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Abstract

Generating expressive and contextually appropriate
prosody remains a challenge for modern text-to-speech (TTS)
systems. This is particularly evident for long, multi-sentence
inputs. In this paper, we examine simple extensions to a
Transformer-based FastSpeech-like system, with the goal of
improving prosody for multi-sentence TTS. We find that long
context, powerful text features, and training on multi-speaker
data all improve prosody. More interestingly, they result in
synergies. Long context disambiguates prosody, improves
coherence, and plays to the strengths of Transformers. Fine-
tuning word-level features from a powerful language model,
such as BERT, appears to benefit from more training data,
readily available in a multi-speaker setting. We look into
objective metrics on pausing and pacing and perform thorough
subjective evaluations for speech naturalness. Our main system,
which incorporates all the extensions, achieves consistently
strong results, including statistically significant improvements
in speech naturalness over all its competitors.
Index Terms: neural text-to-speech, long-form TTS, multi-
speaker TTS, contextual word embeddings, FastSpeech, BERT

1. Introduction
Recent advances in neural TTS [1, 2, 3, 4] have unlocked a
range of applications in which human-like and coherent prosody
is crucial for customer experience. This is particularly the
case for applications involving complex multi-sentence input,
such as conversational agents or systems reading out news
or Wikipedia articles. Most research in TTS has focused on
training and evaluating models on single, isolated sentences.
While the advantage of this approach is that it applies to any
speech dataset, it might not work as well in domains with multi-
sentence input. For example, [5] demonstrate that the percep-
tual evaluation score of a paragraph cannot be reliably predicted
from the scores of its sentences evaluated in isolation. Prosodic
coherence and contextual appropriateness are thus highly im-
portant and should be modeled accordingly.

In this paper, we focus on TTS for domains with complex
multi-sentence input, which require expressive and coherent
prosody, e.g. long-form reading, dialogues, question-answering
prompts, etc. We investigate what improvements to speech
quality could be achieved through the following simple exten-
sions to a single-sentence baseline model:

1. long context: training and synthesis on utterances con-
taining multiple adjacent coherent input sentences
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2. contextual word embeddings: conditioning on contex-
tual word embeddings [6], which enable context disam-
biguation at a more coarse-grained level than frames or
phonemes,

3. multi-speaker modeling, which facilitates transfer
learning and helps avoid overfitting due to larger com-
bined training dataset sizes.

Naturally, these extensions can be applied simultaneously
to the same model. We base our work on a Transformer-based
FastSpeech-like TTS system [3, 4], which achieves high speech
quality, efficiency, and is generally expected to perform best on
longer inputs. We examine how these extensions—both individ-
ually and in various combinations—impact overall prosody and
its coherence on multi-sentence input. We look into objective
metrics related to pausing and pacing, and perform thorough
subjective evaluations for speech naturalness.

We summarize our contributions and findings below.

1. We examine three simple extensions to a state-of-the-art
TTS system to achieve more expressive, contextually ap-
propriate, and coherent prosody on multi-sentence input:
long context, contextual word embeddings, and multi-
speaker modeling. To the best of our knowledge, we are
the first to consider them in this setting together.

2. We see gains from all three extensions. Contextual word
embeddings and long context both lead to the largest im-
provements in naturalness and metric scores for paus-
ing and pacing. On the other hand, synthesis on multi-
sentence input using a model not trained with long con-
text does not work well.

3. We observe synergy effects. In particular, the baseline
model extended in all three ways at once outperforms
other system combinations in naturalness MUSHRA [7]
evaluations by a margin. For example, it achieves a sta-
tistically significant gap reduction1 of 59% over multi-
speaker Transformer-BERT.

2. Related work
Although most research effort in TTS has focused on models
operating on isolated sentences, there has been growing inter-
est in improving synthesis for longer, multi-sentence inputs.
Most innovations focus on better modeling of surrounding tex-
tual content. This is achieved with generic paragraph-based
features [8, 9], hand-crafted discourse relation labels [10, 11],
and—more recently—textual embeddings of neighboring sen-
tences [12, 13]. [14] study the impact of previous acoustic con-
text. In this paper, we explore a most direct approach to long

1The gap reduction in mean MUSHRA scores between systems 1 and 2 given
reference is computed as 100 ∗ (system1 − system2)/(reference − system2).



Figure 1: FastSpeech-like Transformer baseline.

context, which involves both text and mel-spectrogram context
conditioning.

Transformers [15] are particularly well suited for model-
ing long-distance dependencies in the data as they do not suffer
from the recency bias, unlike earlier models. This is advanta-
geous for prosody modeling, particularly with multi-sentence
inputs. [3, 4] apply non-autoregressive Transformers to TTS,
and we build on their work.

There has been a lot of interest in multi-speaker TTS re-
cently [16, 17, 18, 19, 20]. Increased scalability and improve-
ments through transfer learning are the main advantages of such
models. Unlike previous work, we examine to which extent
transfer learning with multi-speaker modeling can help improve
prosody and coherence of multi-sentence speech.

[21, 22, 23, 24, 25, 26] apply contextual word embeddings
from large pre-trained language models in the TTS backend.
Most closely related to our work is [24], who show that fine-
tuned BERT word embeddings improve the perception of syn-
thesized speech. Building on this work, we further investigate
these representations in a multi-speaker setting and in the pres-
ence of longer context.

3. Methods
3.1. FastSpeech-like Transformer baseline

We take a Transformer-based FastSpeech-like system [3] as our
baseline. The system is comprised of an acoustic model and
a duration model (Figure 1). Both models use Feed-Forward
Transformer (FFT) blocks as feature encoders. The duration
model predicts phoneme durations (in frames) and is a regres-
sor on top of the phoneme FFT encoder. The acoustic model
predicts mel-spectrogram frames and consists of the phoneme
FFT encoder and frame-level feature FFT encoder. The output
embeddings of the phoneme FFT encoder are upsampled to the
frame level using the phoneme durations predicted by the du-
ration model and then fed into the frame-level feature FFT en-
coder. The acoustic and duration models use separate phoneme
encoders. The architecture of the duration model and the fact
that we use force-aligned phoneme durations as training targets
are the two main differences from FastSpeech.

3.2. Extensions

We examine three extensions to this baseline with the goal
of improving expressiveness and prosodic coherence on multi-

Figure 2: Alignment and upsampling of phoneme encodings (top vec-
tors, shares of green) and BERT word embeddings (bottom vectors,
shades of red) in Transformer-BERT.

sentence inputs.

3.2.1. Multi-speaker modeling

Multi-speaker TTS systems are commonly used as a data reduc-
tion technique, with the expectation of obtaining strong positive
transfer from high-resource to low-resource speakers [16, 19].
In the context of large language models (LM) for TTS (see
§3.2.2 next), the added advantage of multi-speaker modeling is
that it reduces the risk of overfitting the LLM during fine-tuning
simply due to the sheer amount of training data. To turn the
baseline into a multi-speaker model, we concatenate pre-trained
speaker embeddings to phoneme encodings. The resulting fea-
ture vectors are passed through a ReLU layer (to match the FFT
block input dimension) and upsampled to the frame level. The
speaker embeddings are obtained from a speaker verification
model [27].

3.2.2. BERT word embeddings

Since prosody closely tracks syntax [28, 29], linguistic features
(especially syntactic information) are widely believed to be ben-
eficial for TTS. In line with previous work [24], we extend
both the duration and acoustic models with contextual word
embeddings from a large pre-trained Transformer LM. Con-
cretely, we concatenate the word embedding to the encodings
of the phonemes making up this word (Figure 2). As with
speaker embeddings, the resulting feature vectors pass through
a ReLU layer before being upsampled to the frame-level. The
word embedding is computed by taking the output embedding
corresponding to the first sub-token of that word. We use the
cased version of BERT-base [6] and fine-tune it on the end task
(phoneme duration or mel-spectrogram frames prediction) as
we train the rest of the model. We refer to this baseline ex-
tension as Transformer-BERT.

3.2.3. Long context

TTS systems are generally built to work with single-sentence
inputs. Some advantages of this approach are that it applies to
any dataset and that synthesis is trivially parallelizable across
sentences. Yet, in case data consists of coherent multiple sen-
tences (e.g. dialogues, long-form reading, question answering
prompts), it may be advantageous to take longer context into
account. Long context disambiguates prosody, which is partic-
ularly evident for utterances that would be shorter otherwise.
It leads to a simpler learning problem, which is beneficial for
TTS models without latent variables, and narrows the space of
possible realizations at synthesis time.

Here, we take a simple approach to incorporating long con-
text for domains with multi-sentence input. We propose train-
ing and synthesizing on utterances spanning multiple adjacent



Figure 3: Multi-speaker long-context Transformer-BERT.

sentences. To this end, we concatenate sentences that come af-
ter each other in the original data. We highlight that this ap-
proach is viable for non-attention systems such as the baseline.
Attention-based models are known to suffer from instabilities
arising from attention such as mumbling, skipping, or repe-
titions in the audio [3, 30], which can deteriorate with input
length.

We chunk the training data into consecutive chunks of con-
catenated sentences. A chunk is always composed of complete
sentences, and there is a limit on the maximum length of the
chunk. We experimented with multiple maximum lengths and
found that approximately 24 seconds worked well with our data.
This takes into account training efficiency and model conver-
gence as longer utterances put a significant strain on batch size,
particularly when combined with fine-tuned word embeddings.
We decided against chunks of fixed length, which would lead
to incomplete sentences, since this would potentially increase
ambiguity in prosody. Figure 3 visualizes the incorporation of
long context with the rest of the components.

During synthesis, we use a similar concatenation scheme.
We highlight the importance of using a similar concatenation
scheme during both training and synthesis, as this results in
comparable data distributions. We examine this in more detail
in §4.2.3.

4. Evaluations
We conducted experiments on internal datasets of three female
English speakers referred hereon as speakers A, B, and C. By

Phoneme embedding / FFT input block size 256
FFT block Conv1D filter size 1024
FFT Conv1D kernel size 9
Number of attention heads 2
Number of FFT blocks in an encoder 4
FFT block dropout 0.1
Batch size (long context) 60 (45)
Batch size, duration model (long context) 48 (24)
Optimizer, on defaults Adam
Learning rate 2e-05
Learning rate, duration model 1e-05
Acoustic model checkpoint (long context) 200k (120k)

Table 1: Hyperparameters and model selection.

mean MUSHRA scores
this +BERT reference

Baseline 71.6± 0.7 74.1± 0.7 75.9± 0.7
+ multi-speaker MT 67.5± 0.9 72.8± 0.8 75.3± 0.8

Table 2: Ablation results for BERT word embeddings. this=the system in the
leftmost column, +BERT=the system in the leftmost column extended with
BERT word embeddings, reference=the reference mel-spectrograms vocoded
with a parallel student vocoder. In each row, all means are statistically signif-
icantly different under a paired two-sided t-test with α = 0.01.

mean MUSHRA scores
this MLTB reference

Baseline 70.0± 0.8 73.6± 0.8 75.1± 0.8
+ multi-speaker MT 66.9± 0.8 72.9± 0.7 73.7± 0.7
+ multi-speaker, BERT MTB 72.1± 0.8 73.4± 0.7 74.3± 0.7
CC2 69.2± 0.8 71.0± 0.8 72.3± 0.8

Table 3: Results for multi-speaker long-context Transformer-BERT (MLTB).
In each row, all means are statistically significantly different under a paired
two-sided t-test with α = 0.01.

design, the data contain extensive contiguous chunks of text.
We sampled the audio at 24 kHz and extracted 80-band mel-
spectrograms with a frame shift of 12.5 ms. The training sets
of speakers A, B, and C consist of recordings of multi-sentence
chunks taken from books with total durations of about 24 h,
32 h, and 22 h, respectively.

Table 1 shows our hyperparameter and model selection
choices. We train duration models for at most 2M steps and
select the checkpoints with the lowest validation set mean abso-
lute error.

4.1. Subjective evaluations with MUSHRA tests

We conduct MUSHRA evaluations with 24 testers. We evaluate
on two voices (A and B), with 25 test samples per voice. The
samples are recordings of contiguous multi-sentence excerpts
from books with an average duration of approximately 19 sec-
onds. We ask the testers to rate the naturalness of the voices
reading the samples. We vocode with a parallel student vocoder
[31]. To nullify the effect from the vocoder, we also apply it to
the mel-spectrograms extracted from the reference audio. We
use these samples as the upper anchor in the MUSHRAs, and
we refer to them as “reference” in the tables above.

BERT word embeddings. Adding BERT word embed-
dings leads to more natural speech (cf. strong statistical gains
in mean MUSHRA scores in Table 2). While this agrees with
the literature on BERT for single-speaker models, this also ap-
pears to be the case for multi-speaker systems (the bottom row
of Table 2, multi-speaker Transformer (MT) vs multi-speaker
Transformer-BERT (MTB)). Interestingly, the linguistic infor-
mation available in BERT cannot be compensated by an almost
threefold increase in training data due to multiple speakers. We
note, though, that the MT samples had some harshness (not re-
ported for the other systems), which likely impacted the scores
for this system.

Ablations on multi-speaker long-context Transformer-
BERT. Next, we compare various model combinations to our
main system with all three extensions, multi-speaker long-
context Transformer-BERT (MLTB). We observe consistent sta-
tistically significant improvements in all ablations (Table 3).
They are particularly large due to the length of the test samples,
which comprise about 4 sentences on average and, thus, favor



non-pauses pauses
within between

MSE MSE MSE R2

Baseline 8.8 57.3 1030.1 -0.19
+ multi-speaker MT 8.3 50.4 923.0 -0.07
+ multi-speaker, BERT MTB 8.3 47.3 755.9 0.12
+ multi-speaker, BERT,

MLTB 7.2 44.3 680.8 0.21long context

Table 4: Comparison of objective metrics between predicted and refer-
ence durations for various model configurations. within=intra-sentence
pauses, between=inter-sentence pauses, MSE=mean squared error,
R2=coefficient of determination.

long-context systems. We highlight the fact that the addition of
long context training and synthesis leads to a 59.0% gap reduc-
tion over the MTB system, featuring BERT word embeddings.
Looking at per-voice results, this gain is much larger for voice
B than voice A, which could be due to the textual differences in
the data.

Comparison to a strong multi-speaker system. We also
evaluate MLTB against CC2 (the bottom row of Table 3), a
highly competitive autoencoder-based single-utterance multi-
speaker system [32]. CC2 learns a word-level variational au-
toencoder to capture word prosody. At synthesis time, a sepa-
rate model predicts autoencoder bottleneck features from fine-
tuned BERT word embeddings. We observe a strong statisti-
cally significant improvement from MLTB (a gap reduction of
58.3%).

4.2. Further analysis

4.2.1. Impact on phoneme durations and pausing

In this section, we investigate the impact of the proposed exten-
sions on phoneme durations predicted by the duration model.
We examine how well predicted durations match the reference
test-set distribution, looking separately at non-pause phonemes,
inter- and intra-sentence pauses. The correct placement and du-
rations of pauses are particularly important for the overall intel-
ligibility and coherence of speech [33]. We quantify duration
error using mean squared error (MSE) and the coefficient of de-
termination (R2).

Generally, we see progressive improvement in durations of
both pauses and non-pauses as the extensions get incorporated
progressively into the baseline (Table 4). We highlight a large
improvement in pause durations from a multi-speaker model
over the single-speaker baseline.

We also note the large absolute improvement in pauses be-
tween sentences from the addition of word embeddings. The
negative R2 values for models without word embeddings or
long context indicate they fit inter-sentence pauses worse than
the test set mean. Long-context models are better at explaining
variance of inter-sentence pause durations. Figure 4 shows dis-
tributions of inter-sentence pause durations for various model
combinations. The models without word embeddings (the base-
line and MT) produce dominant unimodal distributions. A sig-
nificant improvement comes from long context as these models
come closest to the reference distribution.

4.2.2. Manual error inspection

We examine test samples with large MUSHRA score gaps be-
tween any two systems. We highlight the following case where
long context leads to strong gains: The sample is a sequence of

Figure 4: Distribution of inter-sentence pauses in frames.

many shorter sentences; or the sample contains a discontinuity
which requires special prosody (e.g. a topic change).

We also look into MUSHRA score differences attributable
to BERT word embeddings. BERT-powered systems have fewer
problems with general vs wh-questions, and do better on pho-
netically ambiguous input (e.g. the sentence-final “too”) and
sentences with complex syntax, improving overall comprehen-
sibility with appropriate pausing and a slower pace.

4.2.3. Effect of longer context during training and synthesis

We also examine whether a system trained on short, single-
sentence input can be directly used to synthesize multi-sentence
input. To this end, we conducted a preference test between
MLTB and MTB with which we ran synthesis on chunks of con-
catenated sentences (MTB-synL). The preference test consisted
of 50 utterances, 25 each from speakers A and B, of approxi-
mately 19 seconds each on average, which were rated by 120
crowdsourcing platform testers. We found that MLTB performs
statistically significantly better than MTB-synL (α = 0.05).
Upon further inspection, we found that some of the samples
from MTB-synL were suffering from glitches around sentence
boundaries. We attribute this to the mismatch in the distribu-
tions of inputs to the MLTB-synL system at training and syn-
thesis.

5. Conclusion
This paper looks at TTS for domains with multi-sentence input.
To increase the coherence and contextual appropriateness of
prosody on this type of input, we examine three simple and ef-
fective extensions to a Transformer-based FastSpeech-like base-
line: long context, contextual word embeddings, and multi-
speaker modeling. We show that all these extensions contribute
to large improvements in objective metrics relating to pausing
and phoneme durations, as well as in subjective evaluations for
speech naturalness. We report strong synergies. Our best sys-
tem, which combines all three extensions, leads to statistically
significant improvements in speech naturalness over all its com-
petitors.
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[31] Y. Jiao, A. Gabryś, G. Tinchev, B. Putrycz, D. Korzekwa, and
V. Klimkov, “Universal neural vocoding with parallel WaveNet,”
in ICASSP, 2021.

[32] S. Karlapati, P. Karanasou, M. Lajszczak, A. Abbas, A. Moinet,
P. Makarov, R. Li, A. van Kolaar, S. Slangen, and T. Drugman,
“CopyCat2: A single model for multi-speaker TTS and many-to-
many fine-grained prosody transfer,” Under review, 2022.

[33] V. Klimkov, A. Nadolski, A. Moinet, B. Putrycz, R. Barra-
Chicote, T. Merritt, and T. Drugman, “Phrase break prediction for
long-form reading TTS: Exploiting text structure information,” in
Interspeech, 2017.


