SkiLL [42]] similarity model. For textual attributes, a
pretrained attribute extraction module identifies key item
descriptors that are then encoded as text features. Given the
critical role of colour in fashion compatibility, we explic-
itly incorporate LUV-space colour embeddings to further
enhance performance.

Our contributions are as follows: 1. A teacher-student
framework that leverages local and global feature match-
ing for robust visual compatibility representations; 2. The
use of multiple style meta-spaces to model compatibility
across diverse fashion categories; 3. Explicit computation
and integration of colour embeddings in LUV colour space;
4. A distantly supervised approach to produces large-scale,
real-world fashion data without requiring costly human an-
notation; 5. An adaptive triplet loss informed by negative
sample similarity.

2. Related Work

Outfit Compatibility Prediction has been addressed from two
perspectives: pairwise item-to-item compatibility[23, [39]]
and overall outfit compatibility[8}, 33} 38]]. Pairwise meth-
ods learn a shared style space across item categories using
co-purchase and co-view data [23| 35} 139], where pairwise
distances are used to measure compatibility. However, these
approaches only model individual item pairs and not full
outfits. Later research explored outfit-level compatibility
using the Polyvore dataset [8, 18, 33, 38]]. Han et al.[8]
treated outfits as sequences and used LSTMs with a fill-in-
the-blank (FITB) task. Vasileva et al.[38]] introduced multi-
ple style spaces to capture nuanced similarity notions across
categories. Cucurull et al. [4] applied graph convolutional
networks, though their applicability is limited for dynamic
catalogs lacking item connectivity.

Recent works [33} 38, 40] have explored learning sub-
space embeddings for visual compatibility. Conditional Sim-
ilarity Networks (CSN)[40]], used in[38], learn type-aware

embeddings for item category pairs. Tan et al.[33] intro-
duced shared subspace learning with adaptive importance
weights. CSA-Net[20] further builds on this idea by learn-
ing weighted subspaces conditioned on item categories for
Cross-domain Item Retrieval (CIR).

The above methods [23] 38} 139]] can be applied to CIR,
though they were originally developed for outfit compati-
bility. Generative methods like GANs [[13} 131} 145] generate
item representations based on a given input and retrieve
complementary items through similarity with an indexed
database. Recently, [44] leveraged diffusion models with
user history for generative visual compatibility.

Attention mechanisms [3 [11} 20, 22 [24] |34] have gained
popularity in fashion recommendation. Specifically,[20}34]]
use attention to model pairwise compatibility. Transformer
self-attention[[LS] models higher-order interactions across
items, and transformer encoders [30]] are used to represent
entire outfits for scalable retrieval. These methods largely
emphasize global features, which often fail to capture the
fine-grained attributes essential for visual compatibility.

Recent work further advances the field through multi-
modal and transformer-based designs. VICTOR[27]] applies
contrastive vision—language pretraining to detect both overall
and item-level mismatch. Fashion-GPT][2] integrates large
language models with a modular retrieval pipeline that ex-
ploits multi-view textual embeddings. CANNJ[19] models
compositional coherence with multi-head attention and lo-
calized focal regions for fine-grained attribute alignment.
Attention-Based Fusion[14] combines patch-level visual and
textual features using soft attention for outfit recommenda-
tion. MLCNJ[43] predicts and diagnoses compatibility by
comparing features across multiple CNN layers. Finally,
HAT][[12]] incorporates user history using a dual-transformer
setup for personalized retrieval.

In our proposed model (MEDAL), we learn both local and
global features using the knowledge distillation framework.
Since color plays a significant role in visual compatibility,
we explicitly incorporate color embeddings and pairwise
meta-space alignment into the model to help learn more
robust representations.

3. Proposed Method

This paper proposes a novel method for learning visual com-
patibility. The proposed model comprises four key compo-
nents: (1) local and global feature learning, (2) distantly
supervised knowledge distillation, (3) meta-space learning
for each style pair, and (4) explicit color fusion. We employ a
knowledge distillation and triplet loss formulation, utilizing
three distinct images: an anchor, a positive, and a negative
sample. The following section provides brief descriptions of
the proposed model.
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Figure 1. A: The block diagram of the proposed model. The Teacher model accepts the local and global images, while the Student model
also accepts the color embeddings. These are further aligned with the meta-space alignment m:. Compatible pairs lie nearby in their
respective meta-spaces: T-S (tops-bottoms), T-S (tops-shoes), B-S (bottoms-shoes). B: Our modified DeiT, which fuses both visual and

textual information.

3.1. Local and Global Augmentation

Recent visual compatibility models primarily focus on cap-
turing global information high-level descriptors such as style,
shape, and overall color. While such features are adequate
for assessing visual similarity (for example, comparing two
shirts for general resemblance), they are often insufficient for
true visual compatibility between items from different cate-
gories. For instance, when determining whether a shirt and
a pair of pants are compatible, subtle local features such as
fabric texture, weave, fine-grained patterns, or trim become
critical. These local cues govern how well different gar-
ments coordinate in real-world fashion, capturing nuances
that global representations typically miss. Motivated by this,
we propose a feature matching strategy based on both local
and global augmentations: local crops ensure the model at-
tends to patch-level details essential for compatibility, while
global views preserve overall context. Empirical ablations
(Table ) confirm that integrating local features significantly
enhances compatibility prediction accuracy over global fea-
tures alone, validating the importance of our approach.

Let P1,Ps, ..., Pk be the compatible item sets, where
VP; = {xi, v}, and z; and y; are the item pairs belonging
to a compatible set. Assume that G represent the global
augmentations, and A is the local augmentation. The global
augmentation contains high-resolution images (224%224)
with various transformations such as RandomCrop, Ran-
domGray, Colorlitter, and GaussianBlur, while the local
augmentation contains low-resolution images (a small ran-
dom crop of the whole image with resolution 96*%96) with the
same image transformations applied mentioned for global
augmentation. For the P compatible set, the local and

global augmentations are defined as:

ai,az = G(x;),G(y;) (D

Where k is the number of local augmentations, in the Eq{2]
we can replace x; with the y; since it is symmetric. In prac-
tice, We keep two global and 8 local augmentations. The
obtained local and global augmentation set for the compat-
ible pair are used to train the model using the knowledge
distillation. The following section discuss the details about
the method and training.

3.2. Distantly Supervised Knowledge Distillation

The obtained local and global augmented images are used
to distill knowledge from the teacher to the student network.
Let 7, and Sy be the teacher and student models with param-
eters ¢ and 0, respectively. T, and Sy are identical copies
of the same vision transformer (ViT) [5]]-based architecture.
Here, we leverage the DeiT [37] pretrained model, which is
highly efficient compared to the vanilla ViT model.

The global and local augmented images obtained using
Egs. [T and [2] are passed to 75 and Sy, respectively. The
outputs from both networks are used to compute the loss,
and the outputs from 7, and Sy are given as:

0i=Tsla:) & s5=8(fellljes]) 3

The loss over the output obtained is defined as:

L(O) =) > CE(SM(0;),SM(s;)) (4
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Here, C'E is the cross-entropy loss, SM(o0;) and SM(s;)
are the softmax outputs of the teacher and student logits, re-
spectively, and ¢; is the color embeddingﬂ Also, f.([L;,¢;])
represents the concatenation of I; and c;, followed by a trans-
formation with f, a fully connected layer. In Eq.[4] o, acts
as the ground truth since the parameter ¢ is frozen. Eq.
aligns the local and global features of the compatible pair,
which significantly helps in learning the local features. The
loss is optimized with respect to the student model parame-
ters, i.e., 6, while the teacher model parameter ¢ is updated
using the exponential moving average (EMA) with a rate of
a, as given by:

¢ = aby + (1 — o)y (5)

The model update using EMA helps to overcome the mode
collapse problem [1} 7], as it is highly likely that the model
may project all the embeddings to the same point and mini-
mize the loss to zero. This knowledge distillation leverages
distantly supervised pairs of compatible item sets. The com-
patible item sets are obtained from images collected in the
wild, where each clothing item detected in the image is con-
sidered a compatible set. Section [d]discusses the details of
data collection; please refer to the same for further details.

3.3. Style Meta-Space Alignment

Let’s assume that we have a compatible set
{shirt, pant, shoes, belt}. ~ To learn compatibility, we
need to project these items into a compatible space where
the items within the set are very close to each other, while
non-compatible items are far apart. In this space, the model
learns a common feature from the compatible set, which
shows high similarity between all the embeddings learned in
the compatible space. Learning a common feature from such
a highly diverse set of compatible items is a difficult task,
and the model may be unable to learn robust embeddings
or may collapse to a single data point. To solve this issue,
we can assume that the single joint space is composed of a
collection of meta-spaces, where each meta-space represents
a smaller portion of the whole space. We divide the compati-
ble set into pairs of compatible items, such as {shirt, pant},
{pant, shoes}, {shirt, shoes}, etc. Each compatible pair is
projected into a single meta-space. Previous work by Tan
et al. [33] learned shared subspaces and achieved better
performance than independent subspaces. However, their
method requires input image pairs for subspace selection
during inference, which is impractical for retrieval tasks. In
contrast, our subspace indexing mechanism depends solely
on item categories. Since our model requires only a single
image and two category labels, we can construct a practical
indexing approach suitable for retrieval applications.

The meta-space alignment based learning can be con-
structed by simply choosing the various compatible set from

!Color embeddings are defined in Section

the whole possible compatible item pair and following the
max margin loss. Assume that we have C' type of compatible
item pair, assume that one type pair is {shirt, pant} which
is represented as (u, v) is the t* pair. Lets assume that m;
is the learnable meta-space alignment vector for the t* pair
type. It projects the shared space embedding to the ! meta-
space. For compatible set {x}, y!} meta-space projection
is defined as:

er =i © Ty(at) ©)
es =my O So(fe([yi,ci]) @)

where © is the element wise product which learns a weight
to each dimensions.

3.4. Color and Text Information fusion

Color information plays a crucial role in visual compatibility,
however, during knowledge distillation, the model focuses
on learning style, texture, pattern, etc., and pays minimal
attention to the color [[16}26]]. To preserve the color infor-
mation, we explicitly incorporate the color embedding into
the model. To calculate the color embedding for each im-
age, we transform the RGB space to the LUV [25]] space
and calculate the histogram in the LUV space. The LUV
color space is a perceptually uniform color space, i.e., the
perceived color difference between two points in the LUV
space corresponds to the Euclidean distance between them.
This property makes the LUV space particularly suitable for
color-based computations, as it better aligns with human per-
ception of color differences compared to other color spaces
like RGB or CIELAB. The color vector is obtained by cal-
culating the histogram of pixel values in the LUV space for
each image. This color vector captures the distribution of
colors present in the image, providing a compact yet informa-
tive representation of the color information. The color vector
is concatenated with the output of the student backbone and
passed through a linear layer to match the final embedding
size, which is incorporated in the Eq[3]and Eq. [f]

Textual attributes such as material, print type, or style
descriptors can provide complementary information that vi-
sual features may not fully capture. To effectively integrate
text and image signals, we employ an early fusion mech-
anism inspired by recent multimodal transformers. Let ¢
denote the attribute text associated with an item (e.g., “blue
denim jeans” or “striped cotton shirt””). We use a pretrained
CLIP [28] text encoder to obtain a fixed-length embedding
vector t = CLIP,x(t) € RZ. In our early fusion approach,
for each image patch embedding p; € R? from the DeiT [37]]
visual encoder, we add a scaled CLIP text embedding At to
obtain the fused representation h; = p; + At. This addition
is performed for every patch, allowing the textual informa-
tion to modulate the representation of all image regions from
the very first transformer layer.



3.5. Negative Sampling with Adaptive Margin

The max margin between the meta-space leads to improved
model performance and robust to the noisy pairs. We lever-
ages the Triplet Loss to achieve the maximum margin be-
tween the various meta-spaces. Triplet loss requires negative
samples, and mining hard negatives typically yields the best
performance. The annotation of hard negative samples are
difficult. We incorporate a distantly supervised strategy to
get the proxy hard negative samples. To obtained the ap-
proximate negative samples we first calculate the image
embedding with the help of SkiLL [42] pretrained model.
This image embedding are used for the tree construction
using the agglomerative clustering approach. At the leaf
level we choose the nearest cluster (other cluster of the same
parent node) to draw the negative samples.

3.5.1. Approximate Hard Negative sampling:

Assume that we have a compatible set {x}, y! } as positive
pair of type (u, v). From the constructed tree we identify the
cluster /o from the category v where the sample y; resides.
Then we sample [ number of nearest clusters from the pos-
itive sample [y. These cluster are close to positive cluster
however they contains the negative samples compared to the
compatible set {x¥,y?}. Therefore these cluster samples
provides the approximately hard negative samples. We sam-
ple n number of samples from each negative clusters and
collected total of [ x n negative samples. Now, negative
sample z}' can become any of the [ x n images or we can

can take every sample and compute average loss for triplet.
3.5.2. Adaptive Margin for Triplet Loss:

For a compatible positive pair {x¥, y’} lets assume T; =
{2}) éxzq is the set of negative pair (we keep small value
I = 2 and n = 2) for the model’s training efficiency. Now
the Triplet Loss can be computed as:

M(’,mt (a‘:?, y;}v ZZ})

1
= Z max{0,d(e;, es) — d(es, e,) + a,}
T

z€TMm

where e, = m; © Sp(fe([y?, ci])) and o, is a dynamic vi-
olate margin, which is different from the constant margin
of traditional triplet loss. It is computed according to the
class relationship between the anchor class y, and the neg-
ative class y,, over the constructed hierarchical class tree.
Specifically, for triplet the violate margin v, is computed as:

a, =B+ dH(Cy:Cz) — Se, ®)

where 3 (= 0.4) is a constant parameter that encourages the
image clusters to reside further apart from each. ¢, ¢y, c,
are the clusters where x¥', y?, 2 resides. dy(c,, ¢;) is the
threshold for merging the clusters ¢, and c,, at a certain level
on the hierarchical tree. s, is the average distance between
samples in the cluster c,. In our adaptive triplet loss, a

sample from c, is encouraged to push the nearby points
with different semantic meanings apart from itself (a formal
trouser with a matching formal shirt should push a Jeans
pant apart). Furthermore, it also contributes to the gradients
of positive and negative data points which are very far from
each other. To note that, in contrast to [6]], we computed the
whole tree structure and the thresholds for merging nodes
only once.

;\ [
/
e .
| =
J 81\
( ‘ £ g
7 B8
Wil "3
) £ ®
S L] a ©
3 — a
—_— (1]
2 =
B hoes 0.46 ,51
k el

Figure 2. The data collection strategy involves the following steps:
each item from the image is detected and cropped, and this set is
considered as a compatible set. Further, we retrieve similar items
from the database and augment the compatible set.

4. Data Collection

The deep learning model requires a huge amount of labeled
data. However, for the visual compatibility model, a large
number of compatible item sets are required, which neces-
sitates domain experts and the collection of a large amount
of samples. This is costly and time-consuming. A strong
pre-trained model may reduce the amount of data required,
but most pre-trained models are available for classification
tasks, which has significantly different objective compared
to visual compatibility. Therefore, these pre-trained models
do not work and show limited impact on model performance.
There are a few available datasets, such as Polyvore [8]]
and Hypatia-OutfitBuilder [10]. These datasets have limited
samples, and Polyvore dataset is highly biased towards color.
To overcome the above limitations and enrich the dataset,
we follow a distantly supervised strategy. We collected com-
plete outfit images from various open source sites, which
captures real-world scenarios of human-worn outfits. We
employed the Grounding-DINO [21]] model to detect in-
dividual clothing objects, then cropped and mapped them
to product catalog images using a visual similarity model
SkiLL [42]. We ensured color harmony in outfit recom-
mendations by matching product retrievals to original outfit
colors. We expanded the Hypatia-OutfitBuilder dataset by
retrieving visually similar products from softlines image cat-
alog for each item and augmented the dataset with additional
relevant options. Our final dataset comprised 2MN outfit
pairs, providing a rich and diverse foundation for training
our models. This process enabled us to establish connections
between outfit components and available catalogs, enriching
the dataset and improving model performance. Figure 2]
shows the overview of the distantly supervised strategy.



Methods Polyvore disjoint Polyvore nondisjoint

FITB [ R@10 [ R@30 [ R@50 FITB [ R@10 [ R@30 [ R@50
Type-Aware [38]] 55.65 3.66 8.26 11.98 57.83 3.50 8.56 12.66
SCE-Net Averag [33] 53.67 441 9.85 13.87 59.07 5.10 11.20 15.93
CSA-Net [20] 59.26 5.93 12.31 17.85 63.73 8.27 15.67 20.91
Outfit transformer (Vision only) [30] - 6.03 12.20 16.51 58.92 9.29 16.94 21.82
MEDAL (Vision only) 61.70 7.97 14.81 20.03 66.50 9.22 17.44 23.34
Outfit transformer [30]] 59.48 6.53 12.12 16.64 67.10 9.58 17.96 21.98
HAT [12] 57.32 5.13 10.04 15.29 64.87 7.46 15.74 20.38
MEDAL (Vision+Text) 63.20 8.32 16.38 21.83 69.80 11.05 20.87 27.66

Table 1. Comparison of our model with state-of-the-art methods on the FITB (using accuracy) and CIR tasks (using %recall @top-k).

S. Implementation details

We adopted the DeiT architecture [36]] as the backbone for
our student and teacher models, owing to its promising per-
formance in low-data regimes. Our models employed patch
sizes of eight, which, although more computationally ex-
pensive compared to patch sizes of 16, yielded superior
results. To incorporate color information, we calculated
a color histogram over 560 different colors, resulting in a
560-dimensional color vector. This vector was then passed
through a linear layer to reduce its dimensionality to 64.
The training process involved a batch size of 12, distributed
across eight GPUs. We utilized the AdamW optimizer with
an initial learning rate of 0.00001. Our learning rate sched-
ule followed a similar approach to that in [42], where linear
scaling was applied for the first 10 epochs, followed by co-
sine scheduling for learning rate decay. The temperature
parameter, 7, played a crucial role in our model, and we set
it to a lower value within the range 7 € [0.04,0.07]. As
the training progressed, we increased the o penalty from an
initial value of 0.04 to 10 its original value. The merging
threshold for nodes at different tree levels and the whole hi-
erarchical tree structure in Section [3.5|were computed using
the children_ and distances_ functionality provided by the
sklearn agglomerative clustering package. this is a one time
offline calculation during training. We exclusively deploy
the Student model for inference. This inference pipeline in-
corporates the LUV color embeddings, textual information,
and Meta-Space alignment, while the computationally inten-
sive local-global augmentations and approximate negative
sampling are restricted to the training phase. Please refer to
supplement for more details.

6. Results and Evaluations

We conducted the rigorous experiment over the various task
and metric to evaluate the proposed model. The following
section discuss the details about the various task, evaluation
metric and results.

6.1. Baselines and Evaluation Metric

For evaluation, we utilized disjoint and nondisjoint test set
from the Polyvore to calculate the Compatible Fill-in-the-
Blank (FITB), Complementary Prediction (CP) and Comple-

mentary Item Retrieval (CIR) scores, which are widely used
metrics for assessing the performance of outfit recommenda-
tion systems. Additionally, we calculated only CIR scores in
our in-house test dataset which consists of 200,000 samples.

In our study, we conducted a comprehensive evalua-
tion of our proposed method by comparing its performance
against several state-of-the-art approaches, including the
Type-aware Net [38]], SCE-Net [33], CSA Net [20], Outfit
Transformer [30] and HAT [12]]. HAT was mainly evaluated
for Polyvore-U [12] dataset. We reproduce it and report
the metric on Polyvore-disjoint and Polyvore-nondisjoint
datasets [38]]. To assess the effectiveness of our method, we
employed widely-used evaluation metrics, including Area
Under the Curve (AUC) for complementary prediction task,
accuracy for Fill-in-the-Blank (FITB) task and Recall@K
for complementary item retrieval task. The AUC metric mea-
sures the ability of a model to distinguish between positive
and negative instances, while the FITB metric evaluates the
model’s capability to predict the correct item given a partially
observed outfit. We calculated these metrics on both the dis-
joint and non-disjoint sets of the Polyvore dataset, which is a
widely-used benchmark for fashion recommendation tasks.

6.2. Complementary prediction and FITB

We evaluated our proposed model on outfit compatibility
prediction (OCP) and fill-in-the-blank (FITB) tasks using
the Polyvore Outfit [§]] test datasets. We trained our pro-
posed model on Polyvore disjoint (16995 training outfits)
and nondisjoint (53306 train outfits) training set and uti-
lized respective disjoint (15,145 test outfits) and non-disjoint
(10,000 test outfits) test sets to evaluate the metrics. The
disjoint set ensures a strict separation between training and
test/validation sets, while the non-disjoint set allows some in-
dividual items to overlap. In FITB, incorrect choices are sam-
pled from the same category as the correct choice, with fine-
grained item type annotations. The task is to select the most
compatible candidate item, evaluated by overall accuracy.
For OCP, we predict the compatibility of fashion items in an
outfit, reporting AUC. Our model is benchmarked against
state-of-the-art methods, and we report performance on both
FITB and OCP tasks using the Polyvore Outfit dataset. We
have not calculated CP and FITB tasks in our internal test



R@1 R@5 R@10 R@20 R@50 R@100
Type-aware [38] 0 0 0 0 0 0
CSA-Net [20] 0.26 1.22 2.14 3.67 2.34 4.03
Oufit Transformer [30] 0.58 1.99 3.98 5.84 3.31 4.26
HAT [12] 0.52 1.36 353 5.61 3.18 3.86
MEDAL (Ours) 3.86 11 13.56 15.6 12.55 12.13
Table 2. Evaluation for the retrieval task, where we have shown relative %Recall@K (R@K) wrt Type-aware, and K =

{1, 5,10, 20, 50, 100} (Outfit Transformer and HAT are multi-modal model which takes both text and image, for fair comparison we have

removed the text from them.)

dataset as we don’t have any annotation for that.

The results for the FITB over the Polyvore dataset are
shown in Table[T] We can observe that for both the Polyvore
disjoint and non-disjoint test sets, the proposed approach
(MEDAL) shows consistently better results. For the Polyvore
disjoint and non-disjoint sets, our approach shows 3.72% and
2.7% absolute improvement in the FITB task respectively
when we incorporated both textual and visual information.
When we incorporated vision only information we see that
our model has outperformed the previous baseline CSA-
Net in the FITB task. In the CP task given in Table [3| we
have seen our model outperforming the recent baseline by
1.0% and 2.0% for the Polyvore disjoint and nondisjoint test
set respectively and seen similar results in case of vision
only mode. In the Polyvore disjoint dataset, our model
outperformed recent baseline in the CP task in both vision
only and vision plus textual mode.

6.3. Complementary item retrieval

We trained our model on the Polyvore disjoint and nondis-
joint train sets and performed the CIR task on the respective
test sets. For this task, we used recall@top-k (abbreviated as
R@k) as the metric. For the calculation of R @k, we adopted
the same methodology described in CSA-Net to evaluate
the Polyvore disjoint and nondisjoint sets. We indexed our

Method Features PO-D PO
BiLSTM + VSE [8] Image + Text 0.62 0.65
GCN (k=0) [17] Image 0.67 0.68
SiameseNet [38]] Image 0.81 0.81

Type-Aware [38]] Image + Text 0.84 0.86

SCE-Net [33] Image + Text - 0.91
CSA-Net [20] Image 0.87 0.91
OutfitTransformer [30] Image 0.87 0.92
OutfitTransformer [30] Image + Text 0.88 0.93
HAT [12] Image + Text 0.88 0.92
Ours Image 0.89 0.92
Ours Image + Text 0.89 0.95

Table 3. Comparison of our model with state-of-the-art methods
on the compatibility prediction task using the AUC metric [8]. The
methods are evaluated on Polyvore-Outfits (where -D denotes the
disjoint dataset).

dataset by category, treating each category as the target cate-
gory. For indexing, we used the same methodology described
in CSA-Net. The results are shown in Table[Il We observe
that our model outperforms all recent baselines in almost
all R@k metrics for both vision-only and joint vision-text
models. In the Polyvore disjoint set, we saw a significant
improvement of 1.79%, 4.26%, and 5.19% in R@10, R@30,
and R@50, respectively, compared to recent baselines. An-
other significant improvement of 1.44%, 2.91%, and 5.68%
was observed in R@10, R@30, and R@50 for Polyvore
nondisjoint set. We also noticed that our vision-only model
outperformed the Outfit Transformer in both the textual and
visual modes for the disjoint set by 1.44%, 2.68%, and 3.39%
for R@10, R@30, and R@50, respectively. However, our
vision-only model performed slightly worse than its Outfit
Transformer counterpart in the Polyvore nondisjoint set for
R@10.

We trained the proposed model on our in-house data de-
scribed in Section[d] We did not use any textual information
in this dataset, as obtaining textual descriptions for real-
world fashion images is challenging. For testing, we indexed
200,000 outfits as the test set, as explained earlier in Sec-
tion ] For each outfit in the test set, we masked or removed
one item, such as a shirt, pants, or accessory. The goal is to
retrieve the masked item from the respective category within
the indexed dataset, mimicking a real-world scenario where
a user might have a partially constructed outfit, and the sys-
tem needs to recommend the missing item(s) to complete
the ensemble. We employed the R@k metric to assess the re-
trieval performance, as in the Polyvore dataset. To determine
the relevance of the retrieved products with the ground truth,
we utilized a visual similarity model, SkiLL [42], which
compares the visual features (e.g., color, texture, style) of
the retrieved products with the ground truth masked item
to quantify their similarity. For each query, we computed
the similarity or relevance score of the retrieved items with
respect to the ground truth data. We considered a retrieval
successful if at least one of the top-k retrieved items had
a relevance score greater than 0.7. Subsequently, we cal-
culated the overall recall by aggregating the successful re-
trievals across the entire dataset. We calculated R@K, where
K =1,5,10, 20,50, 100, numbers are in absolute percent
difference. In contrast to the Polyvore dataset, we used lower
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Figure 3. Qualitative retrieval result of the proposed model over the Polyvore dataset. Left: is the query outfit with item in black box in the

S

N

right being ground truth. Right: top-10 retrieval results for the ground truth category are shown.

Methods Polyvore disjoint Polyvore nondisjoint

FITB [ R@10 [ R@30 [ R@50 FITB [ R@10 [ R@30 [ R@50
MEDAL (Vision Only) 61.70 7.97 14.81 20.03 66.50 9.22 17.44 23.34
Without Negative clustering 61.30 7.86 15.35 20.11 68.46 10.92 20.13 26.39
Without Color 61.10 7.75 15.14 20.17 67.70 10.64 19.33 25.10
With RGB 60.72 7.46 14.67 19.53 67.44 10.58 19.16 24.72
With LAB color Space 62.88 8.19 15.74 20.91 68.79 10.71 20.03 26.38
Without Meta-Space 62.40 8.13 15.56 20.72 68.20 10.89 19.94 25.85
Without Local Augmentations 58.92 5.23 11.41 16.75 65.87 8.33 17.27 23.05
Without Triplet Loss 57.70 4.87 10.65 15.03 64.40 7.90 16.07 21.40
MEDAL (Vision+Text+LUV) 63.20 8.32 16.38 21.83 69.80 11.05 20.87 27.66

Table 4. Ablations for the Polyvore dataset for the retrieval and FITB task over the various proposed proposed components. R@k: Recall@k

top-k values, as in an e-commerce setting we generally do
not recommend more than 10 items. In Table[2] we show the
results for the retrieval task. We observe that MEDAL out-
performed all the retrieval baselines by a significant margin
with +9.58 absolute percentage difference compared to state
of the art Outfit Transformer.

7. Ablations

Table [] isolates the specific contribution of each compo-
nent. Our analysis identifies Triplet Loss and Local Aug-
mentation as the dominant factors; removing them causes
the sharpest performance degradation (dropping FITB by
~4.0% and ~2.8% respectively), confirming their critical
role in capturing fine-grained compatibility. We also val-
idated our Approximate Hard Negative sampling against
a standard random sampling baseline (Without Negative
Clustering in Table [); the clustering approach yields su-
perior generalization by forcing the model to distinguish
between semantically similar but stylistically incompatible
items. While LUV color and Meta-Space provide smaller
individual gains, they remain essential for resolving specific
aesthetic ambiguities. Crucially, the full MEDAL framework
outperforms any partial configuration, demonstrating that
these components are synergistic rather than merely additive.
Finally, integrating text further robustifies the model against

categorical confusion, validating the necessity of our design.

8. Conclusion

Developing robust models for visual compatibility remains
challenging for real-world deployment. This paper proposes
a robust approach to predicting visual compatibility, appli-
cable to both the hardlines and softlines categories. In this
work, we introduce a novel approach that leverages distantly
supervised knowledge distillation, meta-space alignment,
and approximate negative sampling to build the visual com-
patibility model. The proposed local-global augmentation
captures fine-grained local information, which plays a key
role in extracting compatible features while ignoring irrel-
evant global features. Since color significantly influences
visual compatibility, we incorporate explicit color embed-
ding and triplet loss to train a model that effectively dis-
tinguishes between compatible and non-compatible items.
Also, to conduct experiments in the wild, we constructed
a large-scale in-house visual compatibility dataset using an
object detection approach. We conducted extensive experi-
ment over the in-house and publicly available dataset. The
proposed approach across various tasks and metrics demon-
strate its superiority compared to the baseline approaches.
Ablation studies of the various components disentangle the
contributions of each element in the proposed model.



References

(1]

[2

—

3

—

[4

—

(5]

[6

—_

[7

—

(8]

[9

—

(10]

[11]

(12]

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vision
(ICCV), 2021.

Qianggiang Chen, Tianyi Zhang, Mengwei Nie, Zhiwei Wang,
Shicheng Xu, Wen Shi, and Zhen Cao. Fashion-gpt: Integrat-
ing llms with fashion retrieval system. In Proceedings of the
First Workshop on Large Generative Models Meet Multimodal
Applications (LGM3A), pages 69-78, 2023.

WenFeng Chen, Pipei Huang, Jiaming Xu, Xin Guo, Cheng
Guo, Fei Sun, Chao Li, Andreas Pfadler, Huan Zhao, and Bin-
giang Zhao. Pog: Personalized outfit generation for fashion
recommendation at alibaba ifashion. In SIGKDD, 2019.

Guillem Cucurull, Perouz Taslakian, and David Vazquez.
Context-aware visual compatibility prediction. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.
Scott. Deep metric learning with hierarchical triplet loss. In
Proceedings of the European conference on computer vision

(ECCV), pages 269-285, 2018.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent a new
approach to self-supervised learning. In Proceedings of the
34th International Conference on Neural Information Process-
ing Systems, Red Hook, NY, USA, 2020. Curran Associates
Inc.

Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis.
Learning fashion compatibility with bidirectional Istms. In
Proceedings of the 25th ACM international conference on
Multimedia, pages 1078-1086, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Hypatia. Outfit builder outfits.

https://mldatasets.aka.corp.amazon.com/OutfitBuilderOutfits/1.

Junkyu Jang, Eugene Hwang, and Sung-Hyuk Park. Lost
your style? navigating with semantic-level approach for text-
to-outfit retrieval. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 8066—
8075, 2024.

Myong Chol Jung, Julien Monteil, Philip Schulz, and
Volodymyr Vaskovych. Personalised outfit recommendation
via history-aware transformers. In Proceedings of the 18th

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

ACM International Conference on Web Search and Data Min-
ing (WSDM °25), pages 633—-641. Association for Computing
Machinery, 2025.

Wang-Cheng Kang, Chen Fang, Zhaowen Wang, and Julian
McAuley. Visually-aware fashion recommendation and de-
sign with generative image models. In /ICDM, 2017.

Katrien Laenen and Marie-Francine Moens. Attention-based
fusion for outfit recommendation. In Proceedings of the Work-
shop on Recommender Systems for Fashion (FashionXRec-
Sys), 2019.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam R. Kosiorek,
Seungjin Choi, and Yee Whye Teh. Set transformer. arXiv
preprint arXiv:1810.00825, 2018.

Attila Lengyel, Ombretta Strafforello, Robert-Jan Bruintjes,
Alexander Gielisse, and Jan van Gemert. Color equivariant
convolutional networks. Advances in Neural Information
Processing Systems, 36, 2024.

Kedan Li, Chen Liu, and David Forsyth. Coherent and con-
trollable outfit generation, 2019.

Yuncheng Li, Liangliang Cao, Jiang Zhu, and Jiebo Luo.
Mining fashion outfit composition using an end-to-end deep
learning approach on set data. IEEE Transactions on Multi-
media, 2017.

Zhi Li, Bo Wu, Qi Liu, Likang Wu, Hongke Zhao, and Tao
Mei. Learning the compositional visual coherence for comple-
mentary recommendations. In Proceedings of the 28th ACM
International Conference on Multimedia, pages 1333—-1342,
2020.

Yen-Liang Lin, Son Tran, and Larry S Davis. Fashion out-
fit complementary item retrieval. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3311-3319, 2020.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023.

Alexander Lorbert, David Neiman, Arik Poznanski, Eduard
Oks, and Larry Davis. Scalable and explainable outfit genera-
tion. In CVPR Workshop, 2021.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton
Van Den Hengel. Image-based recommendations on styles
and substitutes. In Proceedings of the 38th international ACM
SIGIR conference on research and development in informa-
tion retrieval, pages 43-52, 2015.

Soham Mitra, Atri Sukul, Swalpa Kumar Roy, Pravendra
Singh, and Vinay Kumar Verma. Scorecam++: Gated score-
weighted visual explanations for cnns. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pages
2700-2709, 2025.

Yoshi Ohno. Cie fundamentals for color measurements. In
NIP & Digital Fabrication Conference, pages 540-545. Soci-
ety of Imaging Science and Technology, 2000.

Felix O’Mahony, Yulong Yang, and Christine Allen-
Blanchette. Color equivariant network. arXiv preprint
arXiv:2406.09588, 2024.



[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

Stefanos-lordanis Papadopoulos, Christos Koutlis, Symeon
Papadopoulos, and Ioannis Kompatsiaris. Victor: Visual in-
compatibility detection with transformers and fashion-specific
contrastive pre-training. Journal of Visual Communication
and Image Representation, 90:103741, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. arXiv preprint
arXiv:2103.00020, 2021.

Soumya Roy, Vinay Verma, and Deepak Gupta. Efficient
expansion and gradient based task inference for replay free
incremental learning. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 1165—
1175, 2024.

Rohan Sarkar, Navaneeth Bodla, Mariya Vasileva, Yen-Liang
Lin, Anurag Beniwal, Alan Lu, and Gerard Medioni. Outfit-
transformer: Outfit representations for fashion recommen-
dation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2263-2267,
2022.

Yong-Siang Shih, Kai-Yueh Chang, Hsuan-Tien Lin, and Min
Sun. Compatibility family learning for item recommendation
and generation. In AAAZ 2018.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Reuben Tan, Mariya I. Vasileva, Kate Saenko, and Bryan A.
Plummer. Learning similarity conditions without explicit
supervision. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 10373-10382, 2019.
Meet Taraviya, Anurag Beniwal, Yen-Liang Lin, and Larry
Davis. Personalized compatibility metric learning. In KDD
Workshop, 2021.

Sambeet Tiady, Arihant Jain, Dween Rabius Sanny, Khushi
Gupta, Srinivas Virinchi, Swapnil Gupta, Anoop Saladi, and
Deepak Gupta. Merlin: Multimodal & multilingual embed-
ding for recommendations at large-scale via item associations.
In Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management (CIKM), 2024.
Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347-10357. PMLR, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347-10357. PMLR, 2021.

Mariya 1. Vasileva, Bryan A. Plummer, Krishna Dusad,
Shreya Rajpal, Ranjitha Kumar, and David Forsyth. Learning
type-aware embeddings for fashion compatibility. In Proceed-
ings of the European conference on computer vision, pages
390-405, 2018.

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley,
Kavita Bala, and Serge Belongie. Learning visual clothing

(40]

[41]

(42]

[43]

(44]

(45]

style with heterogeneous dyadic co-occurrences. In Proceed-
ings of the IEEE international conference on computer vision,
pages 4642-4650, 2015.

Andreas Veit, Serge Belongie, and Theofanis Karaletsos. Con-
ditional similarity networks. In Proceedings of the IEEE/CVF
international conference on computer vision, 2017.

Vinay Verma, Dween Sanny, Abhishek Singh, and Deepak
Gupta. Cod: Coherent detection of entities from images
with multiple modalities. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
8015-8024, 2024.

Vinay K Verma, Dween Rabius Sanny, Shreyas Sunil Kulka-
rni, Prateek Sircar, Abhishek Singh, and Deepak Gupta. Skill:
Skipping color and label landscape: self supervised design
representations for products in e-commerce. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3502-3506, 2023.

Xin Wang, Bo Wu, and Yueqi Zhong. Outfit compatibility pre-
diction and diagnosis with multi-layered comparison network.
In Proceedings of the 27th ACM International Conference on
Multimedia (MM), pages 2022-2031, 2019.

Yiyan Xu, Wenjie Wang, Fuli Feng, Yunshan Ma, Jizhi Zhang,
and Xiangnan He. Diffusion models for generative outfit
recommendation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1350-1359, 2024.

Cong Yu, Yang Hu, Yan Chen, and Bing Zeng. Personalized
fashion design. In ICCV, 2019.



	Introduction
	Related Work
	Proposed Method
	Local and Global Augmentation
	Distantly Supervised Knowledge Distillation
	Style Meta-Space Alignment
	Color and Text Information fusion
	Negative Sampling with Adaptive Margin
	Approximate Hard Negative sampling:
	Adaptive Margin for Triplet Loss:


	Data Collection
	Implementation details
	Results and Evaluations
	Baselines and Evaluation Metric
	Complementary prediction and FITB
	Complementary item retrieval

	Ablations
	Conclusion

