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Abstract
Recent advances in Text-to-Speech (TTS) have improved qual-
ity and naturalness to near-human capabilities. But something
which is still lacking in order to achieve human-like commu-
nication is the dynamic variations and adaptability of human
speech in more complex scenarios. This work attempts to solve
the problem of achieving a more dynamic and natural intona-
tion in TTS systems, particularly for stylistic speech such as
the newscaster speaking style. We propose a novel way of ex-
ploiting linguistic information in VAE systems to drive dynamic
prosody generation. We analyze the contribution of both seman-
tic and syntactic features. Our results show that the approach
improves the prosody and naturalness for complex utterances
as well as in Long Form Reading (LFR).
Index Terms: Semantic, Syntactic, Text to Speech, Prosody

1. Introduction
Recent advances in TTS have improved the achievable synthetic
speech naturalness to near human-like capabilities [1, 2, 3, 4].
This means that for simple sentences, or for situations in which
we can correctly predict the most appropriate prosodic repre-
sentation, TTS systems are providing us with speech practically
indistinguishable from that of humans.

One aspect that most systems are still lacking is the natural
variability of human speech, which is being observed as one of
the reasons why the cognitive load of synthetic speech is higher
than that of humans [5]. This is something that variational mod-
els such as those based on Variational Auto-Encoding (VAE)
[4, 6] attempt to solve by exploiting the sampling capabilities
of the acoustic embedding space at inference time.

Despite the advantages that VAE-based inference brings, it
also suffers from the limitation that to synthesize a sample, one
has to select an appropriate acoustic embedding for it, which
can be challenging. A possible solution to this is to remove
the selection process and consistently use a centroid to repre-
sent speech. This provides reliable acoustic representations but
it suffers again from the monotonicity problem of conventional
TTS. Another approach is to simply do a random sampling of
the acoustic space. This would certainly solve the monotonicity
problem if the acoustic embedding were varied enough. It can
however, introduce erratic prosodic representations of longer
texts, which can prove to be worse than being monotonous. Fi-
nally, one can consider text-based selection or prediction, as
done in this research.

The tight relationship between syntactic constituent struc-
ture and prosody is well known [7, 8]. In the traditional Natural
Language Processing (NLP) pipeline, constituency parsing pro-
duces full syntactic trees. Recent relevant work exploring the
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advantages of exploiting syntactic information for TTS can be
seen in [9, 10]. Those studies, without any explicit acoustic
pairing to the linguistic information, inject a number of curated
features concatenated to the phonetic sequence as a way of in-
forming the TTS system.

More recent approaches based on Contextual Word Embed-
ding (CWE) suggest that CWE are largely able to implicitly
represent the classic NLP pipeline[11], while still retaining the
ability to model lexical semantics [12]. However simply plug-
ging such embeddings as a feature during synthesis has shown
not to perform well [13].

On the other hand, the present study explores more ap-
propriate ways to exploit linguistic information specifically for
VAE based synthesis. We do so by driving the acoustic embed-
ding selection to guide prosodic contour rather than using them
as additional model features.

An exploration of how to use linguistics as a way of predict-
ing adequate acoustic embeddings can be seen in [14], where
the authors explore the path of predicting an adequate em-
bedding by informing the system with a set of linguistic and
semantic information. This work predicts a point in a high-
dimensional space by making use of sparse input informa-
tion (which is a challenging task and potentially vulnerable to
training-domain dependencies). This work differs as we use
the linguistic information to predict the most similar embed-
ding from our training set, reducing the complexity of the task
significantly.

The main contributions of this work are: i) we present a
novel approach for linguistically informed acoustic embedding
selection during VAE synthesis; ii) we compare the proposed
approach with simply including linguistic information as addi-
tional features in VAE based TTS; iii) we demonstrate that this
embedding selection approach improves the overall TTS quality
along with prosody in complex scenarios and LFR; iv) Finally,
we compare the improvements achieved by exploiting syntactic
information in contrast with those brought by CWE.

2. Proposed Approach
We explore the following two hypotheses in our experiments:
(i) linguistic information has been used sub optimally in TTS
synthesis. Using this information to drive the embedding selec-
tion in the VAE system will result in improved prosodic quality
as compared to using it as additional features; (ii) in some sce-
narios, syntax will be able to generalize better than CWE.

The objective of this work is to exploit sentence-level
prosody variations available in the training dataset while syn-
thesizing speech for the test sentence. The steps executed in
this proposed approach are: (i) Generate suitable vector repre-
sentations containing linguistic information for all the sentences
in the train and test sets, (ii) Measure the similarity of the test
sentence with each of the sentences in the train set. We do so
by using cosine similarity between the vector representations as



Figure 1: Constituency parse tree

done in [15] to evaluate linguistic similarity (LS), (iii) Choose
the acoustic embedding of the train sentence which gives the
highest similarity with the test sentence, (iv) Synthesize speech
from VAE-based inference using this acoustic embedding
2.1. Systems
We experiment with three different systems for generating vec-
tor representations of the sentences, which allow us to explore
the impact of both syntax and semantics on the overall quality
of speech synthesis. The representations from the first system
use syntactic information only, the second relies solely on CWE
while the third uses a combination of CWE and explicit syn-
tactic information. These representations are used to select a
sentence level acoustic embedding from the training set.
2.1.1. Syntactic
Syntactic representations for sentences like constituency parse
trees need to be transformed into vectors in order to be usable in
neural TTS models. Some dimensions describing the tree can
be transformed into word-based categorical feature like identity
of parent and position of word in a phrase [16].

The syntactic distance between adjacent words is known
to be a prosodically relevant numerical source of information
which is extracted from constituency trees [17]. It is explained
by the fact that if many nodes must be traversed to find the
first common ancestor, the syntactic distance between adjacent
words is high. Large syntactic distances correlate with acousti-
cally relevant events such as phrasing breaks or prosodic resets.

To compute syntactic distance vector representations for
sentences, we use the algorithm mentioned in [18]. That is, for a
sentence of n tokens, there are n corresponding distances which
are concatenated together to give a vector of length n. The dis-
tance for each token is calculated with respect to the previous
token. For the first token the distance is always 0.

We see an example in Figure 1: for the sentence “The brown
fox is quick and it is jumping over the lazy dog”, distance vector
is d = [0 2 1 3 1 8 7 6 5 4 3 2 1]. The completion of the subject
noun phrase (after ‘fox’) triggers a prosodic reset, reflected in
the distance of 3 between ‘fox’ and ‘is’. There should also be a
more emphasized reset at the end of the first clause, represented
by the distance of 8 between ‘quick’ and ‘and’.
2.1.2. BERT
To generate CWE we use BERT [19], as it is one of the best
performing pre-trained models with state of the art results on
a large number of NLP tasks. BERT has also shown to gener-
ate strong representations for both syntax and semantics. We
use the word representations from the uncased base (12 layer)
model without fine-tuning. The sentence level representations
are achieved by averaging the second to last hidden layer for
each token in the sentence. These sentence embeddings are used
to drive acoustic embedding selection. We do not use ‘[CLS]’
as it acts as an “aggregate representation” for classification tasks

and is not the best choice for quality sentence embeddings vec-
tors.
2.1.3. BERT Syntactic
Even though BERT embeddings capture some aspects of syn-
tactic information along with semantics, we decided to experi-
ment with a system combining the information captured by both
of the above mentioned systems. The information from syntac-
tic distances and BERT embeddings cannot be combined at to-
ken level to give a single vector representation since both these
systems use different tokenization algorithms. Tokenization in
BERT is based on the wordpiece algorithm [20] as a way to
eliminate the out-of-vocabulary issues. On the other hand, tok-
enization used to generate parse trees is based on morphological
considerations rooted in linguistic theory. At inference time, we
average the similarity scores obtained by comparing the BERT
embeddings and the syntactic distance vectors.

3. Applications to LFR
The systems described in Section 2.1 produce utterances with
more varied prosody as compared to the long-term monotonic-
ity of those obtained via centroid-based VAE inference. How-
ever, when considering multi-sentence texts, we have to be
mindful of the issues that can be introduced by erratic transi-
tions. We tackle this issue by minimizing the acoustic variation
a sentence can have with respect to the previous one, while still
minimizing the linguistic distance. We consider the Euclidean
distance between the 2D Principal Component Analysis (PCA)
projected acoustic embeddings as a measure of acoustic varia-
tion, as we observe that the projected space provides us with
an acoustically relevant space in which distances can be easily
obtained. Doing the same in the 64-dimensional VAE space did
not perform as intended, likely because of the non-linear mani-
fold representing our system, in which distances are not linear.
As a result, certain sentence may be linguistically the closest
match in terms of syntactic distance or CWE, but it will still not
be selected if its acoustic embedding is far apart from that of the
previous sentence.

We modify the similarity evaluation metric used for choos-
ing the closest match from the train set by adding a weighted
cost to account for acoustic variation. This approach focuses
only on the sentence transitions within a paragraph rather than
optimizing the entire acoustic embedding path. This is done
as follows: (i) Define the weights for linguistic similarity and
acoustic similarity. In this work, the two weights sum up to
1; (ii) The objective is to minimize the following loss for each
sentence in the paragraph considering the acoustic embedding
chosen for the previous sentence in the paragraph:

Loss = LSW ∗ (1− LS) + (1− LSW ) ∗D (1)
where LSW = Linguistic Similarity Weight; LS = Linguistic Co-
sine Similarity between test and train sentence; D = Euclidean
distance between the acoustic embedding of the train sentence
and the acoustic embedding chosen for the previous sentence.

We fix D=0 for the first sentence of every paragraph. Thus,
this approach is more suitable for cases when the first sentence
is generally the carrier sentence, i.e. one which uses a structural
template. This is particularly the case for news stories such as
the ones considered in this research.

As LSW decreases, the transitions become smoother. This
is not ‘free’: there is a trade-off, as increasing the transition
smoothness decreases the linguistic similarity which also re-
duces the prosodic divergence. Figure 2 shows the trade-off
between the two, across the test set, when using syntactic dis-
tance to evaluate LS. Low linguistic distance (i.e. 1 - LS) and
low acoustic distance are required.



Figure 2: Acoustic Distance (solid line) vs Linguistic Distance (dashed
line) as a function of LSW across paragraphs

Figure 3: Schematic of the implemented TTS system

The plot shows that there is a sharp decrease in acoustic dis-
tance between LSW of 1.0 and 0.9 but the reduction becomes
slower from therein, while the changes in linguistic distance
progress in a linear fashion. We informally evaluated the per-
formance of the systems by reducing LSW from 1.0 till 0.7 with
a step size of 0.05 in order to look for an optimal balance. At
LSW=0.9, the first elbow on acoustic distance curve, there was
a significant decrease in the perceived erraticness.

We performed an internal preference test between the sam-
ples generated from LSW=1.0 and LSW=0.9. The results de-
picted statistical insignificance between the two. However,
on individual listening of samples we observed that the para-
graphs which comprised of a sentence which shared high lin-
guistic similarity with a more acoustically divergent training
sample the preference was given to LSW=0.9. Hence, we chose
LSW=0.9 for our LFR evaluations.

4. Experimental Protocol
The research questions we attempt to answer are:

Q1: How does using linguistic embeddings as model features
impact TTS quality from VAE based systems?

Q2: Can linguistics-driven selection of acoustic waveform
from the existing dataset lead to improved prosody and
naturalness when synthesizing speech ?

Q3: How does syntactic selection compare with CWE selec-
tion?

Q4: Does this approach improve LFR experience as well?
To answer these questions, we used in our experiments the sys-
tems, data and subjective evaluations described below.
4.1. Text-to-Speech System
The evaluated TTS system is a Tacotron-like system [21] al-
ready verified for the newscaster domain. A schematic descrip-
tion can be seen in Figure 3 and a detailed explanation of the
baseline system and the training data can be read in [22, 23].
Conversion of the produced spectrograms to waveforms is done
using the Universal WaveRNN-like model presented in [3].

For this study, we consider an improved system that re-
placed the one-hot vector style modeling approach by a VAE-
based reference encoder similar to [6, 4], in which the VAE em-
bedding represents an acoustic encoding of a speech signal, al-
lowing us to drive the prosodic representation of the synthesized
text as observed in [24]. The way of selecting the embedding at
inference time is defined by the approaches introduced in Sec-
tions 2.1 and 3. The dimension of the embedding is set to 64 as
it allows for the best convergence without collapsing the KLD
loss during training.
4.2. Datasets
4.2.1. Training Dataset
(i) TTS System dataset: We trained the TTS system with
a mixture of neutral and newscaster style speech for a single
speaker in US English. Total of ~24 hours of training data, split
in 20 hours of neutral (22000 utterances) and ~4 hours of news-
caster styled speech (3000 utterances).
(ii) Embedding selection dataset: As the evaluation was car-
ried out only on the newscaster speaking style, we restrict our
linguistic search space to the utterances associated to the news-
caster style: 3000 sentences.
4.2.2. Evaluation Dataset
The systems were evaluated on two datasets:
(i) Common Prosody Errors (CPE): The dataset on which the
baseline Prostron model fails to generate appropriate prosody.
This dataset consists of utterances like compound nouns (22%),
“or” questions (9%), “wh” questions (18%). This set is further
enhanced by sourcing complex utterances (51%) from [25].
(ii) LFR: As demonstrated in [26], evaluating sentences in iso-
lation does not suffice if we want to evaluate the quality of long-
form speech. Thus, for evaluations on LFR we curated a dataset
of news samples. The news style sentences were concatenated
into full news stories, to capture the overall experience of our
intended use case.
4.3. Subjective evaluation
Our tests are based on MUltiple Stimuli with Hidden Reference
and Anchor (MUSHRA) [27], but without forcing a system to
be rated as 100, and not always considering a reference.

For the CPE dataset, we carried out two tests. The first one
with 10 linguistic experts as listeners, who were asked to rate
the appropriateness of the prosody ignoring the speaking style
on a scale from 0 (very inappropriate) to 100 (very appropriate).
We chose linguists for this test as prosodic evaluations are com-
plex and require domain specific knowledge. The second test
was carried out on 10 crowd-sourced listeners who evaluated
the naturalness of the speech from 0 to 100. In both tests each
listener was asked to rate 28 different screens, with 4 randomly
ordered samples per screen for a total of 112 samples. The 4
systems were the 3 proposed ones and the centroid-based VAE
inference was fixed as the baseline.

For LFR it’s difficult to get consistent scoring while eval-
uating prosody as one needs to remember the entire context.
Also, there’s no canonically “correct” rendition of a paragraph.
Thus, we conducted a crowd-sourced evaluation only for natu-
ralness where the listeners were asked to assess the suitability
of newscaster style on a scale from 0 (completely unsuitable)
to 100 (completely adequate). Each listener was presented with
51 news stories, each playing one of the 5 systems including the
original recordings as a top anchor, the centroid-based VAE as
baseline and the 3 proposed linguistics-driven acoustic embed-
ding selection systems.

All of our listeners, regardless of linguistic knowledge were
native US English speakers.



Figure 4: Prosody MUSHRA results on CPE dataset.
5. Results

For Q1, we ran another internal preference test on the CPE
dataset between the centroid baseline model with and without
BERT CWEs as additional features. We chose CWE for this
test as they are believed to capture both semantics and syn-
tactics. The BERT based model performed significantly worse
(p<<0.01) than the centroid baseline as we believe it was un-
able to generalise to unseen scenarios due to the sparsity of the
linguistic-acoustic mapping space at utterance level. Hence, we
eliminate this system from further evaluations.

Figure 4 and Table 1 report the MUSHRA scores for eval-
uating prosody and naturalness respectively for the test sys-
tems on the CPE dataset. These results answer Q2, as the pro-
posed approach improves significantly over the baseline on both
grounds. It thus, gives us evidence supporting our hypothe-
sis that linguistics-driven acoustic embedding selection can sig-
nificantly improve speech quality. We also observe that better
prosody does not directly translate into improved naturalness
and that there is a need to improve acoustic modeling in order
to better reflect the prosodic improvements achieved.

Table 1: Naturalness MUSHRA on CPE dataset. Fields in bold are
indicative of best results. * depicts statistical insignificance in

comparison to baseline (p>0.05)
Baseline Syntactic BERT BERT

Syntactic
Naturalness 61.84 61.36* 63.67* 64.0
We validate the differences between MUSHRA scores us-

ing pairwise t-test. All proposed systems improved signifi-
cantly over the baseline prosody (p<0.01). For naturalness,
only BERT Syntactic improved over the baseline significantly
(p=0.04). The difference between BERT and BERT Syntactic
is statistically insignificant.

Table 2: Prosody evaluation breakdown by categories on CPE
System ‘wh’ ‘or’ compound Complex

questions questions nouns
Baseline 64.35 56.89 70.05 68.84
Syntactic 68.39 66.04 70.46 71.36

BERT 71.26 73.15 71.25 75.05
BERT Syntactic 72.25 78.15 70.13 73.69

Q3 is explored in Table 2, which gives the breakdown of
prosody results by major categories in CPE. For ‘wh’ questions,
we observe that Syntactic alone brings an improvement of 4%
and BERT Syntactic performs the best by improving 8% over
the baseline. This suggests that ‘wh’ questions generally share
a closely related syntax structure and that information can be
used to achieve better prosody. This intuition is further strength-
ened by the improvements observed for ‘or’ questions. Syntac-
tic alone improves by 9% over the baseline and BERT Syntactic
performs the best by improving 21% over the baseline. The im-
provement observed in ‘or’ questions is greater than ‘wh’ ques-
tions as most ‘or’ questions have a syntax structure unique to

Figure 5: Naturalness MUSHRA results on LFR dataset. Joining line
between two systems signifies statistical insignificance in comparison

to baseline(p>0.05)

them and this is consistent across samples in the category. For
both categories, the systems Syntactic, BERT and BERT Syn-
tactic show incremental improvement as the first system con-
tains only syntactic information, the next captures some aspect
of syntax with semantics and the third has enhanced the repre-
sentation of syntax with CWE representation. Thus, it is evident
that the extent of syntactic information captured drives speech
synthesis quality for these two categories.

Compound nouns proved harder to improve upon as com-
pared to questions. BERT performed the best in this category
with a 1.2% absolute improvement over the baseline. We spec-
ulate that BERT’s ability to encode semantic information in ad-
ditional to distributional one is crucial in its better treatment
of compounds. The stress pattern of nominal compounds cru-
cially depends on the semantics of the entities involved (e.g.
PHONE number vs leather JACKET). For other complex sen-
tences as well, BERT performed the best by improving 6% over
the baseline. This can be attributed to the fact that most of the
complex sentences required contextual knowledge. Although
Syntactic does improve over the baseline, syntax does not look
like the driving factor as BERT Syntactic performs a bit worse
than BERT. This indicates that enhancing syntax representation
hinders BERT from fully leveraging the contextual knowledge
it captured to drive embedding selection.

Q4 is answered in Figure 5, which reports the MUSHRA
scores on the LFR dataset. Only the Syntactic system improved
over baseline with high statistical significance (p=0.02). We
close the gap between the baseline and the recordings by almost
20%. To achieve suitable prosody, LFR requires longer distance
dependencies and knowledge of prosodic groups. Such infor-
mation can be approximated more effectively by the Syntactic
system rather than the CWE based systems.

6. Conclusions
The current VAE-based TTS systems are susceptible to
monotonous speech generation due to the need to select a suit-
able acoustic embedding to synthesize a sample. In this work,
we propose a novel approach to leverage linguistic information
to drive acoustic embedding selection for such systems. We
demonstrate, that doing so is better than simply using the in-
formation as modeling features. Our proposed approach is able
to improve the overall speech quality in both prosody and nat-
uralness. We propose 3 systems (Syntactic, BERT and BERT
Syntactic) and evaluated their performance on 2 datasets: com-
mon prosodic errors and LFR. The Syntactic system was able
to improve significantly over the baseline on most parameters.
Information captured by BERT further improved prosody for
cases where contextual knowledge was required. For LFR, we
bridged the gap between baseline and recordings by ~20%.
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