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Abstract

We study the problem of best-arm identification
(BAI) in the fixed-budget setting with heteroge-
neous reward variances. We propose two variance-
adaptive BAI algorithms for this setting: SHVar
for known reward variances and SHAdaVar for un-
known reward variances. The key idea in our al-
gorithms is to adaptively allocate more budget to
arms with higher reward variances. The main al-
gorithmic novelty is in the design of SHAdaVar,
which allocates budget greedily based on overesti-
mating unknown reward variances. We bound the
probabilities of misidentifying best arms in both
SHVar and SHAdaVar. Our analyses rely on novel
lower bounds on the number of arm pulls in BAI
that do not require closed-form solutions to the
budget allocation problem. One of our budget allo-
cation problems is equivalent to the optimal exper-
iment design with unknown variances and thus of
a broad interest. We also evaluate our algorithms
on synthetic and real-world problems. In most set-
tings, SHVar and SHAdaVar outperform all prior
algorithms.

1 INTRODUCTION

The problem of best-arm identification (BAI) in the fixed-
budget setting is a pure exploration bandit problem which
can be briefly described as follows. An agent interacts with
a stochastic multi-armed bandit with K arms and its goal is
to identify the arm with the highest mean reward within a
fixed budget n of arm pulls [Bubeck et al., 2009, Audibert
et al., 2010]. This problem arises naturally in many applica-
tions in practice, such as online advertising, recommender
systems, and vaccine tests [Lattimore and Szepesvari, 2019].
It is also common in applications where observations are
costly, such as Bayesian optimization [Krause et al., 2008].

Another commonly studied setting is fixed-confidence BAI
[Even-Dar et al., 2006, Soare et al., 2014]. Here the goal
is to identify the best arm within a prescribed confidence
level while minimizing the budget. Some works also stud-
ied both settings [Gabillon et al., 2012, Karnin et al., 2013,
Kaufmann et al., 2016].

Our work can be motivated by the following example. Con-
sider an A/B test where the goal is to identify a movie with
the highest average user rating from a set of K movies. This
problem can be formulated as BAI by treating the movies as
arms and user ratings as stochastic rewards. Some movies
get either unanimously good or bad ratings, and thus their
ratings have a low variance. Others get a wide range of rat-
ings, because they are rated highly by their target audience
and poorly by others; and hence their ratings have a high
variance. For this setting, we can design better BAI policies
that take the variance into account. Specifically, movies with
low-variance ratings can be exposed to fewer users in the
A/B test than movies with high-variance ratings.

An analogous synthetic example is presented in Figure 1.
In this example, reward variances increase with mean arm
rewards for a half of the arms, while the remaining arms
have very low variances. The knowledge of the reward vari-
ances can be obviously used to reduce the number of pulls
of arms with low-variance rewards. However, in practice,
the reward variances are rarely known in advance, such as
in our motivating A/B testing example, and this makes the
design and analysis of variance-adaptive BAI algorithms
challenging. We revisit these two examples in our empirical
studies in Section 5.

We propose and analyze two variance-adaptive BAI algo-
rithms: SHVar and SHAdaVar. SHVar assumes that the re-
ward variances are known and is a stepping stone for our
fully-adaptive BAI algorithm SHAdaVar, which estimates
them. SHAdaVar utilizes high-probability upper confidence
bounds on the reward variances. Both algorithms are moti-
vated by sequential halving (SH) of Karnin et al. [2013], a
near-optimal solution for fixed-budget BAI with homoge-
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neous reward variances.

Our main contributions are:

• We design two variance-adaptive algorithms for fixed-
budget BAI: SHVar for known reward variances and
SHAdaVar for unknown reward variances. SHAdaVar
is only a third algorithm for this setting [Gabillon et al.,
2011, Faella et al., 2020] and only a second that can
be implemented as analyzed [Faella et al., 2020]. The
key idea in SHAdaVar is to solve a budget allocation
problem with unknown reward variances by a greedy
algorithm that overestimates them. This idea can be
applied to other elimination algorithms in the cumu-
lative regret setting [Auer and Ortner, 2010] and is of
independent interest to the field of optimal experiment
design [Pukelsheim, 1993].

• We prove upper bounds on the probability of misidenti-
fying the best arm for both SHVar and SHAdaVar. The
analysis of SHVar extends that of Karnin et al. [2013]
to heterogeneous variances. The analysis of SHAdaVar
relies on a novel lower bound on the number of pulls
of an arm that scales linearly with its unknown reward
variance. This permits an analysis of sequential halving
without requiring a closed form for the number of pulls
of each arm.

• We evaluate our methods empirically on Gaussian ban-
dits and the MovieLens dataset [Lam and Herlocker,
2016]. In most settings, SHVar and SHAdaVar outper-
form all prior algorithms.

The paper is organized as follows. In Section 2, we present
the fixed-budget BAI problem. We present our algorithms in
Section 3 and analyze them in Section 4. The algorithms are
empirically evaluated in Section 5. We review prior works
in Section 6 and conclude in Section 7.

2 SETTING

We use the following notation. Random variables are cap-
italized, except for Greek letters like µ. For any positive
integer n, we define [n] = {1, . . . , n}. The indicator func-
tion is denoted by 1{·}. The i-th entry of vector v is vi. If
the vector is already indexed, such as vj , we write vj,i. The
big O notation up to logarithmic factors is Õ.

We have a stochastic bandit with K arms and denote the set
of arms by A = [K]. When the arm is pulled, its reward
is drawn i.i.d. from its reward distribution. The reward dis-
tribution of arm i ∈ A is sub-Gaussian with mean µi and
variance proxy σ2

i . The best arm is the arm with the highest
mean reward,

i∗ = argmax i∈A µi .

Without loss of generality, we make an assumption that the
arms are ordered as µ1 > µ2 ≥ . . . ≥ µK . Therefore, arm

Figure 1: Mean rewards and variances for K = 64 arms in
the Gaussian bandit in Section 5.1.

i∗ = 1 is a unique best arm. The agent has a budget of n
observations and the goal is to identify i∗ as accurately as
possible after pulling all arms n times. Specifically, let Î
denote the arm returned by the agent after n pulls. Then our
objective is to minimize the probability of misidentifying
the best arm P

(
Î ̸= i∗

)
, which we also call a mistake prob-

ability. This setting is known as fixed-budget BAI [Bubeck
et al., 2009, Audibert et al., 2010]. When observations are
costly, it is natural to limit them by a fixed budget n.

Another commonly studied setting is fixed-confidence BAI
[Even-Dar et al., 2006, Soare et al., 2014]. Here the agent
is given an upper bound on the mistake probability δ as an
input and the goal is to attain P

(
Î ̸= i∗

)
≤ δ at minimum

budget n. Some works also studied both the fixed-budget
and fixed-confidence settings [Gabillon et al., 2012, Karnin
et al., 2013, Kaufmann et al., 2016].

3 ALGORITHMS

A near-optimal solution for fixed-budget BAI with homoge-
neous reward variances is sequential halving [Karnin et al.,
2013]. The key idea is to sequentially eliminate suboptimal
arms in log2 K stages. In each stage, all arms are pulled
equally and the worst half of the arms are eliminated at the
end of the stage. At the end of the last stage, only one arm Î
remains and that arm is the estimated best arm.

The main algorithmic contribution of our work is that we
generalize sequential halving of Karnin et al. [2013] to
heterogeneous reward variances. All of our algorithms can
be viewed as instances of a meta-algorithm (Algorithm 1),
which we describe in detail next. Its inputs are a budget
n on the number of observations and base algorithm Alg.
The meta-algorithm has m stages (line 2) and the budget is
divided equally across the stages, with a per-stage budget
ns = ⌊n/m⌋ (line 5). In stage s, all remaining arms As are
pulled according to Alg (lines 6–8). At the end of stage s,



Algorithm 1 Meta-algorithm for sequential halving.

1: Input: Budget n, base algorithm Alg

2: Number of stages m← ⌈log2 K⌉
3: A1 ← A
4: for s = 1, . . . ,m do
5: Per-stage budget ns ← ⌊n/m⌋
6: for t = 1, . . . , ns do
7: Is,t ← Alg(s, t)
8: Observe reward Ys,t,Is,t of arm Is,t

9: for i ∈ As do

10: Ns,i ←
ns∑
t=1

1{Is,t = i}

11: µ̂s,i ←
1

Ns,i

ns∑
t=1

1{Is,t = i}Ys,t,i

12: As+1 ← {⌈|As| /2⌉ arms i ∈ As with highest µ̂s,i}

13: Output: The last remaining arm Î in Am+1

Algorithm 2 SH: Pulled arm in sequential halving.

1: Input: Stage s, round t

2: k ← (t− 1) mod |As|+ 1
3: Is,t ← k-th arm in As

4: Output: Arm to pull Is,t

the worst half of the remaining arms, as measured by their
estimated mean rewards, is eliminated (lines 9–12). Here
Ys,t,i is the stochastic reward of arm i in round t of stage
s, Is,t ∈ As is the pulled arm in round t of stage s, Ns,i is
the number of pulls of arm i in stage s, and µ̂s,i is its mean
reward estimate from all observations in stage s.

The sequential halving of Karnin et al. [2013] is an instance
of Algorithm 1 for Alg = SH. The pseudocode of SH, which
pulls all arms in stage s equally, is in Algorithm 2. We call
the resulting algorithm SH. This algorithm misidentifies the
best arm with probability [Karnin et al., 2013]

P
(
Î ̸= 1

)
≤ 3 log2 K exp

[
− n

8H2 log2 K

]
, (1)

where

H2 = max
i∈A\{1}

i

∆2
i

(2)

is a complexity parameter and ∆i = µ1 − µi is the subopti-
mality gap of arm i. The bound in (1) decreases as budget n
increases and problem complexity H2 decreases.

SH is near optimal only in the setting of homogeneous re-
ward variances. In this work, we study the general setting

Algorithm 3 SHVar: Pulled arm in sequential halving with
known heterogeneous reward variances.

1: Input: Stage s, round t

2: for i ∈ As do

3: Ns,t,i ←
t−1∑
ℓ=1

1{Is,ℓ = i}

4: Is,t ← argmax
i∈As

σ2
i

Ns,t,i

5: Output: Arm to pull Is,t

where the reward variances of arms vary, potentially as ex-
tremely as in our motivating example in Figure 1. In this
example, SH would face arms with both low and high vari-
ances in each stage. A variance-adaptive SH could adapt its
budget allocation in each stage to the reward variances and
thus eliminate suboptimal arms more effectively.

3.1 KNOWN HETEROGENEOUS REWARD
VARIANCES

We start with the setting of known reward variances. Let

σ2
i = var [Ys,t,i] = E

[
(Ys,t,i − µi)

2
]

(3)

be a known reward variance of arm i. Our proposed algo-
rithm is an instance of Algorithm 1 for Alg = SHVar. The
pseudocode of SHVar is in Algorithm 3. The key idea is to
pull the arm with the highest variance of its mean reward
estimate. The variance of the mean reward estimate of arm
i in round t of stage s is σ2

i /Ns,t,i, where σ2
i is the reward

variance of arm i and Ns,t,i is the number of pulls of arm
i up to round t of stage s. We call the resulting algorithm
SHVar.

Note that SH is an instance of SHVar. Specifically, when all
σi = σ for some σ > 0, SHVar pulls all arms equally, as in
SH. SHVar can be also viewed as pulling any arm i in stage
s for

Ns,i ≈
σ2
i∑

j∈As
σ2
j

ns (4)

times. This is stated formally and proved below.

Lemma 1. Fix stage s and let the ideal number of pulls of
arm i ∈ As be

λs,i =
σ2
i∑

j∈As
σ2
j

ns .

Let all λs,i be integers. Then SHVar pulls arm i in stage s
exactly λs,i times.

Proof. First, suppose that SHVar pulls each arm i exactly
λs,i times. Then the variances of all mean reward estimates



at the end of stage s are identical, because

σ2
i

Ns,i
=

σ2
i

λs,i
=

σ2
i

σ2
i∑

j∈As
σ2
j
ns

=

∑
j∈As

σ2
j

ns
.

Now suppose that this is not true. This implies that there
exists an over-pulled arm i ∈ As and an under-pulled arm
k ∈ As such that

σ2
i

Ns,i
<

∑
j∈As

σ2
j

ns
<

σ2
k

Ns,k
. (5)

Since arm i ∈ As is over-pulled and λs,i is an integer, there
must exist a round t ∈ [ns] such that

σ2
i

Ns,t,i
=

σ2
i

λs,i
=

∑
j∈As

σ2
j

ns
.

Let t be the last round where this equality holds, meaning
that arm i is pulled in round t.

Now we combine the second inequality in (5) with Ns,k ≥
Ns,t,k, which holds by definition, and get∑

j∈As
σ2
j

ns
<

σ2
k

Ns,k
≤ σ2

k

Ns,t,k
.

The last two sets of inequalities lead to a contradiction. On
one hand, we know that arm i is pulled in round t. On the
other hand, we have σ2

i /Ns,t,i < σ2
k/Ns,t,k, which means

that arm i cannot be pulled. This completes the proof.

Lemma 1 says that each arm i ∈ As is pulled O(σ2
i ) times.

Since the mean reward estimate of arm i at the end of stage
s has variance σ2

i /Ns,i, the variances of all estimates at the
end of stage s are identical,

(∑
i∈As

σ2
i

)
/ns. This relates

our problem to the G-optimal design [Pukelsheim, 1993].
Specifically, the G-optimal design for independent experi-
ments i ∈ As is an allocation of observations (Ns,i)i∈As

such that
∑

i∈As
Ns,i = ns and the maximum variance

max
i∈As

σ2
i

Ns,i
(6)

is minimized. This happens precisely when all σ2
i /Ns,i are

identical, when Ns,i = λs,i for λs,i in Lemma 1.

3.2 UNKNOWN HETEROGENEOUS REWARD
VARIANCES

Our second proposal is an algorithm for unknown reward
variances. One natural idea, which is expected to be prac-
tical but hard to analyze, is to replace σ2

i in SHVar with its
empirical estimate from the past t− 1 rounds in stage s,

σ̂2
s,t,i =

1

Ns,t,i − 1

t−1∑
ℓ=1

1{Is,ℓ = i} (Ys,ℓ,i − µ̂s,t,i)
2 ,

Algorithm 4 SHAdaVar: Pulled arm in sequential halving
with unknown heterogeneous reward variances.

1: Input: Stage s, round t

2: if t ≤ |As| (4 log(1/δ) + 1) then
3: k ← (t− 1) mod |As|+ 1
4: Is,t ← k-th arm in As

5: else
6: for i ∈ As do

7: Ns,t,i ←
t−1∑
ℓ=1

1{Is,ℓ = i}

8: Is,t ← argmax
i∈As

Us,t,i

Ns,t,i

9: Output: Arm to pull Is,t

where

µ̂s,t,i =
1

Ns,t,i

t−1∑
ℓ=1

1{Is,ℓ = i}Ys,ℓ,i

is the empirical mean reward of arm i in round t of stage
s. This design would be hard to analyze because σ̂s,t,i can
underestimate σi, and thus is not an optimistic estimate.

The key idea in our solution is to act optimistically using
an upper confidence bound (UCB) on the reward variance.
To derive it, we make an assumption that the reward noise
is Gaussian. Specifically, the reward of arm i in round t
of stage s is distributed as Ys,t,i ∼ N (µi, σ

2
i ). This allows

us to derive the following upper and lower bounds on the
unkown variance σ2

i .

Lemma 2. Fix stage s, round t ∈ [ns], arm i ∈ As, and
failure probability δ ∈ (0, 1). Let

N = Ns,t,i − 1

and suppose that N > 4 log(1/δ). Then

P

σ2
i ≥

σ̂2
s,t,i

1− 2
√

log(1/δ)
N

 ≤ δ

holds with probability at least 1− δ. Analogously,

P

(
σ̂2
s,t,i ≥ σ2

i

[
1 + 2

√
log(1/δ)

N
+

2 log(1/δ)

N

])
≤ δ

holds with probability at least 1− δ.

Proof. The first claim is proved as follows. By Cochran’s
theorem, we have that σ̂2

s,t,iN/σ2
i is a χ2 random variable

with N degrees of freedom. Its concentration was analyzed
in Laurent and Massart [2000]. More specifically, by (4.4)



in Laurent and Massart [2000], an immediate corollary of
their Lemma 1, we have

P

(
N −

σ̂2
s,t,iN

σ2
i

≥ 2
√
N log(1/δ)

)
≤ δ .

Now we divide both sides in the probability by N , multiply
by σ2

i , and rearrange the formula as

P
(
σ2
i

(
1− 2

√
log(1/δ)/N

)
≥ σ̂2

s,t,i

)
≤ δ .

When 1 − 2
√
log(1/δ)/N > 0, we can divide both sides

by it and get the first claim in Lemma 2.

The second claim is proved analogously. Specifically, by
(4.3) in Laurent and Massart [2000], an immediate corollary
of their Lemma 1, we have

P

(
σ̂2
s,t,iN

σ2
i

−N ≥ 2
√
N log(1/δ) + 2 log(1/δ)

)
≤ δ .

Now we divide both sides in the probability by N , multi-
ply by σ2

i , and obtain the second claim in Lemma 2. This
concludes the proof.

By Lemma 2, when Ns,t,i > 4 log(1/δ) + 1,

Us,t,i =
σ̂2
s,t,i

1− 2
√

log(1/δ)
Ns,t,i−1

(7)

is a high-probability upper bound on the reward variance of
arm i in round t of stage s, which holds with probability at
least 1− δ. This bound decreases as the number of observa-
tions Ns,t,i increases and confidence δ decreases. To apply
the bound across multiple stages, rounds, and arms, we use
a union bound.

The bound in (7) leads to our algorithm that overestimates
the variance. The algorithm is an instance of Algorithm 1
for Alg = SHAdaVar. The pseudocode of SHAdaVar is in
Algorithm 4. To guarantee Ns,t,i > 4 log(1/δ) + 1, we pull
all arms As in any stage s for 4 log(1/δ) + 1 times initially.
We call the resulting algorithm SHAdaVar.

Note that SHAdaVar can be viewed as a variant of SHVar
where Us,t,i replaces σ2

i . Therefore, it can also be viewed as
solving the G-optimal design in (6) without knowing reward
variances σ2

i ; and SHAdaVar is of a broader interest to the
optimal experiment design community [Pukelsheim, 1993].
We also note that the assumption of Gaussian noise in the
design of SHAdaVar is limiting. To address this issue, we
experiment with non-Gaussian noise in Section 5.2.

4 ANALYSIS

This section comprises three analyses. In Section 4.1, we
bound the probability that SHVar, an algorithm that knows

reward variances, misidentifies the best arm. In Section 4.2,
we provide an alternative analysis that does not rely on the
closed form in (4). Finally, in Section 4.3, we bound the
probability that SHAdaVar, an algorithm that learns reward
variances, misidentifies the best arm.

All analyses are under the assumption of Gaussian reward
noise. Specifically, the reward of arm i in round t of stage s
is distributed as Ys,t,i ∼ N (µi, σ

2
i ).

4.1 ERROR BOUND OF SHVar

We start with analyzing SHVar, which is a stepping stone
for analyzing SHAdaVar. To simplify the proof, we assume
that both m and ns are integers. We also assume that all
budget allocations have integral solutions in Lemma 1.

Theorem 3. SHVar misidentifies the best arm with proba-
bility

P
(
Î ̸= 1

)
≤ 2 log2 K exp

[
− n∆2

min

4 log2 K
∑

j∈A σ2
j

]
,

where ∆min = µ1 − µ2 is the minimum gap.

Proof. The claim is proved in Appendix A. We follow the
outline in Karnin et al. [2013]. The novelty is in extending
the proof to heterogeneous reward variances. This requires
a non-uniform budget allocation, where arms with higher
reward variances are pulled more (Lemma 1).

The bound in Theorem 3 depends on all quantities as ex-
pected. It decreases as budget n and minimum gap ∆min

increase, and the number of arms K and variances σ2
j de-

crease. SHVar reduces to SH in Karnin et al. [2013] when
σ2
i = 1/4 for all arms i ∈ A. The bounds of SH and SHVar

become comparable when we apply H2 ≤ K/∆2
min in (1)

and note that
∑

j∈A σ2
j = K/4 in Theorem 3. The extra

factor of 8 in the exponent of (1) is due to a different proof,
which yields a finer dependence on gaps.

4.2 ALTERNATIVE ERROR BOUND OF SHVar

Now we analyze SHVar differently. The resulting bound is
weaker than that in Theorem 3 but its proof can be easily
extended to SHAdaVar.

Theorem 4. SHVar misidentifies the best arm with proba-
bility

P
(
Î ̸= 1

)
≤ 2 log2 K exp

[
− (n−K logK)∆2

min

4σ2
maxK log2 K

]
,

where ∆min = µ1 − µ2 is the minimum gap and σ2
max =

maxi∈A σ2
i is the maximum reward variance.



Proof. The claim is proved in Appendix B. The key idea in
the proof is to derive a lower bound on the number of pulls
of any arm i in stage s, instead of using the closed form of
Ns,i in (4). The lower bound is

Ns,i ≥
σ2
i

σ2
max

(
ns

|As|
− 1

)
.

An important property of the bound is that it is Ω(σ2
i ns),

similarly to Ns,i in (4). Therefore, the rest of the proof is
similar to that of Theorem 3.

As in Theorem 3, the bound in Theorem 4 depends on all
quantities as expected. It decreases as budget n and mini-
mum gap ∆min increase, and the number of arms K and
maximum variance σ2

max decrease. The bound approaches
that in Theorem 3 when all reward variances are identical.

4.3 ERROR BOUND OF SHAdaVar

Now we analyze SHAdaVar.

Theorem 5. Suppose that δ < 1/(Kn) and

n ≥ K log2 K(4 log(Kn/δ) + 1) .

Then SHAdaVar misidentifies the best arm with probability

P
(
Î ̸= 1

)
≤ 2 log2 K exp

[
−α (n−K logK)∆2

min

4σ2
maxK log2 K

]
,

where ∆min and σ2
max are defined in Theorem 4, and

α =
1− 2

√
log(Kn/δ)
n/K−2

1 + 2
√

log(Kn/δ)
n/K−2 + 2 log(Kn/δ)

n/K−2

.

Proof. The claim is proved in Appendix C. The key idea in
the proof is to derive a lower bound on the number of pulls
of any arm i in stage s, similarly to that in Theorem 4. The
lower bound is

Ns,i ≥
σ2
i

σ2
max

α(|As| , ns, δ)

(
ns

|As|
− 1

)
and holds with probability at least 1− δ. Since the bound is
Ω(σ2

i ns), as in the proof of Theorem 4, the rest of the proof
is similar. The main difference from Theorem 4 is in factor
α(|As| , ns, δ), which converges to 1 as ns →∞.

The bound in Theorem 5 depends on all quantities as ex-
pected. It decreases as budget n and minimum gap ∆min

increase, and the number of arms K and maximum variance
σ2
max decrease. As n → ∞, we get α → 1 and the bound

converges to that in Theorem 4.

5 EXPERIMENTS

In this section, we empirically evaluate our proposed algo-
rithms, SHVar and SHAdaVar, and compare them to algo-
rithms from prior works. We choose the following baselines:
uniform allocation (Unif), sequential halving (SH) [Karnin
et al., 2013], gap-based exploration (GapE) [Gabillon et al.,
2011], gap-based exploration with variance (GapE-V) [Gabil-
lon et al., 2011], and variance-based rejects (VBR) [Faella
et al., 2020].

Unif allocates equal budget to all arms and SH was origi-
nally proposed for homogeneous reward variances. Neither
Unif nor SH can adapt to heterogenuous reward variances.
GapE, GapE-V and VBR are variance-adaptive BAI methods
from related works (Section 6). In GapE, we use H from
Theorem 1 of Gabillon et al. [2011]. In GapE-V, we use H
from Theorem 2 of Gabillon et al. [2011]. Both GapE and
GapE-V assume bounded reward distributions with support
[0, b]. We choose b = maxi∈A µi + σi

√
log n, since this

is a high-probability upper bound on the absolute value of
n independent observations from N (µi, σ

2
i ). In SHAdaVar,

we set δ = 0.05, and thus our upper bounds on reward vari-
ances hold with probability 0.95. In VBR, γ = 1.96, which
means that the mean arm rewards lie between their upper
and lower bounds with probability 0.95. Faella et al. [2020]
showed that VBR performs well with Gaussian noise when
γ ≈ 2. All reported results are averaged over 5 000 runs.

GapE and GapE-V have O(exp[−cn/H]) error bounds on
the probability of misidentifying the best arm, where n is
the budget, H is the complexity parameter, and c = 1/144
for GapE and c = 1/512 for GapE-V. Our error bounds are
O(exp[−c′n/H ′]), where H ′ is a comparable complexity
parameter and c′ = 1/(4 log2 K). Even for moderate K,
c ≪ c′. Therefore, when SHVar and SHAdaVar are imple-
mented as analyzed, they provide stronger guarantees on
identifying the best arm than GapE and GapE-V. To make
the algorithms comparable, we set H of GapE and GapE-V
to Hc/c′, by increasing their confidence widths. Since H is
an input to both GapE and GapE-V, note that they have an
advantage over our algorithms that do not require it.

5.1 SYNTHETIC EXPERIMENTS

Our first experiment is on a Gaussian bandit with K arms.
The mean reward of arm i is µi = 1 −

√
(i− 1)/K. We

choose this setting because SH is known to perform well in
it. Specifically, note that the complexity parameter H2 in (2)
is minimized when i/∆2

i are equal for all i ∈ A \ {1}. For
our µi, ∆2

i = (i − 1)/K ≈ i/K and thus i/∆2
i ≈ K. We

set the reward variance as σ2
i = 0.9µ2

i + 0.1 when arm i is
even and σ2

i = 0.1 when arm i is odd. We additionally per-
turb µi and σ2

i with additiveN (0, 0.052) and multiplicative
Unif(0.5, 1.5) noise, respectively. We visualize the mean
rewards µi and the corresponding variances σ2

i , for K = 64



Figure 2: Probability of misidentifying the best arm in the
Gaussian bandit in Section 5.1, as budget n increases. The
number of arms is K = 64 and the results are averaged over
5 000 runs.

arms, in Figure 1. The variances are chosen so that every
stage of sequential halving involves both high-variance and
low-variance arms. Therefore, an algorithm that adapts its
budget allocation to the reward variances of the remaining
arms eliminates the best arm with a lower probability than
the algorithm that does not.

In Figure 2, we report the probability of misidentifying the
best arm among K = 64 arms (Figure 1) as budget n in-
creases. As expected, the naive algorithm Unif performs the
worst. GapE and GapE-V perform only slightly better. When
the algorithms have comparable error guarantees to SHVar

and SHAdaVar, their confidence intervals are too wide to
be practical. SH performs surprisingly well. As observed by
Karnin et al. [2013] and confirmed by Li et al. [2018], SH is
a superior algorithm in the fixed-budget setting because it
aggressively eliminates a half of the remaining arms in each
stage. Therefore, it outperforms GapE and GapE-V. We note
that SHVar outperforms all algorithms for all budgets n. For
smaller budgets, VBR outperforms SHAdaVar. However, as
the budget n increases, SHAdaVar outperforms VBR; and
without any additional information about the problem in-
stance approaches the performance of SHVar, which knows
the reward variances. This shows that our variance upper
bounds improve quickly with larger budgets, as is expected
based on the algebraic form in (7).

In the next experiment, we take same Gaussian bandit as
in Figure 2. The budget is fixed at n = 5000 and we vary
the number of arms K from 32 to 64. In Figure 3, we show
the probability of misidentifying the best arm as the number
of arms K increases. We observe two major trends. First,
the relative order of the algorithms, as measured by their
probability of a mistake, is similar to Figure 2. Second, all
algorithms get worse as the number of arms K increases
because the problem instance becomes harder. This experi-
ment shows that SHVar and SHAdaVar can perform well for

Figure 3: Probability of misidentifying the best arm in the
Gaussian bandit in Section 5.1, as the number of arms K
increases. The budget is fixed at n = 5000 and the results
are averaged over 5 000 runs.

a wide range of K, they have the lowest probabilities of a
mistake for all K. While the other algorithms perform well
at K = 32, their probability of a mistake is around 0.05 or
below; they perform poorly at K = 64, their probability of
a mistake is above 0.1.

5.2 MOVIELENS EXPERIMENTS

Our next experiment is motivated by the A/B testing prob-
lem in Section 1. The objective is to identify the movie with
the highest mean rating from a pool of K movies, where
movies are arms and their ratings are rewards. The movies,
users, and ratings are simulated using the MovieLens 1M
dataset [Lam and Herlocker, 2016]. This dataset contains
one million ratings given by 6 040 users to 3 952 movies.
We complete the missing ratings using low-rank matrix fac-
torization with rank 5, which is done using alternating least
squares [Davenport and Romberg, 2016]. The result is a
6 040× 3 952 matrix M , where Mi,j is the estimated rating
given by user i to movie j.

This experiment is averaged over 5 000 runs. In each run,
we randomly choose new movies according to the following
procedure. For all arms i ∈ A, we generate mean µ̃i and
variance σ̃2

i as described in Section 5.1. Then, for each i,
we find the closest movie in the MovieLens dataset with
mean µi and variance σ2

i , the movie that minimizes the dis-
tance (µi − µ̃i)

2 + (σ2
i − σ̃2

i )
2. The means and variances

of movie ratings from two runs are shown in Figure 4. As
in Section 5.1, the movies are selected so that sequential
elimination with halving is expected to perform well. The
variance of movie ratings in Figure 4 is intrinsic to our do-
main: movies are often made for specific audiences and thus
can have a huge variance in their ratings. For instance, a
child may not like a horror movie, while a horror enthusiast
would enjoy it. Because of this, an algorithm that adapts its



Figure 4: Means and variances of ratings of K movies from
the MovieLens dataset. A new sample is generated in each
run of the experiment, as described in Section 5.2.

Figure 5: Probability of misidentifying the best movie in the
MovieLens bandit in Section 5.2, as budget n increases. The
number of movies is K = 64 and the results are averaged
over 5 000 runs.

budget allocation to the rating variances of the remaining
movies can perform better. The last notable difference from
Section 5.1 is that movie ratings are realistic. In particu-
lar, when arm i is pulled, we choose a random user j and
return Mj,i as its stochastic reward. Therefore, this exper-
iment showcases the robustness of our algorithms beyond
Gaussian noise.

In Figure 5, we report the probability of misidentifying the
best movie from K = 64 as budget n increases. SHVar and
SHAdaVar perform the best for most budgets, although the
reward distributions are not Gaussian. The relative perfor-
mance of the algorithms is similar to Section 5.1: Unif is
the worst, and GapE and GapE-V improve upon it. The only
exception is VBR: it performs poorly for smaller budgets,
and on par with SHVar and SHAdaVar for larger budgets.

We increase the number of movies next. In Figure 6, we
report the probability of misidentifying the best movie from

Figure 6: Probability of misidentifying the best movie in the
MovieLens bandit in Section 5.2, as budget n increases. The
number of movies is K = 128 and the results are averaged
over 5 000 runs.

K = 128 as budget n increases. The trends are similar to
K = 64, except that VBR performs poorly for all budgets.
This is because VBR has K stages and eliminates one arm
per stage even when the number of observations is small. In
comparison, our algorithms have log2 K stages.

6 RELATED WORK

Best-arm identification has been studied extensively in both
fixed-budget [Bubeck et al., 2009, Audibert et al., 2010] and
fixed-confidence [Even-Dar et al., 2006] settings. The two
closest prior works are Gabillon et al. [2011] and Faella et al.
[2020], both of which studied fixed-budget BAI with het-
erogeneous reward variances. All other works on BAI with
heterogeneous reward variances are in the fixed-confidence
setting [Lu et al., 2021, Zhou and Tian, 2022, Jourdan et al.,
2022].

The first work on variance-adaptive BAI was in the fixed-
budget setting [Gabillon et al., 2011]. This paper proposed
algorithm GapE-V and showed that its probability of mistake
decreases exponentially with budget n. Our error bounds are
comparable to Gabillon et al. [2011]. The main shortcoming
of the analyses in Gabillon et al. [2011] is that they assume
that the complexity parameter is known and used by GapE-V.
Since the complexity parameter depends on unknown gaps
and reward variances, it is typically unknown in practice.
To address this issue, Gabillon et al. [2011] introduced an
adaptive variant of GapE-V, A-GapE-V, where the complexity
parameter is estimated. This algorithm does not come with
any guarantee.

The only other work that studied variance-adaptive fixed-
budget BAI is Faella et al. [2020]. This paper proposed and
analyzed a variant of successive rejects algorithm [Audibert
et al., 2010]. Since SH of Karnin et al. [2013] has a com-



parable error bound to successive rejects of Audibert et al.
[2010], our variance-adaptive sequential halving algorithms
have comparable error bounds to variance-adaptive succes-
sive rejects of Faella et al. [2020]. Roughly speaking, all
bounds can be stated as exp[−n/H], where H is a complex-
ity parameter that depends on the number of arms K, their
variances, and their gaps.

We propose variance-adaptive sequential halving for fixed-
budget BAI. Our algorithms have state-of-the-art perfor-
mance in our experiments (Section 5). They are conceptu-
ally simpler than prior works [Gabillon et al., 2011, Faella
et al., 2020] and can be implemented as analyzed, unlike
Gabillon et al. [2011].

7 CONCLUSIONS

We study best-arm identification in the fixed-budget setting
where the reward variances vary across the arms. We pro-
pose two variance-adaptive elimination algorithms for this
problem: SHVar for known reward variances and SHAdaVar
for unknown reward variances. Both algorithms proceed
in stages and pull arms with higher reward variances more
often than those with lower variances. While the design and
analysis of SHVar are of interest, they are a stepping stone
for SHAdaVar, which adapts to unknown reward variances.
The novelty in SHAdaVar is in solving an optimal design
problem with unknown observation variances. Its analysis
relies on a novel lower bound on the number of arm pulls
in BAI that does not require closed-form solutions to the
budget allocation problem. Our numerical simulations show
that SHVar and SHAdaVar are not only theoretically sound,
but also competitive with state-of-the-art baselines.

Our work leaves open several questions of interest. First,
the design of SHAdaVar is for Gaussian reward noise. The
reason for this choice is that our initial experiments showed
quick concentration and also robustness to noise misspec-
ification. Concentration of general random variables with
unknown variances can be analyzed using empirical Bern-
stein bounds [Maurer and Pontil, 2009]. This approach was
taken by Gabillon et al. [2011] and could also be applied in
our setting. For now, to address the issue of Gaussian noise,
we experiment with non-Gaussian noise in Section 5.2. Sec-
ond, while our error bounds depend on all parameters of
interest as expected, we do not provide a matching lower
bound. When the reward variances are known, we believe
that a lower bound can be proved by building on the work
of Carpentier and Locatelli [2016]. Finally, our algorithms
are not contextual, which limits their application because
many bandit problems are contextual [Li et al., 2010, Wen
et al., 2015, Zong et al., 2016].
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A PROOF OF THEOREM 3

First, we decompose the probability of choosing a suboptimal arm. For any s ∈ [m], let Es = {1 ∈ As+1} be the event that
the best arm is not eliminated in stage s and Ēs be its complement. Then by the law of total probability,

P
(
Î ̸= 1

)
= P

(
Ēm

)
=

m∑
s=1

P
(
Ēs, Es−1 . . . , E1

)
≤

m∑
s=1

P
(
Ēs

∣∣Es−1 . . . , E1

)
.

We bound P
(
Ēs

∣∣Es−1 . . . , E1

)
based on the observation that the best arm can be eliminated only if the estimated mean

rewards of at least a half of the arms in As are at least as high as that of the best arm. Specifically, let A′
s = As \ {1} be the

set of all arms in stage s but the best arm and

N ′
s =

∑
i∈A′

s

1{µ̂s,i ≥ µ̂s,1} .

Then by the Markov’s inequality,

P
(
Ēs

∣∣Es−1 . . . , E1

)
≤ P

(
N ′

s ≥
ns

2

∣∣∣Es−1 . . . , E1

)
≤ 2E [N ′

s |Es−1 . . . , E1]

ns
.

The key step in bounding the above expectation is understanding the probability that any arm has a higher estimated mean
reward than the best one. We bound this probability next.

Lemma 6. For any stage s ∈ [m] with the best arm, 1 ∈ As, and any suboptimal arm i ∈ As, we have

P (µ̂s,i ≥ µ̂s,1) ≤ exp

[
− ns∆

2
i

4
∑

j∈As
σ2
j

]
.

Proof. The proof is based on concentration inequalities for sub-Gaussian random variables [Boucheron et al., 2013]. In
particular, since µ̂s,i − µi and µ̂s,1 − µ1 are sub-Gaussian with variance proxies σ2

i /Ns,i and σ2
1/Ns,1, respectively; their

difference is sub-Gaussian with a variance proxy σ2
i /Ns,i + σ2

1/Ns,1. It follows that

P (µ̂s,i ≥ µ̂s,1) = P (µ̂s,i − µ̂s,1 ≥ 0) = P ((µ̂s,i − µi)− (µ̂s,1 − µ1) > ∆i)

≤ exp

− ∆2
i

2
(

σ2
i

Ns,i
+

σ2
1

Ns,1

)
 = exp

[
− ns∆

2
i

4
∑

j∈As
σ2
j

]
,

where the last step follows from the definitions of Ns,i and Ns,1 in Lemma 1.

The last major step is bounding E [N ′
s |Es−1 . . . , E1] with the help of Lemma 6. Starting with the union bound, we get

E [N ′
s |Es−1 . . . , E1] ≤

∑
i∈A′

s

P (µ̂s,i ≥ µ̂s,1) ≤
∑
i∈A′

s

exp

[
− ns∆

2
i

4
∑

j∈As
σ2
j

]

≤ ns max
i∈A′

s

exp

[
− ns∆

2
i

4
∑

j∈As
σ2
j

]
= ns exp

[
−
ns mini∈A′

s
∆2

i

4
∑

j∈As
σ2
j

]
.

Now we chain all inequalities and get

P
(
Î ̸= 1

)
≤ 2

m∑
s=1

exp

[
−
ns mini∈A′

s
∆2

i

4
∑

j∈As
σ2
j

]
.

To get the final claim, we use that

m = log2 K , ns =
n

log2 K
, min

i∈A′
s

∆2
i ≥ ∆2

min ,
∑
j∈As

σ2
j ≤

∑
j∈A

σ2
j .

This concludes the proof.



B PROOF OF THEOREM 4

This proof has the same steps as that in Appendix A. The only difference is that Ns,i and Ns,1 in Lemma 6 are replaced
with their lower bounds, based on the following lemma.

Lemma 7. Fix stage s and arm i ∈ As in SHVar. Then

Ns,i ≥
σ2
i

σ2
max

(
ns

|As|
− 1

)
,

where σmax = maxi∈A σi is the maximum reward noise and ns is the budget in stage s.

Proof. Let J be the most pulled arm in stage s and ℓ ∈ [ns] be the round where arm J is pulled the last time. By the design
of SHVar, since arm J is pulled in round ℓ,

σ2
J

Ns,ℓ,J
≥ σ2

i

Ns,ℓ,i

holds for any arm i ∈ As. This can be further rearranged as

Ns,ℓ,i ≥
σ2
i

σ2
J

Ns,ℓ,J .

Since arm J is the most pulled arm in stage s and ℓ is the round of its last pull,

Ns,ℓ,J = Ns,J − 1 ≥ ns

|As|
− 1 .

Moreover, Ns,i ≥ Ns,ℓ,i. Now we combine all inequalities and get

Ns,i ≥
σ2
i

σ2
J

(
ns

|As|
− 1

)
. (8)

To eliminate dependence on random J , we use σJ ≤ σmax. This concludes the proof.

When plugged into Lemma 6, we get

P (µ̂s,i ≥ µ̂s,1) ≤ exp

− ∆2
i

2
(

σ2
i

Ns,i
+

σ2
1

Ns,1

)
 ≤ exp

−
(

ns

|As| − 1
)
∆2

i

4σ2
max

 .

This completes the proof.

C PROOF OF THEOREM 5

This proof has the same steps as that in Appendix A. The main difference is that Ns,i and Ns,1 in Lemma 6 are replaced
with their lower bounds, based on the following lemma.

Lemma 8. Fix stage s and arm i ∈ As in SHAdaVar. Then

Ns,i ≥
σ2
i

σ2
max

α(|As| , ns, δ)

(
ns

|As|
− 1

)
,

where σmax = maxi∈A σi is the maximum reward noise, ns is the budget in stage s, and

α(k, n, δ) =
1− 2

√
log(1/δ)
n/k−2

1 + 2
√

log(1/δ)
n/k−2 + 2 log(1/δ)

n/k−2

is an arm-independent constant.



Proof. Let J be the most pulled arm in stage s and ℓ ∈ [ns] be the round where arm J is pulled the last time. By the design
of SHAdaVar, since arm J is pulled in round ℓ,

Us,ℓ,J

Ns,ℓ,J
≥ Us,ℓ,i

Ns,ℓ,i

holds for any arm i ∈ As. Analogously to (8), this inequality can be rearranged and loosened as

Ns,i ≥
Us,ℓ,i

Us,ℓ,J

(
ns

|As|
− 1

)
. (9)

We bound Us,ℓ,i from below using the fact that Us,ℓ,i ≥ σ2
i holds with probability at least 1− δ, based on the first claim in

Lemma 2. To bound Us,ℓ,J , we apply the second claim in Lemma 2 to bound σ̂2
s,ℓ,J in Us,ℓ,J , and get that

Us,ℓ,J ≤ σ2
J

1 + 2
√

log(1/δ)
Ns,ℓ,J−1 + 2 log(1/δ)

Ns,ℓ,J−1

1− 2
√

log(1/δ)
Ns,ℓ,J−1

holds with probability at least 1− δ. Finally, we plug both bounds into (9) and get

Ns,i ≥
σ2
i

σ2
J

1− 2
√

log(1/δ)
Ns,ℓ,J−1

1 + 2
√

log(1/δ)
Ns,ℓ,J−1 + 2 log(1/δ)

Ns,ℓ,J−1

(
ns

|As|
− 1

)
.

To eliminate dependence on random J , we use that σJ ≤ σmax and Ns,ℓ,J ≥ ns/ |As| − 1. This yields our claim and
concludes the proof of Lemma 8.

Similarly to Lemma 7, this bound is asymptotically tight when all reward variances are identical. Also α(|As| , ns, δ)→ 1
as ns →∞. Therefore, the bound has the same shape as that in Lemma 7.

The application of Lemma 8 requires more care. Specifically, it relies on high-probability confidence intervals derived in
Lemma 2, which need Ns,t,i > 4 log(1/δ) + 1. This is guaranteed whenever n ≥ K log2 K(4 log(1/δ) + 1). Moreover,
since the confidence intervals need to hold in any stage s and round t, and for any arm i, we need a union bound over Kn
events. This leads to the following claim.

Suppose that n ≥ K log2 K(4 log(1/δ) + 1). Then, when Lemma 8 is plugged into Lemma 6, we get that

P (µ̂s,i ≥ µ̂s,1) ≤ exp

− ∆2
i

2
(

σ2
i

Ns,i
+

σ2
1

Ns,1

)
 ≤ exp

−α(|As| , ns,Knδ)
(

ns

|As| − 1
)
∆2

i

4σ2
max

 .

This completes the proof.


