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Abstract

We present a novel large-scale dataset for defect detection

in a logistics setting. Recent work on industrial anomaly

detection has primarily focused on manufacturing scenar-

ios with highly controlled poses and a limited number of

object categories. Existing benchmarks like MVTec-AD [6]

and VisA [33] have reached saturation, with state-of-the-

art methods achieving up to 99.9% AUROC scores. In con-

trast to manufacturing, anomaly detection in retail logistics

faces new challenges, particularly in the diversity and vari-

ability of object pose and appearance. Leading anomaly

detection methods fall short when applied to this new set-

ting. To bridge this gap, we introduce a new benchmark that

overcomes the current limitations of existing datasets. With

over 230,000 images (and more than 29,000 defective in-

stances), it is 40 times larger than MVTec and contains more

than 48,000 distinct objects. To validate the difficulty of

the problem, we conduct an extensive evaluation of multiple

state-of-the-art anomaly detection methods, demonstrating

that they do not surpass 56.96% AUROC on our dataset.

Further qualitative analysis confirms that existing methods

struggle to leverage normal samples under heavy pose and

appearance variation. With our large-scale dataset, we set

a new benchmark and encourage future research towards

solving this challenging problem in retail logistics anomaly

detection. The dataset is available for download under

https://www.kaputt-dataset.com.

1. Introduction

Automated visual defect detection is critical for quality as-
surance in numerous industrial and logistics processes. Par-
ticularly at the scale of large retailers that handle millions
of unique items, accurate detection of anomalies can sig-
nificantly reduce costs, minimize waste, and enhance over-
all operational efficiency. However, developing robust vi-

sual defect detection systems in retail logistics applica-
tions presents significant challenges that have yet to be
fully addressed by existing research. The primary challenge
stems from the diversity of items and the rarity of defects,
which makes building supervised-learning datasets costly
and time-consuming. This scarcity of training data leads to
highly imbalanced datasets, necessitating unsupervised and
anomaly-detection (AD) approaches.

State-of-the-art unsupervised and AD methods for visual
defect detection achieve exceptional performance under
controlled manufacturing conditions, reaching 99.9% [7]
and 99.5% [30] AUROC on MVTec-AD [6] and VisA [33]
datasets, respectively. However, these methods struggle in
complex logistics environments like Amazon’s retail oper-
ations, where millions of diverse products flow through lo-
gistics centers. The challenges are multifaceted (Figure 1):
products range from consumables to electronics, each with
distinct physical properties; defects vary from minor creases
to major spillages, often with subtle manifestations that
challenge even human inspectors; most items are observed
only a few times, limiting both defective and non-defective
sample availability; and significant pose variation occurs
due to random product placement.

To enable researchers to overcome these challenges, we
introduce a novel large-scale dataset for visual defect de-

tection in retail logistics applications. Our dataset sig-
nificantly advances the field by addressing key limitations
of existing benchmarks and poses the following key ques-
tion: How can we build generalizable visual defect detec-
tion methods under challenging conditions such as limited
instances per item, limited availability of both defective and
non-defective samples per item, and significant intra-class
variation?

Our key contribution is a challenging defect detection
dataset with unparalleled scale and diversity of products,
structured to enable the development of novel supervised,
unsupervised, and hybrid approaches. The dataset com-
prises 238,421 images of 48,376 unique items. Items are
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Figure 1. Overview of defect severities and defect types. Our dataset categorizes
defective samples into two severity classes: minor (top two rows) and major (bottom
two rows). Additionally, each defective sample is assigned one or multiple defect
types (columns), which characterize the defect(s) an item exhibits in a more fine-
grained manner. The figure shows two representative samples per defect type/severity
combination.
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Sample 2
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Figure 2. Each query image is associated with 1-
3 reference images which may exhibit significant
variability: (1) Benign case. (2) Defective refer-
ence image (< 1% of all reference images). (3)
Significant background variation, and < 3 refer-
ence images available. (4) Pose variability (front
vs. back).

presented in random poses and orientations, closely mir-
roring real-world retail logistics scenarios. The dataset is
split into annotated and unannotated portions: the anno-
tated query image dataset contains 100,267 images, includ-
ing 29,316 defective instances. For all query images, we
provide qualitative defect severity and fine-grained defect
type annotations, reflecting the subjectivity present in defect
assessment. Additionally, each query image is associated
with up to three unannotated reference images that depict
items in a “normal“ condition (Figure 2). We feature diverse
product categories, seven distinct defect types, and high-
resolution images capturing obvious and subtle defects.

To substantiate the challenge posed by our dataset, we
evaluate numerous state-of-the-art baselines. First, we
demonstrate that supervised baselines [10, 12] with access
to a large training set of defective instances achieve up to
94.27% AUROC. These methods achieve high performance
by learning common defect pattern priors, while struggling
in edge cases and “adversarial” items, such as items with
damage-like designs (e.g. a printed hole) or deformable
items where creases may arise naturally without negatively
impacting the product. We then demonstrate that these su-
pervised methods fall short of yielding such performance
under more realistic conditions, when only few defective
samples are available for training. In such scenarios, un-
supervised and anomaly detection baselines [13, 23] were

shown to excel [30] on related datasets like MVTec-AD [6]
or VisA [33]. However, we demonstrate that these methods,
as well as state-of-the-art vision-language models [1, 4], fail
to surpass 56.96% AUROC on our dataset. Qualitative anal-
yses confirm that these methods struggle with item and pose
variability as well as limited access to non-defective sam-
ples of the query item.

These results underscore the relevance of our dataset to
the anomaly detection community in developing more ro-
bust and generalizable methods. By introducing this com-
prehensive dataset, we aim to stimulate progress in visual
defect detection for retail logistics applications. We believe
this unique resource will enable researchers and practition-
ers to develop more robust and generalizable models, capa-
ble of handling the complexities and nuances of real-world
defect detection tasks. The dataset is available for download
under https://www.kaputt-dataset.com.

2. Related Work

Defect detection applications. Defect detection is an im-
portant and widely studied field due to its many commercial
applications, including detecting defective parts in indus-
trial manufacturing [6], inspecting civil infrastructure such
as bridges [24, 27], vehicle damage [32], and medical appli-
cations [15]. However, our use case differs from the stan-
dard industrial manufacturing applications, mainly in terms



Table 1. Overview of representative defect and anomaly detection datasets. Our dataset provides a unique new challenge to the defect
detection field due to the amount of defective samples and intra-class variance within the dataset.

Dataset Labeled Samples:
Total (Anomalous)

Item

Categories

Unlabeled

Samples

Defect

Labels

Pose/Viewpoint

Variance

ARMBench [18] 100,000+ (6,786) N/A - Classes yes

Kolektor [28] 399 (52) - - Classes no
BTAD [17] 2830 (1799) 3 - Classes no
MVTec-AD [6] 5,354 (1,258) 15 - Classes no
VisA [33] 10,821 (1,200) 12 - Classes, Segmentations no

Ours 100,267 (29,316) 48,376 138,154 Classes yes

of item variation and defect variability. While industrial ap-
plications typically focus on a single, known item or part,
we are concerned with the much more open-ended problem
of detecting defects for the millions of constantly changing
items handled in retailers like Amazon, which may also ex-
hibit significant intra-class variation (e.g. packaging varia-
tions and random poses). Thus, our work differs from much
of the literature, in terms of data requirements and methods.

Datasets. The variety of defect detection applications has
led to the development of a number of bespoke datasets in
this domain [3, 11]. Most relevant to our application is
ARMBench [18]. While targeting a similar domain and
comparable in total size, ARMBench only contains one
quarter of the defective samples our dataset offers, and fea-
tures only two (open and deconstruction) compared to seven
defect types. Strongly related are datasets targeting man-
ufacturing defects, such as MVTec-AD[6] and VisA [33].
These contain images of items with a wide variety of de-
fects such as dents, contaminations, and structural changes.
At this point however, the performance on these datasets
is close to being saturated, with state-of-the-art methods
achieving well over 99% AUROC [30]. Our dataset of-
fers one order of magnitude more data both in terms of an-
notations and anomalous instances, enabling researchers to
leverage the dataset for developing and benchmarking vari-
ous types of approaches. At the same time, significant pose
variation render the dataset significantly more challenging
than related ones. Table 1 presents a comprehensive com-
parison to existing defect detection datasets.

Models. The defect detection problem has been approached
in different ways, using supervised, unsupervised, and
anomaly-detection methods. The most straightforward ap-
proach is supervised learning, which aims to learn distinc-
tive defect patterns given samples of both non-defective and

defective instances. For these approaches, the supervision
signal takes the form of an image label [24, 27, 32], a seg-
mentation mask, or both [15], casting the machine learning
problem as classification, segmentation or multi-task learn-

ing, respectively. A key limitation of these approaches is
that they require access to a large dataset of defective items
for training, which are typically rare and difficult to collect.

This limitation motivates the use of alternative ap-
proaches that can leverage non-defective, “normal” samples
more effectively by identifying defective instances as devi-
ations from the expected normal appearance. While the ex-
act distinction between the underlying paradigms is blurry,
these approaches are usually categorized as unsupervised

learning, anomaly detection, or outlier detection. This in-
cludes methods that classify outliers directly given some
representational space (e.g. using one-class SVMs [25, 31])
or those that threshold a per-pixel or per-image patch recon-
struction error [5]. Similarly, deep generative approaches
have been used to compute outlier statistics both on im-
age reconstructions as well as in the learnt latent rep-
resentation via Generative Adversarial Networks [2, 26],
diffusion models [30], or pre-trained Vision Transform-
ers [13]. Exemplar-based methods compute outliers directly
by constructing a more targeted reference dataset on the fly,
via a nearest-neighbour approach [23] and then computing
image/patch-level feature distances relative to this set.

Such approaches are well suited to industrial applica-
tions, where examples of anomaly-free items in an identical,
nominal pose are plentiful. However, they are prone to false
positives predictions by flagging non-defect-related image
variations as anomalous. As our experiments demonstrate,
this makes current approaches impractical for real-world re-
tail logistics applications where we are faced with signifi-
cant intra-class variation, e.g. due to differing poses or pack-
aging. More recently, Jiang et al. [14] investigated whether
this limitation could be addressed by leveraging the inherent
visual understanding capabilities of Multimodal Large Lan-
guage Models (MLLMs). Their findings, however, demon-
strate that current MLLMs’ performance falls short of in-
dustrial requirements: while excelling at object analysis and
description tasks, these models lack robust anomaly detec-
tion capabilities. Our experiments using both commercial
and open-source MLLMs [1, 4] corroborate these findings.



3. Dataset

Our dataset consists of top-down RGB images of retail
items, each accompanied by categorical labels and seg-
mentation masks. In the following sections, we detail the
dataset’s structure, collection, and annotation methodology.

3.1. Dataset Structure

The dataset is organized into query and reference sets:

1. Query dataset: Contains image captures with associated:
(a) Item identifier (unique per item)
(b) Defect severity (no defect, minor, major)
(c) Defect type(s) for defective items (e.g., penetration,

spillage)
(d) Item material (e.g. cardboard, plastic, books)
(e) Item segmentation mask

2. Reference dataset: Contains 1-3 image captures per item
identifier, primarily non-defective but not guaranteed.
(a) Item identifier (unique per item)
(b) Item segmentation mask

The dataset is further divided into training, validation,
and test splits, each consisting of a unique query/reference
set pair. To test model generalization capabilities and pre-
vent overfitting to specific items, we ensure that each item
only appears exclusively in one of the splits, i.e. identifiers
do not overlap between splits.

3.2. Images

For image capture, we use a data collection station equipped
with a 12 MP RGB camera with an f/12mm lens. The cam-
era is positioned top-down to capture the singulated item
located inside a logistics container ("tray"). To provide
uniform diffuse illumination while minimizing reflections
commonly induced by plastic materials, we enclose the sta-
tion with side walls and ensure constant lighting using LED
panels. We provide a schematic drawing of the data collec-
tion setup in the Supplementary Material (Section III).

We further post-process the acquired images by apply-
ing a square crop that includes only the tray, and resize the
images to 2048 → 2048px. We also provide item segmen-
tation masks/crops (Section 3.4.1), but retain the full tray
images as item boundaries are not always clearly defined
due to dangling or protruding parts, and certain defects may
only be visible on the tray surface (e.g., liquid spillages; see
Figure 1, examples 1 and 3, respectively).

3.3. Data Collection

A major challenge in creating defect detection datasets is
the rarity of defect events, making the acquisition of posi-
tive (defective) samples extremely time-consuming. We ad-
dress this through a two-stage collection strategy: First, we
collect items flagged as defective by human operators for

Figure 3. Examples for challenging defective cases (from left to
right). (1) Unobservable cases. A small stripe in the bottom half
of the CD could be either a reflection or a crack in the cover. (2)
Complex cases. The detergent pack looks intact, but at a second
look the powder on the tray next to it item indicates a spillage
defect. (3) Ambiguous cases. The multi-pack is complete but its
units are unordered, which is acceptable but has different visual
appearance than the corresponding reference image.

annotation. Second, we implement an iterative mining pro-
cess where a binary classifier, trained on previously anno-
tated images (Section 3.4), identifies potential defect candi-
dates for further annotation.

The resulting initial query dataset of defective and non-
defective images undergoes further curation based on the
following criteria: (1) Quality control through manual fil-
tering of low-quality images, particularly those with miss-
ing or off-center items. (2) Diverse item range with max-
imum 15 samples per item to ensure variety. (3) Bal-

anced defect rate (28.6%) that aligns with existing bench-
marks like MVTec-AD [6] and VisA [33] since defective
samples are more valuable for training and evaluation than
non-defective samples. (4) Exclusion of items lacking non-
defective samples to prevent model overfitting.

The curated query dataset is split by item identifier into
training (85%), test (10%), and validation (5%) sets, each
supplemented with up to three reference images from a sep-
arate unlabeled dataset. We remove missing or off-center
reference images but exclude defect type and severity la-
bels. This approach, including the limit of three refer-
ence images per sample, reflects real-world retail conditions
where most items sell infrequently and creating a perfect
reference database is impractical. Consequently, some lim-
ited amount of reference images may exhibit different pack-
aging or contain defects.

3.4. Annotation

Next, we describe the labels and annotation process.

3.4.1. Item Segmentation Masks

The images depict the item inside the full tray, but some
baseline methods may require item crops to perform opti-
mally. We thus generate item segmentation masks using
a U-Net [22] model trained on 17,000 manually annotated
masks, and create square item-crops with 10% padding.
The generated masks and item-crop images are released as
part of the dataset. Moreover, we evaluate the baselines on
both full and item-cropped images.



Figure 4. Left: Distribution of item material types and defect severities. We observe that items with cardboard material dominate the
dataset, followed by plastic bags/cases and books. Right: Distribution of defect types per defect severity. We find that deformation is the
most common defect type, however, it mostly results in minor defect severity, similar to penetration, actuation and superficial. In contrast,
deconstruction and spillage commonly result in major defect severity.

3.4.2. Categorical Labels

Both the query and reference datasets are curated to avoid
low-quality images, as described above. Additionally, each
sample in the query datasets is manually annotated with
the following categorical labels: defect severity, defect type,
and item material.

Defect severity. Each sample is annotated with a defect
severity label: no defect, minor, or major. Major defect
compromises the item’s integrity (e.g. significant crush or
puncture) or risks doing so (e.g. fully opened box lid). Mi-
nor defect renders the item not pristine but potentially ac-
ceptable (e.g. small dents on cardboard packaging). Ac-
knowledging the subtle boundaries between these cate-
gories, our benchmark (Sec. 4) focuses on detecting any

defect (minor and major), with ablation studies model per-
formance on major defect detection.

Defect type. For each defective sample exhibiting at least
minor defect severity, we annotate one or more defect types:
penetration (e.g. holes, tears, cuts), deformation (e.g. dents,
crushes), actuation (e.g. open box/bag/book), deconstruc-

tion, spillage (liquid, powder, etc.), superficial (e.g. dirt,
scratches), missing unit. Assigning multiple defect types
per item is explicitly permitted, as items may incur multiple
defects at the same or different spatial locations.

Item material. Each item is categorized according to its
primary outer material: cardboard, plastic (loose bag),
plastic (hard), plastic (bubble wrap), plastic (tight wrap),
paper, book (paper), book (plastic), other. The distribu-
tion per item material is shown in Figure 4 (left), indicat-
ing higher volumes of cardboard and plastic packaging, fol-
lowed by books.

Each sample is independently labeled by three annota-
tors. We then aggregate annotations through majority vot-

ing. During our baseline evaluation experiments, we found
some wrongly labeled samples, which we manually cor-
rected. We observe that annotation errors primarily arise
from the following issues, exemplified in Figure 3: (1) un-

observable cases where defects cannot be detected due to
sensing limitations or lack of non-defective reference im-
ages; (2) complex cases where defects are present but so
subtle that they get overlooked by annotators; (3) ambigu-

ous cases where an anomaly is visible but it is not clear
whether it qualifies as a defect. We acknowledge that, de-
spite best efforts, the dataset may still contain mislabeled
samples, but demonstrate that these do not negatively affect
the evaluated baselines (see Supplementary Material).

We visualize the resulting distribution of defect severi-
ties and types in Figure 4 (right)1.

4. Benchmark

To demonstrate the challenge posed by our dataset and es-
tablish baseline performance, we evaluate various state-of-
the-art models. We define four distinct evaluation scenar-
ios, based on whether an approach uses the training data,
the reference images, none or both. We choose methods in
such a way to cover a wide variety of relevant approaches,
favoring established and widely adopted methods over their
latest variants.

4.1. Evaluation Metrics

To compare the different baselines, we formulate the task
as a binary classification problem between no defect and

1The figure presents a slightly simplified version of the defect type dis-
tribution, as we only assume one single defect type per sample, which
holds true for 72% of all defective samples in the dataset. For samples
with multiple defect types, we select one based on a predefined priority
list, where more severe defects (such as spillage) take precedence over less
severe ones (such as actuation).



any defect (i.e. defect severity minor or major). Formally,
we evaluate a classifier f(xID

q , {x
ID(1)
ref , . . . , x

ID(GID)
ref }) = ŷ

given a (labeled) test query image (xID
q , y) ↑ Dtest

q with item
identifier ID and binary defect label y ↑ {0, 1} (0 = non-
defective, 1 = defective), and a set of GID corresponding
(unlabeled) test reference images with the same item iden-
tifier from Dtest

ref . Note that both the number of query and
reference images per item identifier varies, and also that
models (e.g. the methods listed in Section 4.2.3) may ig-
nore reference images altogether.

Apart from the query and reference test sets, our dataset
also comprises equivalent subset pairs for model training
Dtrain

q , Dtrain
ref and validation Dvalid

q , Dvalid
ref . The training

datasets are used by the supervised and combined methods,
while the validation datasets are used for hyperparameter
tuning and decision threshold selection.

To compare different models f , we use Average Preci-
sion (AP) on any (minor or major) defect (APany), as our
key performance metric, and additional auxiliary metrics:
• Average Precision (AP) on major defect (APmajor), com-

puted only on the subset of either non-defective or items
with major defects,

• Area under Receiver Operator Characteristic (AUROC),
• Recall at 50% Precision (R@50%P), and
• Recall at 1% False Positive Rate (R@1%FPR).
Some methods perform better on full images and others
on item-cropped images. For the sake of brevity, we re-
port numbers only for the best-performing variant of each
method, indicating what type of image is used in Table 2.

4.2. Scenarios

We present four distinct evaluation scenarios that each ex-
plore unique aspects of our dataset.

(1) No training and no reference images. Such ap-
proaches are commonly referred to as zero shot, leverag-
ing strong general-purpose vision-language models, here
CLIP [20], Claude [4], and Pixtral [1].

(2) No training and with reference images. Here, models
have no access to the labeled training set but they leverage
(unlabeled) reference images at test time. In the anomaly
detection (AD) context, this approach is commonly referred
to as few-shot AD [31] or few-normal-shot AD [13].

(3) With training and without reference images. These
are purely supervised methods [10, 12] that leverage the an-
notated training data to train a binary classifier, ignoring the
reference datasets.

(4) With training and with reference images. These
methods combine approaches (2) and (3) by both training
a model (backbone) and leveraging reference images.

Next, we detail the methods we evaluate as part of each
of the four scenarios. All model and training details re-
quired to replicate the results are provided in the Supple-
mentary Material V. Note that some methods can be applied

in multiple scenarios, as we point out in the following.

4.2.1. No Training and No Reference Images

In this scenario, we test whether and to which extent strong
general-purpose image understanding capabilities translate
to zero-shot defect detection performance.

CLIP. We test the vanilla CLIP model [20] (CLIP),
and CLIP with fine-tuned prompts [21] (POMP). For
vanilla CLIP, we perform manual prompt optimization
on the validation set, and ended up with the follow-
ing prompts for classification: Image of an item

without problems and Image of an item

with problems, for non-defective and defective
samples, respectively. For POMP, we use the labels
undamaged and damaged for the respective classes.

WinCLIP. WinCLIP [13] extends the original CLIP model
for anomaly detection, by (1) providing a diverse set of text
prompts representing defective and healthy samples, and (2)
using multi-scale image feature extraction and comparison.
In the zero-shot setting, WinCLIP only uses query image
and text prompts (WinCLIP-zero).

Claude. We evaluate Anthropic’s Claude 3.5 Sonnet [4],
a public Vision-Language Model (VLM), in the zero-shot
setting in two ways. Claude-zero evaluates the model
when provided with a text prompt and the query image, and
ask the model to inspect the image for defects using Chain-
of-Thought and finally grade the defect severity on a scale
from 0 to 10. We tested different prompts on a small held-
out set, and apply the best-performing prompt to the en-
tire dataset (see Supplementary Material I). In the second
setting (Claude-icl), we apply the few-shot in-context
learning (ICL) scenario, where we additionally provide five
samples as positive defective classes with respective exam-
ple answers. Due to computational constraints, prompt im-
ages are rescaled to 512→ 512.

Pixtral. In addition to Claude, we evaluate the
recent open-source Pixtral-12B model [1] as another
VLM on our dataset. Similarly, we evaluate both a
zero-shot (Pixtral-zero), and an in-context learning
(Pixtral-icl) setting. The best-performing prompts
can be found in the Supplementary Material I.

4.2.2. No Training and With Reference Images

We evaluate two AD approaches that leverage reference im-
ages of known item categories at test time.

PatchCore [23] is a state-of-the-art anomaly detection
method that leverages patch-level features from an image,
comparing each patch’s feature to a memory bank of normal
patches and identifying anomalous samples through patch-
level feature distance. The image-level anomalous score
is computed as the maximum of the patch-level anomaly
scores across all patches in the image. We use the reference



Baseline Tray/Item APany [%] APmajor [%] AUROC R@50%P [%] R@1%FPR [%]
Random - 31.84 14.00 50.00 0.00 1.08

No training, no references (zero-shot, few-shot)
CLIP item 36.20 17.15 56.05 0.56 1.53

POMP item 32.98 18.17 50.44 0.00 1.28
WinCLIP-zero item 33.87 19.11 52.30 0.03 1.37

Claude-icl tray 36.57 24.76 56.96 0.00 0.31
Pixtral-zero tray 32.75 16.42 50.93 0.00 0.81
Pixtral-icl tray 32.18 15.83 50.86 0.00 0.69

No training, with references (few-shot, non-parametric, in-context learning)
PatchCore50 item 35.86 17.80 54.69 2.46 2.18

WinCLIP-few item 34.05 19.29 52.41 0.66 1.56
With training, no references (supervised/instruction fine-tuning)

ResNet50 tray 81.06 74.93 88.36 91.98 30.01
ViT-S tray 90.67 91.45 94.27 97.69 59.36

Pixtral-ft tray 33.43 17.19 51.44 3.62 3.62
AutoGluonMM item 87.77 86.10 92.47 96.76 46.26

With training, with references (supervised with references, non-parametric with fine-tuning)
PatchCore50-ft item 40.18 20.98 60.14 6.52 2.37
AutoGluonMM-ref item 71.21 61.45 84.29 89.83 13.32

Table 2. Results of the evaluated baseline methods on the test set split with 10067 total samples (minor defect: 2089, major defect: 1117).

test set to create the individual memory banks of features
for different items and to compute the anomaly score. As
a backbone for feature extraction, we test ResNet50 pre-
trained on ImageNet (PatchCore50).

WinCLIP. We test WinCLIP in the few-shot setting, by en-
abling it to perform visual feature comparison with refer-
ence images (WinCLIP-few).

4.2.3. With Training and No Reference Images

Here, we focus on common supervised methods that lever-
age the annotated training data to learn how to recognize
the appearance of visual defects. To do so, we fine-tune
two common types image backbones for defect classifica-
tion using a binary cross entropy (BCE) loss, feeding only
the query images as input.

Convolutional Networks. We fine-tune a ResNet50
model [12] backbone, pretrained on ImageNet [8], on
our training data (ResNet50). Preliminary experiments
demonstrated that a high resolution is necessary to prevent
subtle or small defects from being obscured or lost due to
downsampling, and we thus use a resolution of 1024→1024
pixels. Training is conducted for 20 epochs with an initial
learning rate of 5→ 10→5 and batch size 48.

Vision Transformers. We fine-tune a ViT-small pretrained
on DINOv2 [19] with patch size 14 → 14 px [9] at 1024 →
1024 px for 30 epochs, with an initial learning rate of
5→10→6 and batch size 8 (ViT-S). Additionally, we test an
AutoML approach using the AutoGluon MultiModal frame-

work [29] (AutoGluonMM).

Pixtral fine-tuned. In addition to the zero-shot and few-
shot variants of Pixtral, we instruct-finetuned the model on
question-answer pairs from our dataset in order to adapt the
model to our domain (Pixtral-ft). We run LoRA fine-
tuning for one epoch on 10,000 samples from the training
set with a fixed learning rate of 3→ 10→5.

4.2.4. With Training and With Reference Images

Finally, we study whether access to both training data and
reference images improves performance.

PatchCore with a fine-tuned backbone. We test Patch-
Core as explained in Section 4.2.2, but replace the ResNet50
backbone fine-tuned on ImageNet with a ResNet50 back-
bone fine-tuned on our training dataset from Section 4.2.3
(PatchCore50-ft) similar to [16].

AutoGluonMM. To handle both query and reference im-
ages of the same item at train and test time, we use Auto-
Gluon MultiModal [29] by passing all images (query and

references) for each sample through the same image back-
bone and averaging their respective embeddings to obtain
the final representation (AutoGluon-ref).

4.3. Results

We summarize the results of all baseline methods in Ta-
bles 2 and 3, with a detailed error analysis provided in the
Supplementary Material IV. Our experiments aim to answer
the following questions. (1) How well do methods with ac-



cess to (all) defective instances at training time perform?
(2) How does performance deteriorate when fewer defective
instances are available for training? (3) How well do unsu-
pervised and anomaly detection methods without access to
defective instances for training perform?

(1) Upper bound with access to a large number of de-

fective instances at training time. The supervised base-
lines perform well, with ViT-S reaching 90.67% APany.
While models effectively detect major defects like de-
constructions, penetrations, and deformations, they strug-
gle with subtle anomalies, rare defect types (spillage),
and reference-dependent defects (missing unit). False
positives primarily occur with oddly-shaped items and
“adversarial” items featuring damage-like designs. No-
tably, methods using both training data and references
(PatchCore50-ft and AutoGluonMM-ref) under-
perform compared to reference-free approaches. This sug-
gests that naive reference usage actually hinders model per-
formance, likely due to feature averaging across input im-
ages complicating the learning task. This hypothesis is sup-
ported by inspecting their training set performance (96%
APany without references versus 87% with).

(2) Reduced access to defective instances at training

time. Table 3 shows how supervised baselines perform in
a more realistic scenario with limited number of defective
training samples, with only 1% defective rate in the training
set. Unsurprisingly, performance drops significantly from
90.67% APany to 57.7% APany for fully supervised meth-
ods (Query only). As before, the model is not able to
leverage the non-defective samples (Query + ref).

(3) No defective instances at training time. No
method without training surpasses 36.57% APany

(Claude-icl), with both zero-shot/in-context learn-
ing models (CLIP/POMP, Pixtral-*) and anomaly
detection models (PatchCore50, WinCLIP-*) per-
forming only slightly above chance. Out of the CLIP-based
approaches the original CLIP model performs best. We
find that the model seems to occasionally read the text on
the items and wrongly associates it with defect predictions.
VLMs provide a reasonable overall description and can
catch egregious defects like gross deconstruction, but
fail to capture the intricacy and variety of minor defects
concerning deformable items, stickers/dirt on trays, and
subtle anomalies, corroborating previous findings by
[14]. Anomaly detection methods latch on to non-defect
related visual differences, such as novel poses/viewpoints,
background noise, and packaging variations.

Interestingly, PatchCore with a fine-tuned ResNet50
backbone (PatchCore50-ft) shows 4.32 ppts im-
provement compared to the ImageNet-based model
PatchCore50, indicating the usefulness of leveraging de-
fective instances for representation learning in anomaly de-

Input APany [%] APmajor [%] AUROC

Query only 57.7 40.5 74.4
Query + ref 40.4 14.9 63.2

Table 3. Classification performance on a reduced training set, with
a defect rate of only 1%. We compare a ViT using only query im-
ages and a late-fusion ViT using both query and reference images.

tection [16]. However, it still struggles in detecting mi-
nor actuation and deconstruction, particularly when items
are slightly displaced of their packaging. Moreover, some
false negatives stem from faulty reference images incor-
rectly assumed to be non-defective, highlighting the extra
pre-caution required in using unlabeled reference data in
anomaly detection. False positives mostly arise from vi-
sual disparities between test and reference images, includ-
ing variations in pose and product appearance. These results
highlight the need for improved anomaly detection methods
with a more thorough understanding of defects and more so-
phisticated ways for using references for visual comparison.

In summary, supervised methods perform best when
given access to large amounts of defective instances dur-
ing training, but still struggle with edge cases such as de-
formable and adversarial items. Adding reference images
naively degrades rather than improves performance. Unsu-
pervised and anomaly detection methods fall short by a sig-
nificant margin, but improve with access to training data.

5. Outlook and Conclusion

We presented a large-scale dataset for visual defect and
anomaly detection in retail logistics. Comprising 238,421
images including 29,316 defective samples, it captures chal-
lenges of retail logistics processes and represents one of the
largest and most diverse datasets of its kind. The dataset
overcomes critical limitations in existing benchmarks and
enables the research community to address the remaining
challenges in visual defect and anomaly detection. It allows
for benchmarking methods in various scenarios, with and
without training and reference images. We demonstrate the
complexity of the proposed task by evaluating a number of
state-of-the-art approaches and highlight the need for more
robust solutions, particularly in anomaly-detection settings.

This dataset marks a significant step towards develop-
ing defect detection systems capable of handling real-world
scenarios, setting a new standard for research in retail lo-
gistics applications of visual inspection. We encourage fu-
ture research to explore the dataset by developing novel ap-
proaches. Key questions for future work include but are not
limited to: (1) How can anomaly detection methods be gen-
eralized to deal with significant item and pose variability?
(2) How can methods effectively leverage both training data
and reference images? (3) How can we create methods that
not only detect defects but also explain their reasoning?
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