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ABSTRACT

We revisit the Bipartite Graph Partitioning approach to document
reordering (Dhulipala et al., KDD 2016), and consider a range of al-
gorithmic and heuristic refinements that lead to faster computation
of index-minimizing document orderings. Our final implementation
executes approximately four times faster than the reference imple-
mentation we commence with, and obtains the same, or slightly
better, compression effectiveness on three large text collections.
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1 INTRODUCTION

Minimizing the resources required to carry out any given informa-
tion retrieval (IR) task is a challenge that occupied researchers for
the last several decades. The enormous scale of commercial web-
related IR activities now means that even slender computational
savings generate substantial monetary and environmental payoffs.
In this short paper we revisit the cost associated with storage
of inverted indexes, one of the key data structures that underpin
most IR systems. The atomic unit of an inverted index is the posting,
arecord (d;, f;;) that term t appears in document d;; a total of
fi times, and that this is the i th document in the collection in
which t appears, with the N documents in the collection numbered
from zero through to N — 1. A postings list is then the sequence
{{dsi, fr.i) | 0 < i < f;}, where f; is the number of distinct docu-
ments in which ¢ occurs. When represented as gaps, the postings
list is stored as {(d¢; —dsi-1, ft,i) | 0 < i < f}, withd; 1 = —1for
all terms t. Zobel and Moffat [28] survey these various concepts.
To reduce the cost of storing the index, integer compression
techniques are applied to the gaps [22, 28]. As a combinatorial
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lower bound, if the f; appearances of term ¢ are a random subset
of the N documents, then the best that can be done when storing
the document gaps associated with ¢’s posting list is approximately
ft(logy(N/f;) + 1.5) bits. While this limit typically represents a
considerable saving compared to 32-bit integers, it can be further
improved upon. In particular, non-random term usage patterns arise
in many document collections because of the way the collections are
constructed. For example, “covid” is one of many terms that has had
unprecedented use over the last year, and will be tightly clustered in
date-ordered collections. A range of integer codes have been devised
that automatically exploit such non-uniformity in term usage [22,
28]; as well as techniques for identifying decompositions of postings
lists into parts that can be coded using localized parameters [10, 21].
To further minimize index space, researchers have also explored
methods for document reordering, permuting the sequence of docu-
ments so as to actively facilitate clustering. Section 2 considers the
Bipartite Graph Partitioning (BP) mechanism of Dhulipala et al. [9]
in detail, describing three improvements:
e a moderation mechanism that suppresses repetitive cycles and
reduces the number of iterative passes needed;
e variant swapping-cost heuristics that result in more resilient
estimations and fewer swapping operations being required; and
e algorithmic changes to eliminate the sorting operations, and
hence improve asymptotic efficiency.

As an example of the considerable gains that have been achieved,
on the largest of the experimental collections the running time for
computing the BP reordering has been reduced from 95 minutes to
26 minutes (3.7X faster), with no loss of compression effectiveness.

2 DOCUMENT REORDERING

Motivation and Background. Document reordering re-assigns
the underlying document identifiers so as to minimize the cost of
storing the postings lists gaps, and is applied during the offline in-
dexing phase of a search system as one of the more costly indexing
phases [18]. Furthermore, document reordering can improve query
throughput [11, 13, 15, 19, 26], with newer schemes jointly optimiz-
ing for both index space consumption and query throughput [25].

Most reordering techniques cluster similar documents together in
the identifier space, resulting in dense regions of term occurrences
in the postings lists, and hence small gaps. A simple, yet effective,
technique is to order the documents lexicographically by their URLs
[24], as documents from the same domains are likely to be topically
coherent. More advanced techniques are based on the Traveling
Salesman Problem or graph partitioning, and estimate document-
to-document similarity in order to achieve clustering [2, 4, 11, 23],
thereby implicitly optimizing the index storage cost.

Dhulipala et al. [9] and Mackenzie et al. [16] give detailed cover-
age of document reordering techniques. A range of other investi-
gations have also been carried out in the related areas of network
and web-graph compression [1, 3, 5-8].
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function reorder_collection(D, N):
// reorder D[0...N — 1] by partitioning into halves, and then
// recursing on the halves
if N > minimum_size then
5 partition_collection(D, N)
reorder_collection(D[0...N/2—1],N/2)
reorder_collection(D[N/2...N —1],N - N/2)

Figure 1: Overview of the bipartite partitioning (BP) process.

Measurement. Document reordering techniques are compared
according to the size of their compressed outputs. But different com-
pression approaches have different strengths. To measure clustering
effectiveness in a way that is independent of specific compression
techniques, average posting cost is calculated using loggap, the
mean binary logarithm of all deltas across all postings lists in the
index [9, 16], providing an aspirational compression target in terms
of “bits per gap”. In this short paper we focus on loggap as the
measurement of interest, noting that loggap is correlated with the
effectiveness of various compression codecs [9].

Bipartite Partitioning. In 2016 Dhulipala et al. [9] introduced
a new way of viewing the document reordering problem. Their
Recursive Bipartite Graph Partitioning (BP) approach is given in
overview in Figure 1, and in more detail in Figure 2.

Bipartite partitioning proceeds as follows. First, term statistics
are collected for the two halves (“left” and “right”) of the current
document collection, as if separate inverted indexes were to be built.
Then two bias estimates are made for each term, computing the
change in index size that would accrue — measured in negative or
positive loggap bits — if one document (and hence one posting) was
to be moved from the left half of the collection to the right half (the
I2r_bias in Figure 2), and likewise if one posting was to be moved
from right to left (the r2l_bias). The term biases are next accumu-
lated on a per-document basis using [2r_bias for documents in the
left collection and using r2l_bias in the right; and any document
pairs that would generate a net overall saving in loggap if swapped
are exchanged between the two sides, explicitly optimizing the in-
dex storage cost. The process iterates as many as L times, before
recursing into the two halves [9].

Our presentation here differs from that of Dhulipala et al. in one
important way: negative bias values in Figure 2 always indicate
terms (and hence) documents that are “attracted” to the left half;
conversely, positive biases indicate terms and documents that have
more affinity with the right half of the collection. Hence, the test
D[dy].bias > D[d,].bias at step 14 identifies document pairs where
document d, currently in the right half has a weaker affinity for the
right than does dp, and can be displaced leftward by d;. The process
for selecting document pairs to be swapped is discussed below.

Analysis. For an index containing M postings over N documents
the running time is O(M log N + N log? N) [9, Theorem 2]. The first
component in that sum covers the counting of left and right term
frequencies by traversing a forward index of total size M postings
(steps 5-9); and then a second pass through the forward index using
the term bias values to compute the document biases (steps 10-12),
with the partition sizes summing to M postings and N documents
at each level of recursion, through as many as log, N levels of re-
cursion. The second term is the cost of sorting the set of computed

function partition_collection(D, N):
// partition D[0 ... N — 1] into left and right halves Dy, and Dg,
// placing each document D[d] into the half that it best matches
set D « D[0...N/2—1] and Dg < D[N/2...N - 1]
5: for each term t appearing in any document in D do
compute t.Ifreq and t.rfreq, the occurrence
counts of ¢t in Dy and Dg respectively, then from them
compute ¢.12r_bias and t.r2l_bias, the “attraction”
of t towards Dy and Dg respectively
10: ford € Dy do
compute D|[d].bias as the sum of the ¢.12r_bias values of
the terms ¢ appearing in D[d]
repeat steps 10-12 for d € Dg, now using the r2l_bias values
for dy € D; and d, € Dg with D[d¢].bias > D[d,].bias do
15: swap D[d;] and D[d,]
if elements swapped and iteration limit L is not reached then
iterate again from step 4

Figure 2: Details of the BP process. Negative term and document
biases represent attraction to the left-half collection Dy ; positive
biases affinity with the right-half collection Dg. If swaps can be
identified that yield a net gain (steps 14-15), they are carried out.

document biases to facilitate identification of document swap-pairs
at step 14, spending O(N log N) time in aggregate across the parti-
tions in each recursive level, and with up to log N levels.

However this analysis takes as constant the iteration cap L em-
ployed at step 16. If we include it as a variable, the execution time
becomes O(LMlog N + LN log? N). With N and M regarded as
given, this characterization suggests two main possibilities for
speed improvements: reducing L; and/or finding ways of bypassing
the sorting steps. We consider both of these options shortly.

Estimating Bias. Dhulipala et al. [9] observe that a uniformly-
random postings list of f; document gaps over an N-element uni-
verse gives rise to a loggap (in bits) of approximately

B(fi,N) = fi (logy N — logy (fi +1)) - (1)
They go on to propose that the [2r_bias associated with each left-
collection posting for a term that initially has f; occurrences among
N; documents in the left collection, and f occurrences among Ny
documents in the right collection, be computed as

G (forNe fo Nr) = BURND =B =LND
+B(fr.Ny) = B(fy + LNy),

where (in our formulation) negative values indicate that postings
for this term have a preference to remain in the left collection,
and positive values indicate that switching the posting to the right
collection will be beneficial. The right-to-left bias for the same
configuration is given by:

Gr2l(ﬁ’Nf$ﬁ‘5Nr) :_GlZV(ﬁ’Nr’ﬁ’Nf) (3)

and reflects the favored alignment of a posting currently in the
right collection, with negative values again indicating “prefers left”,
and positive values that (staying) right would be better.

While accurate to the cost model captured by Equation 1, Equa-
tions 2 and 3 have a drawback that becomes increasingly problem-
atic as the partitions get smaller. Suppose that (say) Ny = N, = 20,



and consider a term with (say) fr = f; = 1. Then Gp,,() yields 1.17
bits, correctly suggesting that total index size will be reduced if
the left-collection posting for that term can be swapped into the
right collection. But at the same time, G,;() = —1.17 to indicate
that total index size will be reduced if the right-collection posting
can be manipulated into the left collection. Hence, if those two post-
ings are the only ones that affect the two documents that contain
them, the documents will be swapped, without the estimated loggap
saving being realized. Worse, at the next iteration they will swap
back to their original positions. Many other not-as-trivial situations
trigger similar effects, including complex cycles of rearrangement
that return to a configuration after several intervening iterations,
not just two. Moreover, the trivial “f; = f; = 1” situation is very
common at the leaves of the recursion. Wang and Suel [25] have
also noted the risk of endless swapping cycles.

Reducing L (Method 1). As already noted, Dhulipala et al. [9]
propose that if any document swaps were performed, the document
gains should be recomputed and checked for further swaps; with a
hard limit of L = 20 iterations (step 16 of Figure 2).

We suggest that a simulated annealing-type mechanism be em-
ployed instead. If variable iter records the current iteration count,
then rather than swapping documents D[d;] and D[d,] whenever
D[de].bias > D[d,].bias (step 14 in Figure 2), we swap only if
D[dy].bias > D|d,].bias + iter, that is, if the projected advantage
across these two documents is at least iter bits. In the first iteration
iter = 0, and there is no change. But at each iteration thereafter
iter becomes one larger, making it another “one bit harder” for
elements to swap. This cooling process dampens the volatility of
the gain scores, and stabilizes the computation. If the instances in
which swapping iterations are carried out without any loggap gain
accruing can be avoided, we can expect to observe faster execution.

Reducing L (Method 2). Equations 1-3 are simply estimators.
As a second way of moderating the number of iterations carried
out, we introduce two new estimators, seeking to downplay the
anticipated swapping benefit in the important f; = f; case:

Gizr(fo. Np, fr, Nr) =logy (fr +2) —log, fr — 1.44/(fr +1)  (4)

computed from Equation 1 by assuming that Ny = N;, and using
the approximation log, (1 + x) = (log, e)x ~ 1.44x; and

Gm(ﬁ‘, Ny, fr, Ny) = logz fr— 10g2 fe, (5

which arises if it is assumed that the posting that transfers does
not alter f; or f; (taking log, 0 as zero). A side benefit of these
two approximations is a reduced number of floating-point log, ()
evaluations: Equation 2 requires (over two applications, the second
embedded in Equation 3) six calls in total per term to compute the
two bias values; Equation 4 requires four; and Equation 5 only two.
Note also that Equation 5 is symmetric, with G, (fz, Ny, fr, Ny) =
Gya(fe, Ni, fr, Ny). Table 1 provides example bias values for the
original and new estimators; and Section 3 documents their effect
in terms of execution time and loggap effectiveness.

Sort-Free Swapping. The third change we suggest is the reason
for our emphasis on “negative” biases indicating a left-leaning pref-
erence, and “positive” biases representing right-leaning tendencies.
In previous implementations of BP the “pair selection process” re-
quired by step 14 in Figure 2 has followed the pseudo-code given

Table 1: Values of Gj;.() as calculated via Equation 1 (from Dhuli-
pala et al. [9]), Equation 4, and Equation 5, with Ny = N, = 20.

fr fr Equation 2 Equation 4 Equation 5

1 0 0.00 —0.44 0.00

1 1 1.17 0.86 0.00

1 2 1.83 1.52 1.00

2 2 0.66 0.52 0.00

2 5 1.75 1.57 1.32

3 10 2.01 1.87 1.74
10 3 —1.41 -1.36 -1.74

0 1 2 3 4 5 6 7 8 9 10
[-95]-28]13]-62]-05] 1.1] 14]61]-1.2]-14] 48]

Left half of collection with biases
computed using G,,,()

Right half of collection with biases
computed using G,,()

[-95]-12]-62]-14]-28]-05]61]14]1.1]13] 48]

Document biases partitioned about the median

Figure 3: Median-finding in the bias array: before the identification
of the median (top); and then after the median of —0.5 has been
placed in its correct location (bottom).

by Dhulipala et al., which first computes all of the “I2r” document
biases across Dy, and all of the “r2l” biases across Dg; with pos-
itive values in both cases meaning “this document would like to
swap sides if it can”. Those two sets of biases were then sorted
into decreasing order, and a “zip” operation performed from largest
to smallest, swapping in a pairwise manner until no net gain was
possible. Those two sorting steps account for the O(N log N) time
factor that is required per iteration and per recursive level.

Figure 3 illustrates a new approach that makes use of our altered
interpretation of the bias values. Now all document biases have a
common scale, and it is sufficient to identify the overall median,
which automatically separates the documents in Dy U Dp into <
and > sets of the same size. Now all of the document “swaps” are a
natural consequence of the median-finding process, ensuring that
the left half of D contains exactly the required set of “most negative”
document biases (in some order), and the right half similarly. The
critical factor that makes this an attractive change is that median
finding requires only O(N) time, removing a factor of O(log N)
from that component of the execution time.

3 EXPERIMENTS

Data and Experimental Structure. Implementations were in
Rust and compiled with rustc 1.49 using the highest optimization
settings. Experimentation was in-memory on a Linux machine with
two 3.50 GHz Intel Xeon Gold 6144 CPUs and 512 GiB of RAM,
including use of 32-thread parallelism during the document bias
computations, for sorting, and for recursive calls. Parallelism was
via the Rayon crate,! which uses a work-stealing thread pool to
manage concurrency. Indexes were built using Anserini [27] and
converted to the common index file format for our experiments [14].

Table 2 lists the three experimental text collections. The largest,
CC-News-En [17], contains more than eight billion postings. Short

Uhttps://github.com/rayon-rs
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Table 2: Collections used and their parameters, N and M.

Collection  Documents, N Terms Postings, M
Wikipedia 5,550,447 12,375 514,216,782
Gov2 25,045,528 45,342 3,278,160,552
CC-News-En 43,463,480 78,851 8,777,847,467

Table 3: Effectiveness (loggap bits per doc-gap) for three document
orderings and the baseline BP, with time in elapsed seconds.

Wikipedia Gov2 CC-News-En
loggap Time loggap Time loggap Time
Random 5.38 - 5.75 - 3.71 -
URL 5.00 - 2.33 - 1.51 -
Length 4.29 - 2.36 - 1.59

BP, Eqn. 2 3.33 352 1.83 1967 1.29 5674

@ Em3 @ Eqn5 € Eqné
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Figure 4: Efficiency vs. effectiveness without cooling (red points)
and with cooling (blue), for two collections. Both axes are percent-
ages relative to the baseline BP (last row of Table 3).

postings lists (< 4,096 elements) and long postings lists (> 0.1N
elements) were not considered during the computation [9, 16], but
this removed fewer than 1% of the postings, and all postings lists
were included in the loggap measurements.

Efficiency vs. Effectiveness. Table 3 lists loggap index costs (bits
per posting) for three baseline document orderings, where “Length”
ordering is by decreasing document postings count. The last row
of the table shows compression effectiveness and reordering com-
putation time for the BP mechanism (Section 2), as a baseline for
our experimentation, taking a URL-ordered input as the starting
point in each case. Note that the input order does not alter the
experimental outcomes. Our measured throughput is comparable
to that of the optimized codebase of Mackenzie et al. [16].

Figure 4 uses those BP baseline measurements on two of the
three collections as reference points (red circles), and shows the rel-
ative performance of the cooling technique, and of the two new bias
estimators. Equation 4 (red squares) gives slightly better compres-
sion effectiveness than the Dhulipala et al. mechanism (Equation 2),
and is around twice as fast. Equation 5 (red diamonds) allows even
more efficient computation, but with a small amount of compres-
sion loss. Cooling (blue points) results in compression and speed

Table 4: Computation time (seconds, Equation 5, no cooling).

Wikipedia Gov2 CC-News-En
ParallelSort 92 557 1829
SequentialSort 100 637 1979
Floyd-Rivest 87 556 1780

Eqn. 2 vs. Eqn. 4 Eqn. 2 vs. Eqn. 5 Eqn. 4 vs. Eqn. 5

Figure 5: Scatterplots of document orderings from three estimators
on the Wikipedia collection.

gains for Equation 2; and further speed gains for Equation 4 and
Equation 5, albeit with a very slight compression loss in those two
cases. Similar relativities were observed for Wikipedia: for example,
Equation 4 with cooling required 77 seconds (a 4.6X speedup), and
resulted in no loss of effectiveness, with loggap = 3.32 bits per
posting. Furthermore, applying binary interpolative coding [20]
to the alternative indexes gave compressed sizes within 1% of the
initial BP reordered index.

Sorting vs. Selecting. The baseline BP implementation includes
two sorting calls per iteration, both implemented as parallel (that is,
multi-threaded) calls. Table 4 shows the time required when that ar-
rangement is altered: first, by using a sequential rather than parallel
sort, to demonstrate the time saving attributable to the parallelism;
and second, when the sort is removed completely and replaced by
the Floyd-Rivest median selection algorithm [12], which runs in
O(N) expected time. Sorting is only a moderate fraction of the total
reordering time, but even so, switching to the new median-based
approach results in a 10% reduction in total computation, validating
our asymptotic improvement over the baseline BP algorithm.

Overall Orderings. Figure 5 plots each document according to its
computed position for each combination of estimators. The three
estimators create quite different arrangements of the Wikipedia
collection, with each visible square block corresponding to a recur-
sive call that yielded a different decomposition. Equations 4 and 5
are more like each other than they are like Equation 2.

4 CONCLUSION

We have carried out a detailed exploration of Dhulipala et al.’s
bipartite graph partitioning algorithm, and reduced the elapsed
computation times by a factor of around four, and by even more in
terms of workload (that is, summed across execution threads).

Software and Funding. The experimental software is available
at https://github.com/mpetri/faster-graph-bisection. This work was
supported by the Australian Research Council (project DP200103136).
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