Turbocharging Web Automation: The Impact of Compressed History States

Xiyue Zhu'* Peng Tang"**

Haofu Liao}
TUniversity of Illinois at Urbana-Champaign

Srikar Appalaraju***
tAWS Al Labs

xiyuez2@illinois.edu, tangpeng723@gmail.com, {liahaofu, srikara}@amazon.com

Abstract

Language models have led to a leap forward in
web automation. The current web automation
approaches take the current web state, history
actions, and language instruction as inputs to
predict the next action, overlooking the impor-
tance of history states. However, the highly ver-
bose nature of web page states can result in long
input sequences and sparse information, ham-
pering the effective utilization of history states.
In this paper, we propose a novel web history
compressor approach to turbocharge web au-
tomation using history states. Our approach
employs a history compressor module that dis-
tills the most task-relevant information from
each history state into a fixed-length short rep-
resentation, mitigating the challenges posed by
the highly verbose history states. Experiments
are conducted on the Mind2Web and WebLINX
datasets to evaluate the effectiveness of our ap-
proach. Results show that our approach obtains
1.2-5.4% absolute accuracy improvements com-
pared to the baseline approach without history
inputs.

1 Introduction

The task of web automation involves performing
a sequence of actions to accomplish given tasks
on any website, guided by language instructions
(Deng et al., 2024; Lu et al., 2024; Liu et al., 2018;
Yao et al., 2022; Zhou et al., 2023; Park et al., 2025).
Driven by advances in language models, web au-
tomation has attracted a lot of attention in recent
years (Gur et al., 2023; Furuta et al., 2023; Cheng
et al., 2024; Zheng et al., 2024; Park et al., 2025;
Gao et al., 2024). These approaches leverage the
current web state (i.e., web HTML and/or screen-
shot), history actions, and language instruction to
predict the next action, obtaining promising web
automation accuracy.

“The work was done when Xiyue Zhu was an intern at

Amazon. **Peng Tang and Srikar Appalaraju are the corre-
sponding authors.

History state 1

o WithiSESty inputs /GL

User: Hotels for trip from Mumbai to

| Galapagos, Ecuador. Dates will be Aug 13 - 19
and two travelers.
Agent:
sure, here are
1.Blu Galapagos Sustainable Waterfront Lodge
2.Royal Palm Galapagos, Curio Collection
Hotel by Hilton
3.Angermeyer Waterfront Inn

some options:

Figure 1: Example results of w/ and w/o history inputs.
Without seeing the histories, the model picks the same
hotel in different steps. Adding history states in model
inputs correctly picks different hotels in different steps.

However, the existing approaches do not con-
sume history states, ignoring the fact that the his-
tory states are crucial to accomplish some web
automation tasks, which leads to sub-optimal accu-
racy, see Figure 1. This fact motivates us to explore
techniques that leverage history states to improve
the accuracy of web automation.

The most straightforward way to leverage history
states is to concatenate history states with other
inputs (i.e., the current state, history actions, and
language instruction) and feed the concatenated
inputs into models. But the state of real-world web
pages could be very verbose (Deng et al., 2024; Lu
etal., 2024), posing several challenges to benefiting
web automation models from the straightforward
approach: 1) Long input sequence. Concatenating
verbose history and current states results in a long
input sequence, leading to high GPU memory cost
and inference latency. 2) Sparse information in
history states. Compared to the current state, the
information that is relevant to the next action is
much sparser in history states. Failing to effectively
distilling the sparse information from history states
could adversely impact the accuracy.

(a) Overall Architecture Prediction (b) History Compressor
P | T S SR .
I i i «—)
Transformer Model H , Fusion , Fusion Fusion >\
' 4 A) !
2 0) . Feed- Feed- Feed- !
=1 S Forward Forward Forward \
Embeddings'DDDD I O 0 e . |
t--- _T ““““““ T_ ““““““““““ : Cross- History | Cross- History | Cross- History !
| Attention Input n | Attention Input n | Attention Input n :
. 1 |
History Compressor | Self- Self- Self-)
' Attention Attention Attention !
T T _________________ ’f __________________ x M
History History Current Learnablel — — —~ """ To-TTTTT T mT R T
input 1 Input N input queries t T HE Gt el

Figure 2: (a) Overall architecture of our model. Our model takes the current input and N history inputs as input,
where the history inputs are fed into a history compressor before being fed into the transformer model. The next
action is predicted based on the inputs. (b) The architecture of the history compressor. For each history, the history
compressor takes a fixed-length sequence of learnable queries and one history input as inputs with a history fusion
module that fuses information among different history inputs, and outputs the representations of the learnable

queries.

To address these challenges, we propose Web
History Compressor, a novel approach to tur-
bocharge web automation using history states. In-
stead of feeding verbose history states into models
directly, our approach trains a history compressor
to compress each history state into a fixed-length
short representation and extract the most relevant
information. Inspired by Perceiver (Jaegle et al.,
2021), for each history state, the history compres-
sor takes a fixed number of learnable queries, the
history state, history actions, and language instruc-
tions as inputs, and outputs the representations of
the learnable queries, effectively reducing the se-
quence length of the history state to the fixed num-
ber. In addition, in the history compressor, the
learnable queries cross-attend to the history state,
history actions, and language instructions, with in-
formation fusion among different history inputs,
allowing the history compressor to distill the most
task-relevant information into the representations
of the learnable queries, guided by the language
instructions. The resulting compressed represen-
tations of each history state are concatenated with
other inputs (i.e., the current state, history actions,
and language instruction). The concatenated inputs
are fed into the model to predict the next action.

Experiments are carried out on the challenging
Mind2Web (Deng et al., 2024), and WebLINX
(Lu et al., 2024) datasets. Our approach shows
1.2-5.4% absolute accuracy improvements on the
Mind2Web and WebLINX datasets across different
evaluation metrics compared to the state-of-the-art
MindAct approach (Deng et al., 2024), confirming
the effectiveness of our approach.

2 Approach

Figure 2 (a) shows the architecture of our model.
Our model takes the current input and N history in-
puts as input, where each input consists of state (i.e.,
web HTML and/or screenshot), history actions, and
language instruction describing the task. A history
compressor module is employed to compress each
history input into a fixed-length representation, see
Section 2.1. Here, the history compressors for dif-
ferent history inputs share the same model weights.
The compressed representations of history inputs
are concatenated with the current inputs, forming
the input to a transformer model. The transformer
model then predicts the next action based on the
inputs. We apply a history compressor to history
inputs only, because the current input is highly
relevant to the task so we want to keep as much
information in the current input as we can.

2.1 History Compressor
The states of the real-world web pages could be
highly verbose (Deng et al., 2024; Lu et al., 2024),
leading to long input sequences and sparse infor-
mation in history states if we feed the history states
into models directly. Having an approach that can
effectively distill the sparse information into com-
pact representations can not only reduce the input
sequence length but also improve model accuracy.
To address this, we propose a history compressor
module to handle the verbose history state.
Inspired by Perceiver (Jaegle et al., 2021), each
history compressor layer consists of a self-attention
module, a cross-attention module, a feed-forward
module, and a history fusion module. Specifically,
for each history input, a fixed number of learn-
able queries is first fed into the self-attention mod-
ule, and then input to a cross-attention module that

cross-attends to one history input, followed by a
feed-forward module to enhance the learned repre-
sentations. A history fusion module is next applied
to fuse the information from the current history
inputs and the neighboring history inputs. The
history fusion module operates by concatenating
features from various history inputs along the chan-
nel dimension, followed by a fully-connected layer
for dimension reduction. The weights of learnable
queries and different modules are shared across
different history inputs. See Figure 2 (b).

With the history fusion module, different his-
tory inputs can communicate with each other to
reduce the redundant information that are shared
among different history inputs and learn the most
useful information. With the guidance from the lan-
guage instructions in the history input, the history
compressor is able to distill the most task-relevant
information into the learned representations. By
stacking M history compressor layers, the learned
representations of the fixed number of learnable
queries are further enhanced for the task described
in the language instruction.

2.2 Implementation Details

Base Model We use MindAct (Deng et al., 2024)
as our base model. Specifically, we use flan-T5-
base (Raffel et al., 2020; Chung et al., 2024) as our
transformer model, which consists of encoder and
decoder layers, and we use pruned HTML as the
web state, following MindAct. Here the weights of
History Compressor are randomly initialized.

Training The representations of history inputs are
derived from the outputs of the history compressor.
However, due to the absence of a history compres-
sor for the current input, there is a misalignment
between the different representations in the feature
space. This misalignment causes unstable training
if we train all modules of our model jointly. To
mitigate this issue, we adopt a two-stage training
strategy. Specifically, in the first-stage training, we
freeze the transformer model and train only the
history compressor. In addition, zero-initialized
attention (Zhang et al., 2024), which assigns zero
attention scores to history input representations at
the beginning of training and gradually learns a
factor that controls the attention weight assigned
to these representations, is applied. This approach
allows the model to train the history compressor
and align the representations of history inputs with
those of the current input progressively, fostering a
more stable and manageable training process. Sub-

Table 1: Results of different approaches on the
Mind2Web dataset. MindAct is the baseline approach
without history inputs (Deng et al., 2024). Pruning and
LLM correspond to the alternative pruning-based com-
pressor and zero-shot LLM compressor, respectively.
We also use LLMLingua (Jiang et al., 2023), an exist-
ing work for LLM prompt compression. Ours indicates
our history compressor approach. More details are in
Section 2.3.

Element Marco Element Step Macro Step

Acc (1) Acc (1) Acc (1) Acc ()
Cross-Task Split
MindAct 40.78 42.50 37.54 39.35
Pruning 38.54 41.39 36.15 38.81
LLM 34.53 39.07 32.04 36.37
LLMLingua 39.72 42.37 38.27 39.23
Ours 45.80 47.15 41.83 43.47
Cross-Website Split
MindAct 29.57 31.96 26.37 28.54
Pruning 29.57 33.13 26.88 30.38
LLM 2491 29.05 22.14 25.73
LLMLingua 30.27 33.79 23.38 26.73
Ours 32.17 35.71 28.73 31.83
Cross-Domain Split
MindAct 31.40 32.47 28.54 29.78
Pruning 31.79 33.54 29.00 30.94
LLM 29.27 29.28 26.70 31.80
LLMLingua 31.56 32.97 28.79 30.52
Ours 32.65 33.90 29.70 30.99

sequently, in the second stage of training, we train
all the modules together.

2.3 Alternative Approaches

There are alternative approaches for history com-
pressors, including the pruning-based and zero-shot
LLM compressors. For the pruning-based compres-
sor, we follow the prior work (Deng et al., 2024;
Lu et al., 2024) by employing an off-the-shelf lan-
guage model to rank and select top-50 HTML ele-
ments. For the zero-shot LLM compressor, we care-
fully prompt strong LLMs (e.g., Claude-3 Haiku
used here), with HTML, history actions, and lan-
guage instruction as inputs, to summarize each his-
tory HTML. In addition, we use previous work
for LLM prompt compression, LLMLingua (Jiang
et al., 2023), which uses pretrained LLMs to iden-
tify and remove non-essential tokens. Similar to
our approach, N history inputs are used for the
two approaches. However, without task-specific
training, these alternative approaches fail to distill
the most task-relevant information into the com-
pressed representations, resulting in unsatisfactory
accuracy, see Section 3.2.

Table 2: Results of different approaches on the We-
bLINX test-iid dataset. MindAct is the baseline ap-
proach without history inputs (Deng et al., 2024). PPrun-
ing and LLM correspond to the alternative pruning-
based compressor and zero-shot LLM compressor, re-
spectively, see Section 2.3. Ours indicates our history
compressor approach.

Overall Overall Element-group Text-Group

Micro Avg (1) Intent-Match (1) ToU (1) F1 (1)
MindAct 32.03 83.91 31.93 30.52
Pruning 31.37 83.32 30.65 28.61
LLM 31.24 82.90 31.29 29.01
Ours 34.72 88.35 37.33 32.57

3 Experiments

3.1 Experimental Setup

Datasets and Evaluation Metrics We benchmark
our model on the challenging Mind2Web (Deng
et al.,, 2024) and WebLINX (Lu et al., 2024)
datasets. Following the official setups, we use el-
ement accuracy, macro element accuracy, step ac-
curacy, and macro step accuracy as the evaluation
metrics for Mind2Web, and overall micro average
accuracy, overall intent-match accuracy, element-
group IoU accuracy, and text-group F1 accuracy
as the evaluation metrics for WebLINX. We follow
the official train/test splits for these two datasets.
Please see Appendix B for more details of datasets
and evaluation metrics.

Hyper-Parameter Setups For each history com-
pressor, 256 learnable queries with feature dimen-
sion 768 are used, and there are 2 history compres-
sor layers. At most 5 history inputs are consumed
by the model (i.e., N = 5), see Appendix C.1 for
the impact of the number of history inputs.

3.2 Main Results

The results presented in Table 1 demonstrate the
effectiveness of our proposed history compressor
approach on the Mind2Web (Deng et al., 2024)
dataset. Across various evaluation metrics, our
approach shows 1.2-5.0% accuracy improvement
compared to the baseline approach of without his-
tory inputs. This improvement confirms the ability
of our approach to learn task-relevant representa-
tions for history inputs, thereby enhancing web au-
tomation performance. In contrast, the alternative
approaches, namely the pruning-based compressor
and the zero-shot LLM compressor, yield mixed
results. While these approaches outperform the
baseline on certain metrics, they also exhibit lower
accuracy on others. This is because, without task-
specific training, these approaches cannot learn the

Table 3: Inference GPU memory cost and latency com-
parison among different approaches on WebLINX. Min-
dAct is the baseline approach of without history inputs
(Deng et al., 2024). Pruning corresponds to the alter-
native pruning-based compressor described in Section
2.3. Ours indicates our history compressor approach.
Experiments are performed on a single NVIDIA A100-
SXM4-80GB GPU.

Inference GPU Memory Inference Latency Average Maximum
(GB/sample |) (s/demc ion |) # tokens / history # tokens / history

No compressor - - 4065 + 318 4096
MindAct 25.60 3.47 0+0 0

Pruning 64.20 8.42 1290 + 595 2048
LLM 32.12 7.25 178 4+ 32 279
Ours 38.30 6.21 256 £0 256

most task-relevant information as the compressed
representations, confirming the effectiveness of our
approach. Consequently, the superior performance
of our approach highlights its effectiveness in lever-
aging history states for web automation tasks. In
addition, different splits in Mind2Web evaluate the
zero-shot generalization capabilities of the model
(see Appendix B). Our approach consistently show
improvements across different splits, confirming
the generalization capabilities of our approach.

The results on WebLINX (Lu et al., 2024)
shown in Tab. 2 show the same conclusion as on
Mind2Web. In particular, our approach shows
consistent performance gains over the baseline ap-
proach of without history inputs, with 2.0-5.4% ac-
curacy improvements. Furthermore, our approach
outperforms the pruning-based and zero-shot LLM
compressor approaches by a substantial margin of
3.4-6.0%. These results confirm the effectiveness
of our approach. The consistent improvements ob-
served across multiple datasets and evaluation met-
rics provide compelling evidence of the robustness
of our approach, further solidifying its effective-
ness in web automation tasks.

3.3 Inference Cost Analysis

We study the inference GPU memory cost, latency,
and the number of input tokens here. As shown in
Tab. 3, our approach obtained 40.3% lower GPU
memory cost, 26.2% lower latency, and 5+ times
fewer input tokens compared to the pruning-based
compressor. This is because our approach effec-
tively compresses the verbose history inputs into
fixed-length learned representations, contributing
to minimal inference overhead from including his-
tory inputs. Our approach has comparable GPU
memory cost and latency compared to the zero-shot
LLM compressor, with much higher web automa-
tion accuracy as shown in Tab. 1 and Tab. 2. We
are not able to run training / inference for using

history inputs without any compression due to the
GPU memory limitation.

4 Conclusion

In this paper, we propose a novel web history com-
pressor approach to improve web automation us-
ing history states. Our approach trains a history
compressor module to compress each highly ver-
bose history state to a fixed-length short represen-
tation, maintaining the most task-relevant informa-
tion meanwhile. Experimental results show that our
approach surpasses the baseline approach of with-
out history inputs by 1.2-5.4% on the Mind2Web
and WebLINX datasets. In the future, we will ap-
ply our approach to stronger transformer models
and models that can take different modalities (e.g.,
image, image + text) as inputs, and apply our ap-
proach to more web automation datasets.

5 Limitations

Although our approach shows consistent improve-
ments over the MindAct approach, theoretically, it
can be applied to any base web automation models
with any modality inputs, e.g., the stronger trans-
former model Llama 3 (Dubey et al., 2024) and the
model with image modality inputs (Cheng et al.,
2024) or multi-modality inputs (Kil et al., 2024).
Applying our approaches to these models could fur-
ther confirm the effectiveness of our approach. In
addition, although History Compressor gives sig-
nificant accuracy boost for web automation, it also
leads to 79% higher latency compared to no history
inputs. In the future, we will explore ways to re-
duce inference latency overhead, e.g., reducing the
size of the history compressor model and reducing
the number of learnable queries, etc.

References

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for the
web. Preprint, arXiv:2306.06070.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka
Matsuo, Aleksandra Faust, Shixiang Shane Gu, and
Izzeddin Gur. 2023. Multimodal web navigation
with instruction-finetuned foundation models. arXiv
preprint arXiv:2305.11854.

Yuan Gao, Kunyu Shi, Pengkai Zhu, Edouard Belval,
Oren Nuriel, Srikar Appalaraju, Shabnam Ghadar,
Zhuowen Tu, Vijay Mahadevan, and Stefano Soatto.
2024. Enhancing vision-language pre-training with
rich supervisions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 13480-13491.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2023. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. arXiv preprint arXiv:2307.12856.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew
Zisserman, Oriol Vinyals, and Joao Carreira. 2021.
Perceiver: General perception with iterative attention.
Preprint, arXiv:2103.03206.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13358-13376, Singapore. Association for
Computational Linguistics.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang
Deng, Yu Su, and Wei-Lun Chao. 2024. Dual-view
visual contextualization for web navigation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14445—
14454,

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-
lin Shi, and Percy Liang. 2018. Reinforcement learn-
ing on web interfaces using workflow-guided explo-
ration. arXiv preprint arXiv:1802.08802.

Xing Han Lu, Zdenék Kasner, and Siva Reddy. 2024.
Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930.

Xing Han LU, Zdenék Kasner, and Siva Reddy. 2024.
Weblinx: Real-world website navigation with multi-
turn dialogue. Preprint, arXiv:2402.05930.

https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2103.03206
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2402.05930

Joonhyung Park, Peng Tang, Sagnik Das, Srikar Ap-
palaraju, Kunwar Yashraj Singh, R. Manmatha, and
Shabnam Ghadar. 2025. R-vim: Region-aware vi-
sion language model for precise gui grounding. In
Findings of ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,

35:20744-20757.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Ao-
jun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-
sheng Li, and Yu Qiao. 2024. Llama-adapter: Effi-
cient fine-tuning of language models with zero-init
attention. Preprint, arXiv:2303.16199.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. 2023. We-
barena: A realistic web environment for building au-
tonomous agents. arXiv preprint arXiv:2307.13854.

A Inputs and Outputs of the Transformer
Model

Here we provide details of the inputs and outputs
of the transformer model in Figure 2. The trans-
former model used here is a Flan-T5 (Raffel et al.,
2020; Chung et al., 2024) based encoder-decoder
model. The inputs to the encoder layers are the
concatenation of the representations of history in-
puts outputted from History Compressor, HTML
representations of the current web state which are
structured text inputs, and natural language instruc-
tions that describe the tasks to be accomplished.
These inputs are processed through a series of en-
coder layers to produce encoded representations,
which are then fed into the cross-attention layers of
the decoder. The decoder performs autoregressive
generation to produce the required output for task
completion.

B Datasets and Evaluation Metrics

Mind2Web (Deng et al., 2023) has over 2,000
open-ended tasks from 137 websites and 31 do-
mains. There are 1,009 tasks from 73 websites for
the training set. We evaluate our model on all 3
test splits: Cross-Task, Cross-Website, and Cross-
Domain splits. The Cross-Task split contains 252
tasks from 69 websites, and the training and test-
ing sets contain websites from similar domains but
different tasks to evaluate zero-shot task generaliza-
tion. The Cross-Website split contains 10 websites
and 177 tasks, and the training and testing sets con-
tain websites from different domains but similar
tasks to evaluate zero-shot domain generalization.
The Cross-Domain split contains 912 tasks from 73
websites, and the training and testing sets contain
websites from different domains and different tasks
to evaluate zero-shot generalization across both
website domains and task. We evaluate our model
using Element Accuracy and Step Success Rate. In
the Mind2Web benchmark, the model is asked to
select an element on the current HTML webpage
and predict the action to perform on that element.
Element Accuracy (element acc) compares the se-
lected element with all acceptable elements, and the
Step Success Rate (step acc) considers a step to be
successful only if both the selected element and the
predicted operation are correct. The raw metrics
are calculated by averaging over each step. In con-
trast, the macro metrics average across tasks, each
with a sequence of steps. Therefore, the macro met-
rics will weigh more on tasks consisting of short

https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199

Table 4: Results of different numbers of history inputs
of our approach on the Mind2Web dataset. O history
means the MindAct baseline.

Table 6: Results of without and with the history fu-
sion module of our approach on the Mind2Web dataset.
‘With fusion‘ means our full approach.

Element Marco Element Step Macro Step

Acc () Acc (D) Acc (D) Acc ()
Cross-Task Split
0 history ~ 40.78 42.50 37.54 39.35
1 history 42.26 42.90 38.12 40.89
2 histories 43.84 45.74 39.52 42.64
3 histories 43.36 43.64 38.92 41.78
4 histories 44.69 46.68 40.21 43.12
5 histories 45.80 47.15 41.83 43.47
Cross-Website Split
0 history ~ 29.57 31.96 26.37 28.54
I history 29.08 31.43 25.96 28.18
2 histories 30.32 32.79 27.81 28.82
3 histories 31.21 33.89 28.13 31.43
4 histories 32.01 35.60 28.36 31.52
S histories 32.17 35.71 28.73 31.83
Cross-Domain Split
0 history 31.40 32.48 28.54 29.78
1 history 31.78 32.98 28.78 30.01
2 histories 31.98 33.13 29.45 30.33
3 histories 32.36 33.32 29.36 30.12
4 histories 32.45 33.68 29.62 30.51
5 histories 32.65 33.90 29.70 30.99

Table 5: Results of different numbers of tokens used to
represent each history input after compression on the
Mind2Web dataset.

Element Marco Element Step Macro Step

Acc(T) Acc(f) Acc(?) Acc(D)
Cross-Task Split
64 tokens 44.29 45.67 40.03 42.39
128 tokens 45.08 46.36 41.07 42.97
512 tokens 45.49 46.90 41.36 43.02
256 tokens 45.80 47.15 41.83 43.47
Cross-Website Split
64 tokens 31.14 34.56 27.45 30.52
128 tokens 31.70 35.01 28.34 31.42
512 tokens 31.56 34.84 28.02 31.13
256 tokens 32.17 35.71 28.73 31.83
Cross-Domain Split
64 tokens 31.98 33.14 29.39 30.48
128 tokens 32.47 33.76 29.58 30.74
512 tokens 32.01 33.24 29.23 30.32
256 tokens 32.65 33.90 29.70 30.99

sequences of actions.

WebLINX (LU et al., 2024) contains 2,337 demon-
strations from 155 real-world websites. There are
969 demonstrations with 43,538 turns in the train-
ing set. We evaluate our model on the Test_iid

Element Marco Element Step Macro Step

Acc () Acc(T) Acc(D) Acc ()
Cross-Task Split
Without fusion 44.08 45.72 40.78 42.36
With fusion 45.80 47.15 41.83 43.47
Cross-Website Split
Without fusion 32.56 36.15 28.84 31.95
With fusion 32.17 35.71 28.73 31.83
Cross-Domain Split
Without fusion 32.47 33.58 29.59 30.84
With fusion 32.65 33.90 29.70 30.99

Table 7: Results of without and with the history fu-
sion module of our approach on the WebLINX test-iid
dataset. “With fusion‘ means our full approach.

Overall Overall Element-group Text-Group

Micro Avg (1) Intent-Match (1) IoU (1) F1 (1)
Without fusion 34.12 87.65 36.03 32.02
With fusion 34.72 88.35 37.33 32.57

split, containing 100 demos and 4,318 turns with
similar tasks and websites in the training set to test
the in-domain generalization of the model. The
WebLINX benchmark requires text input from the
model in Text-Group actions, such as load and
say. It also contains Element-Group actions, such
as click and submit, which require the model to
select elements to perform the action. The met-
rics element group IoU and text group F1 calculate
whether the text is correctly input and the elements
are correctly selected, respectively. Intent match
estimates whether the model can correctly predict
which action to perform using accuracy. If an ac-
tion is not correctly predicted in a certain step, the
element group iou and text group F1 is O for this
step. The overall micro average equals element
group iou and text group F1, depending on the
ground truth actions.

C Ablation Studies

Here we conduct experiments to analyze the impact
of the number of history inputs, the length of each
compressed history state, and the history fusion
module.

C.1 The Impact of the Number of History
Inputs

We study the impact of the maximum number
of histories on the Mind2Web dataset here. The
pruning-based compressor is used as the compres-
sion approach. As shown in Tab. 4, there is an
overall trend that the more history inputs we in-
corporate, the better accuracy we can get. The
experiment results show that using history states
can turbocharge web automation, which confirms
our motivation that history states are important for
web automation.

C.2 The Impact of the Length of Each
Compressed History State

We investigate how the length of each compressed
history state affects performance on the Mind2Web
dataset. Our g-former-based compressor enables
flexible control over the compression length by ad-
justing the number of learnable queries. As shown
in Tab. 5, the optimal length of history states is 256.
Using shorter compressed histories can lead to ex-
cessive information loss, resulting in sub-optimal
performance. Conversely, longer compressed his-
tories may dilute relevant information, making it
harder for the web agent to utilize the past context
effectively.

C.3 The Impact of the History Fusion Module

Tab. 6 and Tab. 7 show the impact of the history
fusion module on the Mind2Web and WebLINX
datasets. The integration of the history fusion mod-
ule yields consistent improvements in web automa-
tion accuracy across the majority of test cases com-
pared to without fusion. These results validate our
hypothesis that the history fusion module effec-
tively facilitates communication between different
history inputs, enabling the model to extract and
utilize the most relevant historical information for
web automation.

	Introduction
	Approach
	History Compressor
	Implementation Details
	Alternative Approaches

	Experiments
	Experimental Setup
	Main Results
	Inference Cost Analysis

	Conclusion
	Limitations
	Inputs and Outputs of the Transformer Model
	Datasets and Evaluation Metrics
	Ablation Studies
	The Impact of the Number of History Inputs
	The Impact of the Length of Each Compressed History State
	The Impact of the History Fusion Module

