Voice-based Reformulation of Community Answers

Simone Filice Nachshon Cohen David Carmel
filicesf@amazon.com nachshon@amazon.com dacarmel@amazon.com
Amazon Amazon Amazon
Seattle, United States of America Haifa, Israel Haifa, Israel

ABSTRACT

Community Question Answering (CQA) websites, such as Stack
Exchange! or Quora?, allow users to freely ask questions and obtain
answers from other users, i.e., the community. Personal assistants,
such as Amazon Alexa or Google Home, can also exploit CQA data
to answer a broader range of questions and increase customers’
engagement. However, the voice-based interaction poses new chal-
lenges to the Question Answering scenario. Even assuming that
we are able to retrieve a previously asked question that perfectly
matches the user’s query, we cannot simply read its answer to the
user. A major limitation is the answer length. Reading these an-
swers to the user is cumbersome and boring. Furthermore, many
answers contain non-voice-friendly parts, such as images, or URLs.

In this paper, we define the Answer Reformulation task and
propose a novel solution to automatically reformulate a community
provided answer making it suitable for a voice interaction. Results
on a manually annotated dataset extracted from Stack Exchange
show that our models improve strong baselines.

CCS CONCEPTS

« Information systems — Question answering; Summariza-
tion.

KEYWORDS
community question answering, deep learning, text summarization

ACM Reference Format:

Simone Filice, Nachshon Cohen, and David Carmel. 2020. Voice-based Re-
formulation of Community Answers. In Proceedings of The Web Conference
2020 (WWW °20), April 20-24, 2020, Taipei, Taiwan. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3366423.3380053

1 INTRODUCTION

In recent years, Community Question Answering became a hot
topic in Natural Language Processing (NLP) and Information Re-
trieval (IR). CQA websites are an extremely valuable source of
question-answer pairs and many researchers started leveraging
these data into automatic Question Answering (QA) systems.

!https://stackexchange.com
Zhttps://www.quora.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WWW 20, April 20-24, 2020, Taipei, Taiwan

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380053

Given a new user question g, a common QA pipeline based
on CQA data consists of (i) retrieving previously asked questions
r1,...,rn highly relevant to g, and (i) distill from their answer
threads the information answering q. The second step is usually
approached as an answer selection problem [18, 20]: among all the
possible answers ay, . . ., a,, provided to ry, ..., rp, select the one
that best answers q. A possible alternative consists of aggregating
ai,...,am in order to provide a more complete answer [23]. In
both cases, the selected/aggregated answer can be rather long. For
instance, a typical answer in Stack Exchange is longer than hundred
words (See Figure 2).

Integrating a CQA system into virtual assistants, such as Amazon
Alexa or Google Home, allows to tap into the knowledge of the
crowd for answering complex questions. However, this also presents
a challenge: how to transform an answer, originally planned to be
read on a website, into a voice-friendly answer. One crucial aspect of
the reformulation is the need to shorten the community-provided
answer. A long answer might be reasonable on a web interface,
where a user can easily scroll down, however it might be extremely
burdensome to be read aloud fully.

In order to demonstrate the necessity of shortening community
provided answers, we measured the distribution of the number of
sentences and the number of words in answers taken from sub-
domains of Stack Exchange, as further described in Section 4. To
reduce the amount of unqualified answers in our dataset, we con-
sider only answers accepted by the user who asked the question.
Figure 1, presents the distribution of the number of sentences in
an answer. There are 48% of the answers longer than six sentences.
Figure 2, presents the distribution of the number of words in an
answer. The median length of an answer is over a hundred words.
If we set the length limit to 55 words (see Section 3), only 24% of
the answers can be provided without further summarization.

Another challenge we face is that answers in CQA are often en-
riched with visual content, such as images or videos, that obviously
cannot be directly provided via a voice interface. Furthermore, some
textual parts are definitely not voice friendly. For example, it does
not make any sense to read an entire URL to the user.

To address these issues, we propose the Answer Reformulation
(AR) task: given a user question and a long answer retrieved by a
CQA system, reformulate the answer to make it more suitable for a
voice-based interaction. Our solution consists of a two-step process:
(i) We first perform a text pre-processing step in order to remove all
the answer parts containing non-readable text, including images,
videos, URLs, emoticons, etc. (ij) We then split the long answer
into sentences and invoke a (multi-)sentence selection process to
extract a summary consisting of up to 55 words. The latter task
uses an extractive-based text summarization approach which selects
the most relevant sentences from the answer. We tried different
approaches, including pointwise and pairwise learning-to-rank

https://doi.org/10.1145/3366423.3380053
https://stackexchange.com
https://www.quora.com
https://doi.org/10.1145/3366423.3380053

WWW °20, April 20-24, 2020, Taipei, Taiwan

10%

5%

4%

Percentage of answers

2%

10 15 0
Number of sentences

Figure 1: Distribution of answers over number of sentences

(median is 5 sentences). The last bar in histogram represents

the entire tail, i.e., all answers whose length exceeds the 25

sentences.

1%

08%

06%

0.d%

Percentage of answers

0.2%

1 5 100 200 300 400+
Number of words

Figure 2: Distribution of answers over number of words (me-
dian is 103 words). The red dotted line represents the length
limit. The last bar in histogram represents the entire tail, i.e.,
all answers whose length exceeds 400 words. Histogram is
trimmed to 1%: there are actually 6.9% of the answers with
over 400 words.

solutions and some sequence tagging methods. In our final model
we encapsulate a state-of-the-art NLP solution, i.e., BERT [8], into
a novel sequence tagging model that we further enrich with a large
set of manually engineered features. To test our models, we ran
an annotation task and collected a concise extractive summaries
of 2110 answers from Stack Exchange. Experimental evaluation
shows that our system performs better than several baselines.

The rest of the paper is organized as follows. Section 2 discusses
related work. In Section 3 we present the AR task that we shape as
an extractive text summarization problem. We propose several sum-
marization models based on learning-to-rank and sequence-tagging
approaches. In Section 4 we describe the data set we use for train-
ing and evaluation, and in Section 5 we present our experimental
results. Finally, we draw conclusions in Section 6.

2 RELATED WORK

Recently, three consecutive editions of SemEval proposed a chal-
lenge on this entire CQA pipeline [18-20]. To automatically answer
a new question using the CQA approach, the first step consists of
retrieving a set of resolved questions, with their answers, that are

Trovato and Tobin, et al.

relevant to the user question [1, 28, 33]. The retrieval part is typi-
cally enhanced with NLP models performing question re-ranking.
Many proposed models are based on question-question similarities,
including question topic similarity [10] or syntactic similarity [5].
An emerging approach is to apply neural networks. dos Santos et al.
[9] used convolutional neural networks (CNNs), while Tan et al.
[30] proposed an attention network that applies multiple attention
functions to model the matching between a pair of questions.

After finding relevant resolved questions, the answer selection
step extracts the answer to the new question from the retrieved
question-answer threads. Many approaches were proposed in lit-
erature, including deep neural networks [27, 31], kernel methods
capturing syntactic-semantic patterns [12] and models based on
machine translation [15].

The AR task we propose in this paper is novel, but has strong
analogies with query-based summarization and machine reading
comprehension. In automatic text summarization [13] the goal is
to concisely represent the most important information in docu-
ments. The extractive approach [22] consists of selecting (without
modifying) the most relevant parts (e.g., sentences, paragraphs,
keyphrases, etc.) of one or multiple documents. Conversely, ab-
stractive summarization [21, 26] allows for rephrasing and using
words not necessarily presented in the original documents. This
second approach is potentially more powerful, as abstraction can
condense a text more strongly than extraction; however, it involves
natural language generation [14] which is still in its early stages
with many open problems such as text quality and naturalness
[11]. In our case, we opted for an extractive approach, since text
coherency is crucial in voice-based systems. In the query-based
summarization [4, 6, 7], the summary must be generated according
to a query. Some works are directly applied to CQA and try to ag-
gregate multiple answers into a single, complete summary [29, 32].
In this case, the expected summaries are still rather long and do
not fit the constraints imposed in the voice setting.

Finally, machine reading comprehension (MRC) is the task of
answering questions about a given paragraph. It is typically ap-
proached as a span selection [25] and state-of-the-art systems are
based on deep neural networks, e.g., BERT [8]. AR can be ap-
proached as a MRC task, if we consider the given answer to re-
formulate as a paragraph in MRC. The conceptual difference is
that in MRC the paragraph should be analyzed to find the answer,
while in AR the paragraph (the answer) needs to be summarized to
remove redundant content while preserving the important parts.

3 PROBLEM STATEMENT

Given a question with a (possibly long) answer, the AR task consists
of transforming the answer into a concise voice friendly version.
Although there is no formal definition of what makes a text be-
ing voice-friendly, we believe that a voice-friendly answer should
adhere to the following properties:

(1) The answer should cover the information need expressed by
the question.

(2) The answer should be short enough to be read aloud com-
fortably. An internal (unpublished) study found that around
55 words is a reasonable length of an answer to be read
by a virtual assistant. Therefore, our study considers only
summaries with up to 55 words.

https://stackexchange.com/

Voice-based Reformulation of Community Answers

(3) The answer should be grammatically correct and coherent.

Based on these requirements, we defined two tasks. The first is a
single sentence selection, where the model picks a single sentence
to be read as an answer. However, we found that sometimes a
single sentence is insufficient in practice since it fails to cover
the information need required by the question. Therefore, we also
consider multi-sentence selection, which improves information
coverage by providing more sentences. We opt for an extractive
summarization approach, instead of an abstractive one, to reduce
the risk of generating ungrammatical and incoherent answer text.

Our approach consists of (i) a text pre-processing step where we
clean the answer by removing non voice-friendly elements (such as
URLs and pictures) and split the answer into short sentences; (ii) an
extractive summarization step where we reformulate the answer
by selecting the sentence(s) to be read to the user.

3.1 Text Pre-processing

As a first step we remove all the non-readable elements of the an-
swer. This includes images, videos, smileys, and URLs that are
replaced with the anchor text?. Also, text in parenthesis is re-
moved since it typically contains unnecessary information. Then,
the cleaned answer is split into readable units that are sub-selected
by our extractive summarization approach described in Section 3.2.
Readable units extend the concept of sentence by aggregating sen-
tences that should not be logically split. For instance, two sentences
separated by a colon (:) typically need to be read together to express
an exhaustive concept. Similarly, it is often better to treat an entire
list as an indivisible piece of text, rather than splitting each bullet
into a separate sentence. Overall, our text splitting method proceeds
as follows:

o The answer is first split into blocks according to the HTML
tags (e.g., quote, paragraph, header, sorted and unsorted list,
code?).

e We split each block using the sentence splitting tool of the
CoreNLP librarys, unless the block is already short (i.e., less
than 25 words).

e We re-combine blocks that should not be logically separated,
e.g., if split by a colon.

Finally, we remove the text formatting HTML tags (e.g., bold,

italic) using Jsoup®. The resulting blocks are the readable units. For
the sake of clarity, in the following we refer to them as sentences.

3.2 Answer Reformulation Models

We shape the AR task as a (multi-)sentence selection problem. To
select which sentence(s) should appear in the reformulated answer
we propose learning-to-rank and sequence-tagging approaches. We
trained our models on data specifically annotated for the AR task.

Learning-to-Rank Approach. We design two learning-to-rank
models, a pairwise approach based on the LambdaMART learn-
ing algorithm [2], and a pointwise approach based on BERT [8].

From each (question, answer sentence) pair we extract several
manually engineered features that we use in our ranking models:

3When URLSs do not have any anchor text, they are replaced with the phrase “a website”.
4Code environment is often used to highlight a text.
Shttps://stanfordnlp.github.io/CoreNLP/

Shttps://jsoup.org/

WWW 20, April 20-24, 2020, Taipei, Taiwan

(1) Positional features: the position of the sentence inside the
long answer, whether it is the first sentence, the last, etc.

(2) Question-sentence lexical similarities : Jaccard, Levenshtein
distance, length of longest common substring.

(3) Question-sentence word-embedding similarities: we group

the words in the question and in the sentence according to
their Part-of-Speech (PoS). In particular, we consider the
following groups: nouns only, verbs only, adverbs only, ad-
jectives only, all the remaining PoS. We also consider a group
with all words in the sentence. Then, we average the word
embeddings from each group and compute the cosine simi-
larities between the resulting question vectors and sentence
vectors. We use pre-trained 300 dimensional word embed-
dings from GloVe [24].
In addition to averaging the word embedding vectors and
then computing their similarity, we also compute an align-
ment score: for each word in the question, we find the most
similar word in the sentence; both words must have the
same PoS group. We then use the average of these maximal
similarities as additional features.

(4) Sentence-embedding similarity: the cosine similarity between
the question embeddings and the sentence embeddings ob-
tained by using the Universal Sentence Encoder [3].

(5) Lexical features: whether the sentence includes yes/no or
summary expressions such as ’in short’, ’in conclusion’, etc.

(6) HTML and structural features: whether part of the sentence
is in bold, is a quote, is a list, was edited (i.e., not included in
the first version of the answer), etc.

We use these features to directly represent each sentence in
the LambdaMART model. Then the algorithm performs a pairwise
reasoning where sentences are analyzed in pairs to establish which
one should be ranked first.

In BERT, instead, we apply a pointwise approach: the model
receives as input the question followed by a sentence and outputs a
relevance score used for ranking. We also extend BERT by injecting
our features: we concatenate our features to the first output token
of BERT (i.e., the output of the [CLS] token), and run a Multi-Layer
Perceptron (MLP) on the resulting vector.

Sequence-Tagging Approach. One limit of the learning-to-rank
models described above is that they provide a relevance score to a
given sentence while ignoring the context in which the sentence
appears (i.e., the rest of the answer). In general, also for a human,
it is very hard to assess whether a sentence is the best one without
reading the other sentences of the answer. To overcome this issue,
we propose a sequence-tagging solution where the entire sequence
of sentences is provided as input to a model that tags each sentence
as relevant or not to the question.

The entire architecture is depicted in Figure 3. Each sentence
in the answer is paired with the question and provided as input to
BERT. For each pair, the first output token of BERT is considered.
This can be interpreted as a question-aware sentence embedding.
Each sentence embedding is concatenated with the manually engi-
neered features described above. Then the sequence of augmented
sentence embeddings is passed to a bidirectional LSTM to get a
sequence of contextualized sentence embeddings. Finally, inspired
by Named Entity Recognition models [16], we run a Conditional

https://stanfordnlp.github.io/CoreNLP/
https://jsoup.org/

WWW °20, April 20-24, 2020, Taipei, Taiwan

concatenation E
sentence with :
lembeddings | 2dditional
— features
. @® B
question s —
A L
sentence; 7 | ;
‘ @ LW o)
. sentence, " = [=)
\E - L 5
: — : ﬁ
4] =
c
©
> m il
m .
sentence, % |

Figure 3: Our sequence-tagging model for answer reformu-
lation.

Random Field (CRF) layer to tag each sentence as being relevant of
not. The CRF layer should allow the model to leverage dependencies
between successive labels.

4 DATASET CREATION

We collected a set of question and answer pairs from 10 subdomains
of Stack Exchange. We explored a Stack Exchange dump containing
more than 200k questions. The average length of an accepted answer
is presented in Figures 1 and 2.

A training example for the AR task is a triple (question, origi-
nal answer, short answer). A preliminary requirement is that the
original answer completely answers the question. After-all, refor-
mulation cannot transpose a bad answer into a good one. To ensure
the quality of the original answers in our dataset, we considered
only answers that were marked as accepted by the user asking the
question. In addition, we also required that the answer received
some up-votes from users in the CQA website (our current system
uses 7 up-votes as a threshold’). We considered only answers with
at least 3 sentences and more than 55 words.

Since we operate in a voice setting we also expect the training
questions to represent typical user questions submitted to digital
assistants. However, questions in web fora tend to be very long and
verbose, and many questions can only be fully understood when
considering the question’s title and body together. To automati-
cally get questions that better represent voice-based questions, we
first randomly selected 3543 question titles ending with a ques-
tion mark. Then, we verified the consistency and clarity of the
selected titles by running a crowd-sourcing annotation task using
figure-eight®. In particular, we asked to annotate whether the title
is self-explanatory, i.e., it can be read as a standalone question. We
obtained 2110 (question, answer) pairs for which the question title
is self-explanatory. On average, full answers contain 8.45 sentences,
resulting in a total of 17,819 sentences in our data set.

"We chose the highest possible value that allowed us to collect a number of QA pairs
compliant with our budget.
8https://figure-eight.com

Trovato and Tobin, et al.

Finally, we run another annotation task to get the short versions
of the selected answers. Most of the literature in text summariza-
tion requires the annotators to write a reference summary from
scratch; however, since we want to apply an extractive summa-
rization approach, we decided to shape the annotation task as a
sentence selection problem. Each annotator was presented with
the short question (i.e., the question title) and its answer. We then
asked the annotators to solve three tasks:

(1) Pick a single sentence that best answers the question.

(2) Mark whether the single sentence you picked fully answers
the question.

(3) Pick all sentences that should appear in a short and concise
answer.

A picture from the annotation task page is presented in Figure 4.
Every (question, answer) pair was annotated by at least five an-
notators. The single sentence selection (task 1) aims to create the
shortest possible version of the answer, and task 2 is used to verify
whether such individual sentence is enough for answering the ques-
tion. Our annotations show that 89.8% of the times a single sentence
can fully answer the question. Finally, the multiple-sentence selec-
tion task aims to create a more valid and complete summary. We
did not put any constraint on the number of selected sentences, but
encouraged the annotators to select as few sentences as possible.

Generating ground truth. According to our annotation tasks, we
created two types of labels. First, we considered the single-sentence
selection task. We filtered out all questions for which a single sen-
tence is insufficient. Then, we picked the most voted sentence by the
annotators as the ground truth selected answer. Annotator agree-
ment (w.r.t. to the most voted sentence) for this task was 79.7% and
the ground truth was picked by at least two annotators, so this label
can be considered reliable.

The second ground truth label is generated from the multi-
sentence annotation task. In this task, annotators are free to choose
any combination of sentences from the answer, making the range
of options very large. Picking the most voted selection as reference
summary is generally ineffective: it is likely that each combination
of sentences is picked by exactly one annotator. Selecting the most
voted sentences, or all the sentences receiving at least a certain
number of votes are other possibilities that we decided to exclude.
The reason is that such choices can generate a new selection that
none of the annotators exactly picked, and it would expose to the
risk of selecting a sequence of incoherent and possibly redundant
sentences. We solved this problem by picking the selection of a
single annotator that is the most representative of the annotators’
opinion. More specifically, we created a random sentence selection
model, where the probability of selecting a sentence is equal to
the fraction of annotators picking it. Thus, if a sentence s is picked
by two annotators out of five, the probability of picking s is set to
p(s) = 0.4 and the probability of not picking s is set to 1—p(s) = 0.6.
Using this random model, we assign a probability score to each of
the annotated summaries. Eventually, we pick the summary with
highest likelihood as ground truth. More formally, let N be the set
of sentences in the answer, S be the set of different summaries
selected by the annotators, and Is and Eg the sets of sentences
included and excluded in a summary S € S, respectively. Then the
selected ground-truth summary S* is:

https://figure-eight.com

Voice-based Reformulation of Community Answers

QUESTION :
Are there any English sayings equivalent to the Japanese proverb, “Go to
bed early and wait for the good news"?

ANSWER:
I'd say something similar would be:

A watched pot never boils

Waiting for something to happen makes it seem like it is
happening slower, whereas if you go away and do something
else then time will seem to pass faster.

Select the sentence that individually best answers the question

I'd say something similar would be:.
® A watched pot never boils.

Waiting for something to happen makes it seem like it is happening
slower, whereas if you go away and do something else then time will seem
to pass faster.

Does the best sentence you selected answers the question
clearly and independently of other sentences: (required)

Yes
No

Mark all the sentences (the fewer the better) that should appear ina
very concise and direct answer to the question

I'd say something similar would be:.
A watched pot never boils .

Waiting for something to happen makes it seem like it is happening
slower, whereas if you go away and do something else then time will seem
to pass faster.

Figure 4: The annotation task presents a question and an an-
swer and asks three questions: (i) select a single sentence,
(ii) does the single sentence fully answers the question, and
(iii) mark all sentences that should appear in a summary.

[Trsol| [T a-pcen (1)

§* = argmax
SeS s;€ls se€Es

To assert the quality of our ground-truth selection, we randomly
sampled 100 selected summaries (according to Eq. 1) and manually
annotated their quality. We found that in 86% of the cases the quality
of the summary was excellent, in 10% of the cases the summary was
relevant but imperfect, and in other 4% of the cases it was wrong.
Therefore, we consider our technique as a reasonable way to get
ground truth labels for our dataset. Table 1 reports the statistics of

the created dataset.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the quality of the proposed answer
reformulation models on the dataset extracted from Stack Exchange.

5.1 Experimental Setting

We divided the dataset described in Section 4 using 70% of the
questions as training set, 10% as development set to tune our models,
and 20% as test set. According to the two different labeling schemas
described in Section 4, we defined two sentence selection tasks. In

WWW 20, April 20-24, 2020, Taipei, Taiwan

Table 1: The annotated Stack Exchange data. Each example
is a triple (Question, Answer, Reference Summary). Q is the
number of questions, S is the number of sentences, and W is
the number of words.

Entire Answer Reference Summary
Domain Q | Avg.S | Avyg W | Avg.S | Avg W

Bricks 24 7.46 123.83 1.21 22.46
Do it yourself | 96 8.09 145.07 1.38 25.27
Earth science 38 11.32 204.32 1.37 23.21

Economics 6 13.00 273.50 1.00 30.33
English 901 7.71 141.53 1.50 28.80
Gardening 33 9.45 169.55 1.79 26.15
History 239 9.62 199.59 1.38 30.17
Literature 11 8.73 172.18 1.00 23.64

Movies 535 8.73 170.19 1.35 28.43

Space 227 8.92 181.90 1.48 33.03

Total 2110 8.45 161.78 1.44 28.92

the single sentence selection task, the model has to pick the single
sentence that best summarizes the answer. For this task, given the
sentence ranking provided by our models, we consider Precision@1
(fraction of test-cases where the top ranked sentence was marked
as best sentence by the annotators) and NDCG@{3, 5} (normalized
discounted gain for top 3, 5 ranked sentences).

In multi-sentence selection task, we pick multiple sentences, up
to 55 words, according to the ranking order. Ground truth for this
task is derived from the third question in our annotation task (see
Figure 4). Note that for each sentence, we have a ground truth
label (i.e., whether this sentence was picked by the annotator) and
system prediction (i.e., whether this sentence belongs to the sys-
tem’s selected summary). Thus, we consider sentence-level metrics,
i.e., Precision, Recall, F1, and Accuracy. We also measure Success
(fraction of test cases for which the system picked exactly the same
sentences included in the reference summary). Furthermore, for
both tasks, we adopt common Automatic Text Summarization met-
rics, i.e., ROUGE-1, ROUGE-2 and ROUGE-L.

5.2 Evaluated models
In addition to our models, we consider four popular baselines.

e Lead: we pick the first sentence(s) of the answer, up to 55
words.

o Jaccard: we rank sentences according to their Jaccard simi-
larity to the query.

e TextRank: we rank sentences according to TextRank [17],
an unsupervised learning approach based on the PageRank
algorithm®.

e BERT: we use the uncased pre-trained base version of BERT?
[8]. The input of BERT is a question followed by a sentence
and we use BERT as a binary classifier to provide a relevance
score to the sentence.

Regarding our models we tested the following solutions:

e LM: the LambdaMART pairwise learning-to-rank model op-
erating on our features.

e MLP: a Multi-Layer Perceptron (MLP) operating on our fea-
tures.

We used the Sumy implementation: https://github.com/miso-belica/sumy/tree/
master/sumy.

Tn our preliminary experiments we observed that using the cased or large versions
was not beneficial.

https://github.com/miso-belica/sumy/tree/master/sumy
https://github.com/miso-belica/sumy/tree/master/sumy

WWW °20, April 20-24, 2020, Taipei, Taiwan

e BERT™": the extension of BERT in which the output is con-
catenated with our features and provided as input to a MLP
that performs the final classification.

e SeqBERT: this is the sequence-tagging model depicted in
Figure 3 where our features are not employed.

e SeqFeats: this is the sequence-tagging model where BERT is
not employed: our feature vectors are directly passed to the
Bi-LSTM in Figure 3.

e SeqBERT™: this is the complete sequence-tagging model in
Figure 3 where both BERT and our features are employed.

The relevance scores provided by these models are used to rank
the sentences and generate the concise answer by selecting the top
ranked sentences, up to 55 words.

For all the supervised models we use an early stopping strategy
on the dev set; for LambdaMART, the number of trees was set to
100 and the number of leaves to 10. The number of LSTM units in
the sequence-tagging models is set to 200. In all the models using
BERT (including the sequence-tagging ones) we used two different
learning rates: one for the BERT layers which must be relatively
very small to prevent the model to forget what it learned during
the BERT pre-training; for the other layers (i.e., the output layers)
we used a more aggressive learning rate, since those layers are
randomly initialized and must be trained from scratch. We selected
the learning rates and the number of layers in the MLP models by
using a grid search on the dev set. For the best sentence selection
task, we pick the configuration providing the best NDCG@3!!,
while for the multi-sentence selection task we optimize per sentence
accuracy.

Table 2: Single sentence selection. The bold suggests a higher
score compared to the best baseline (i.e., Lead baseline) and
“*" indicates that the improvement is statistically significant
(p<0.05).

Trovato and Tobin, et al.

Table 3: Multi-sentence selection results. The bold suggests a

higher score compared to the Lead baseline and “*" indicates
that the improvement is statistically significant (p<0.05).

Model [Success[Precision[Recall] F1 [Acc. [ROUGE-1][ROUGE-2[ROUGE-L

Lead 0.709 0.432 |0.779| 0.515 | 0.713 0.811 0.766 0.805
Jaccard 0.493 0.347 | 0.583| 0.398 | 0.684 0.67 0.586 0.657
TextRank 0.242 0.259 |0.313| 0.258 | 0.672 0.478 0.348 0.454
BERT 0.604 0.423 0.7 | 0.488 | 0.729 | 0.752 0.688 0.742

LM 0.694 | 0.461" |0.775(0.536%(0.744*| 0.812 0.766 0.805
MLP 0.701 0.439 |0.777 | 0.519 [0.721*| 0.81 0.766 0.804
BERT* 0.694 | 0.468" |0.792/0.544%|0.742*| 0.824 0.781 0.819

SeqBERT | 0.713 | 0.468" |0.772(0.538"(0.744*| 0.808 0.762 0.803
SeqFeats 0.711 | 0.465* | 0.79 | 0.54* [0.737*| 0.826 0.784 0.82
SeqBERT* 0.72 | 0.468" [0.791[0.543%(0.742*| 0.824 0.78 0.818

Upper-Bound| 0.898 0.578 10.954| 0.661 | 0.8 0.958 0.941 0.958

Model [Precision@1 [NDCG@3 [NDCG@5 [ROUGE-1 | ROUGE-2 [ROUGE-L

Lead 0.6921 0.8027 0.8275 0.734 0.684 0.729
Jaccard 0.3632 0.5638 0.6386 0.462 0.38 0.447
TextRank 0.2447 0.3924 0.4828 0.34 0.26 0.322
BERT 0.5092 0.6826 0.7319 0.606 0.539 0.596
LM 0.6816 0.8017 0.8352 0.725 0.674 0.719
MLP 0.6921 0.8051 0.8334 0.734 0.684 0.729
BERT* 0.6895 0.8238" 0.8480" 0.735 0.683 0.728
SeqBERT 0.7000 0.8323" 0.8523" 0.743 0.692 0.736
SeqFeats 0.6947 0.8121 0.8394* 0.737 0.687 0.731
SeqBERT* 0.7079 0.8336 0.8591" 0.751 0.7 0.745

5.3 Results

Single-Sentence Selection. Table 2 reports results for the single
sentence selection task. The Lead baseline provides excellent results:
in over 69% of the cases, the first sentence is a good summary of the
answer. Therefore, it is difficult to improve upon this baseline. Other
baselines, based on Jaccard similarity, TextRank, or BERT provide
significantly lower scores. One possible reason for the low result of
BERT is that when it classifies a sentence, it does not have access
to the context in which it appears (i.e., the rest of the answer). The
systems based on our features provide more competitive results. In
particular, BERT™, by jointly leveraging our features and the deep
11According to our experiments NDCG@3 is much more robust for training than P@1.

We also noticed that training the models according to NDCG@3 or NDCG@5 does
not make much difference.

semantic information extracted by BERT, significantly outperforms
the baselines in both NDCG@3 and NDCG@5. Finally the sequence-
tagging approach can further improve the results: when the model
can access to the entire answer, a pure text-based model such as
SeqBERT is already competitive. When our features are also enabled
in SeqBERT™ the best results are reached, improving the baselines
in all metrics.

Multi-Sentence Selection. In Table 3 we present results for the
multi-sentence selection task. The summaries extracted by our
models are selected by picking the most scored sentences until
reaching the 55-words limit. Since we did not impose any limit on
the number of words or sentences that an annotator could include
in her summary, the reference summaries can be shorter or longer
than 55 words. Therefore, even if we select sentences up to 55
words using a perfect ranker, we can create summaries which are
longer than the reference ones: all the extra sentences are evaluated
as false positive and thus penalize the model precision. Similarly,
when the reference summary is longer than 55 words, any model-
based summary will be penalized in recall. The upper-bound in
Table 3 reports the performance achievable by a perfect ranker.
Again, we observe that the Lead baseline provides strong results
while Jaccard and TextRank perform rather poorly. In this task
BERT achieves relatively better results than in the previous task.
This may be justified by the fact that understanding whether a
sentence is relevant to answer a question is generally easier than
recognizing the best sentence in the answer. Again, the sequence-
tagging approach and the usage of our features lead to significantly
better results. In this task, SeqBERT and SeqFeats lead to very
similar results. The large improvement provided by Deep Learning
models that we usually observe in many NLP tasks is here not
confirmed. One possible reason is that the dataset size is rather
small considering the task complexity. We will better study this
aspect in future work.

6 CONCLUSION

In this work, we presented the answer reformulation task: how to
transfer a traditional community question-answering system into
the world of voice assistants. We created an annotated dataset'2 and
proposed a novel sequence-tagging model that outperforms strong
baselines by jointly leveraging BERT and a rich set of manually
engineered features.

2anonymized_url

anonymized_url

Voice-based Reformulation of Community Answers

REFERENCES

(1]

[2

—

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

[18]

[19]

[20

Eugene Agichtein, David Carmel, Dan Pelleg, Yuval Pinter, and Donna Harman.
2016. Overview of the TREC 2016 LiveQA Track. (2016).

Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report. Microsoft Research. http://research.microsoft.
com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder.
CoRR abs/1803.11175 (2018). arXiv:1803.11175 http://arxiv.org/abs/1803.11175
Yllias Chali and Sadid a. Hasan. 2012. Query-focused Multi-document Sum-
marization: Automatic Data Annotations and Supervised Learning Approaches.
Natural Language Engineering 18, 1 (Jan. 2012), 109-145. https://doi.org/10.1017/
$1351324911000167

Giovanni Da San Martino, Alberto Barrén Cedefio, Salvatore Romeo, Antonio Uva,
and Alessandro Moschitti. 2016. Learning to Re-Rank Questions in Community
Question Answering Using Advanced Features. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management (CIKM
’16). ACM, New York, NY, USA, 1997-2000. https://doi.org/10.1145/2983323.
2983893

Hoa Trang Dang. 2006. Overview of DUC 2006. In In Proceedings of HLT-NAACL
2006.

Hal Daumé-III. 2009. Bayesian Query-Focused Summarization.
abs/0907.1814 (2009). arXiv:0907.1814 http://arxiv.org/abs/0907.1814
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805
Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova, and Bianca Zadrozny.
2015. Learning Hybrid Representations to Retrieve Semantically Equivalent
Questions. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers). Association for Computational Linguistics,
694-699. https://doi.org/10.3115/v1/P15-2114

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong Yu. 2008. Searching Ques-
tions by Identifying Question Topic and Question Focus. In ACL 2008, Proceedings
of the 46th Annual Meeting of the Association for Computational Linguistics, June 15-
20, 2008, Columbus, Ohio, USA. 156-164. http://www.aclweb.org/anthology/P08-
1019

Ondrej Dusek, Jekaterina Novikova, and Verena Rieser. 2018. Findings of the E2E
NLG Challenge. In Proceedings of the 11th International Conference on Natural
Language Generation. Tilburg, The Netherlands. https://arxiv.org/abs/1810.01170
arXiv:1810.01170.

Simone Filice and Alessandro Moschitti. 2018. Learning pairwise patterns in
Community Question Answering. Intelligenza Artificiale 12, 2 (2018), 49-65.
https://doi.org/10.3233/IA-170034

Mahak Gambhir and Vishal Gupta. 2017. Recent Automatic Text Summarization
Techniques: A Survey. Artif. Intell. Rev. 47, 1 (Jan. 2017), 1-66. https://doi.org/10.
1007/510462-016-9475-9

Albert Gatt and Emiel Krahmer. 2018. Survey of the State of the Art in Natural
Language Generation: Core tasks, applications and evaluation. J. Artif. Intell. Res.
61 (2018), 65-170. https://doi.org/10.1613/jair.5477

Francisco Guzman, Shafiq R. Joty, Lluis Marquez, and Preslav Nakov. 2017. Ma-
chine Translation Evaluation with Neural Networks. CoRR abs/1710.02095 (2017).
arXiv:1710.02095 http://arxiv.org/abs/1710.02095

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models
for Sequence Tagging. CoRR abs/1508.01991 (2015). arXiv:1508.01991 http:
//arxiv.org/abs/1508.01991

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing Order into Text. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing , EMNLP 2004, A meeting of SIGDAT, a Special Interest Group of the ACL,
held in conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain. 404-411.
http://www.aclweb.org/anthology/W04-3252

Preslav Nakov, Doris Hoogeveen, Lluis Marquez, Alessandro Moschitti, Hamdy
Mubarak, Timothy Baldwin, and Karin Verspoor. 2017. SemEval-2017 Task
3: Community Question Answering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval ’17). Association for Computational
Linguistics, Vancouver, Canada.

Preslav Nakov, Lluis Marquez, Walid Magdy, Alessandro Moschitti, Jim Glass,
and Bilal Randeree. 2015. SemEval-2015 Task 3: Answer Selection in Community
Question Answering. In Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015). Association for Computational Linguistics, Denver,
Colorado, 269-281. http://www.aclweb.org/anthology/S15-2047

Preslav Nakov, Lluis Marquez, Alessandro Moschitti, Walid Magdy, Hamdy
Mubarak, Abed Alhakim Freihat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 Task 3: Community Question Answering. In Proceedings of SemEval-2016.

CoRR

[21

[22

[24

[25

[26

[28

[29

[30

(31

[32

[33

]

WWW 20, April 20-24, 2020, Taipei, Taiwan

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos Santos, Caglar Giilgehre,
and Bing Xiang. 2016. Abstractive Text Summarization using Sequence-to-
sequence RNNs and Beyond. In Proceedings of the 20th SIGNLL Conference
on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, Yoav Goldberg and Stefan Riezler (Eds.). ACL, 280-290.
http://aclweb.org/anthology/K/K16/K16-1028.pdf

Ani Nenkova and Kathleen McKeown. 2012. A Survey of Text Summarization
Techniques. In Mining Text Data, Charu C. Aggarwal, ChengXiang Zhai, and blub-
berdiblubb (Eds.). Springer, 43-76. http://dblp.uni-trier.de/db/books/collections/
Mining2012.html#NenkovaM12

Vinay Pande, Tanmoy Mukherjee, and Vasudeva Varma. 2013. Summarizing
Answers for Community Question Answer Services. In Language Processing and
Knowledge in the Web - 25th International Conference, GSCL 2013, Darmstadt,
Germany, September 25-27, 2013. Proceedings. 151-161. https://doi.org/10.1007/
978-3-642-40722-2_16

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global Vectors for Word Representation.. In EMNLP, Vol. 14. 1532-1543.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 2383-2392. https://doi.org/10.18653/v1/
D16-1264

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. CoRR abs/1704.04368 (2017).
arXiv:1704.04368 http://arxiv.org/abs/1704.04368

Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’15). ACM, New York, NY, USA, 373-382. https://doi.org/10.
1145/2766462.2767738

Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan Szpektor. 2012. Learning from
the past: answering new questions with past answers. In Proceedings of the 21st
international conference on World Wide Web. ACM, 759-768.

Hongya Song, Zhaochun Ren, Shangsong Liang, Piji Li, Jun Ma, and Maarten
de Rijke. 2017. Summarizing Answers in Non-Factoid Community Question-
Answering. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, February 6-10,
2017. 405-414. http://dl.acm.org/citation.cfm?id=3018704

Chuangi Tan, Furu Wei, Wenhui Wang, Weifeng Lv, and Ming Zhou. 2018. Mul-
tiway Attention Networks for Modeling Sentence Pairs. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, 4411—
4417. https://doi.org/10.24963/ijcai.2018/613

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. LSTM-based Deep Learn-
ing Models for non-factoid answer selection. CoRR abs/1511.04108 (2015).
arXiv:1511.04108 http://arxiv.org/abs/1511.04108

Mattia Tomasoni and Minlie Huang. 2010. Metadata-Aware Measures for Answer
Summarization in Community Question Answering. In ACL 2010, Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, July 11-
16, 2010, Uppsala, Sweden. 760-769. http://www.aclweb.org/anthology/P10-1078
Xiaobing Xue, Jiwoon Jeon, and W Bruce Croft. 2008. Retrieval models for
question and answer archives. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval. ACM,
475-482.

http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175
https://doi.org/10.1017/S1351324911000167
https://doi.org/10.1017/S1351324911000167
https://doi.org/10.1145/2983323.2983893
https://doi.org/10.1145/2983323.2983893
http://arxiv.org/abs/0907.1814
http://arxiv.org/abs/0907.1814
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.3115/v1/P15-2114
http://www.aclweb.org/anthology/P08-1019
http://www.aclweb.org/anthology/P08-1019
https://arxiv.org/abs/1810.01170
https://doi.org/10.3233/IA-170034
https://doi.org/10.1007/s10462-016-9475-9
https://doi.org/10.1007/s10462-016-9475-9
https://doi.org/10.1613/jair.5477
http://arxiv.org/abs/1710.02095
http://arxiv.org/abs/1710.02095
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://www.aclweb.org/anthology/W04-3252
http://www.aclweb.org/anthology/S15-2047
http://aclweb.org/anthology/K/K16/K16-1028.pdf
http://dblp.uni-trier.de/db/books/collections/Mining2012.html#NenkovaM12
http://dblp.uni-trier.de/db/books/collections/Mining2012.html#NenkovaM12
https://doi.org/10.1007/978-3-642-40722-2_16
https://doi.org/10.1007/978-3-642-40722-2_16
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
https://doi.org/10.1145/2766462.2767738
https://doi.org/10.1145/2766462.2767738
http://dl.acm.org/citation.cfm?id=3018704
https://doi.org/10.24963/ijcai.2018/613
http://arxiv.org/abs/1511.04108
http://arxiv.org/abs/1511.04108
http://www.aclweb.org/anthology/P10-1078

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Text Pre-processing
	3.2 Answer Reformulation Models

	4 Dataset Creation
	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Evaluated models
	5.3 Results

	6 Conclusion
	References

