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Existing recommender systems in the e-commerce domain primarily focus on generating a set of relevant items as recommendations;

however, few existing systems utilize underlying item attributes as a key organizing principle in presenting recommendations to

users. Mining important attributes of items from customer perspectives and presenting them along with item sets as recommendations

can provide users more explainability and help them make better purchase decision. In this work, we generalize the attribute-aware

item-set recommendation problem, and develop a new approach to generate sets of items (recommendations) with corresponding

important attributes (explanations) that can best justify why the items are recommended to users. In particular, we propose a system

that learns important attributes from historical user behavior to derive item set recommendations, so that an organized view of

recommendations and their attribute-driven explanations can help users more easily understand how the recommendations relate to

their preferences. Our approach is geared towards real world scenarios: we expect a solution to be scalable to billions of items, and be

able to learn item and attribute relevance automatically from user behavior without human annotations. To this end, we propose a

multi-step learning-based framework called Extract-Expect-Explain (EX3), which is able to adaptively select recommended items and

important attributes for users. We experiment on a large-scale real-world benchmark and the results show that our model outperforms

state-of-the-art baselines by an 11.35% increase on NDCG with adaptive explainability for item set recommendation.
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1 INTRODUCTION

Recommender systems have been widely deployed in modern e-commerce websites, helping users overcome overwhelm-

ing selection issues in large catalogs and contributing large business impact [9, 20, 32]. Many existing recommender

systems in industry focus on generating a set of relevant items based on a set of pivot/query items along with metadata

such as item attributes. However, few of them utilize the underlying item attributes as a way to explain why the items

are recommended to users. Without distinguishing attributes, recommendations can often be overlooked by users who
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are unfamiliar with the items [23], especially when they have to click into corresponding detail pages to find more

in-depth information. In this work, we generalize the attribute-aware item-set recommendation problem [3, 4, 10, 28],

which aims to generate exact-𝐾 sets of recommended items along with attribute-driven explanations to help users

quickly locate the items of interest according to objective item properties (brand, color, size, etc) and subjective user

feedback (ratings). In particular, we propose a method to learn behavior-oriented attribute importance from historical

user actions, a technique which can be applied to other use cases beyond explainable recommendations including query

rewriting [25] and review summarization [40].

Throughout the paper, we study the explainable attribute-aware item-set recommendation problem by learning

an item-to-item-set mapping guided by attribute differences. Formally, given a “pivot” item, our goal is to generate 𝐾

sets of items (recommendations), each of which is associated with an important attribute (explanation) to justify why

the items are recommended to users. We aim to not only generate relevant item recommendations, but also provide

corresponding explanations based on those important item attributes whose value changes will affect user purchase

decision. Unlike existing work [3] that focuses primarily on making understandable substitute recommendations, we

attempt to help users broaden their consideration set by presenting them with differentiated options by attribute type.

Additionally, different from generating explanations based on user–item and item–attribute interactions [3], we propose

to infer important attributes directly from users’ historical behaviors, providing a framework to understand how users

reason about recommendations when making decisions. To the best of our knowledge, we are the first to approach the

explainable item-set recommendations via behavior-oriented important attribute identification in e-commerce domain.

The main idea in solving this problem is to first learn important attributes based on users’ historical behaviors, and

then generate corresponding item recommendations. Note that learning important attributes can benefit many other

applications beyond item-set recommendations alone. Modeling behavior-oriented attribute importance from users’

historical actions rather than manual identification is a critical component to conduct explainable recommendations.

It saves time-consuming effort in manual labeling and provides a more robust way to model user preference. Once

important attributes are derived, we can utilize them to build user profiles, e.g., identifying users’ preferred size,

color, flavor, etc, which can be used in generating personalized recommendations. We can also perform brief item

summarization based on important attributes, and the proposed method can also be easily extended to involve more

contextual information (e.g., users’ sequential actions) to provide customized item summarization [40]. We can further

leverage the behavior-driven important attributes to advance query rewriting techniques in the item search domain, by

attending to those terms that are closely related to items’ important attributes.

To this end, we propose a multi-step framework called Extract-Expect-Explain (EX3) to approach the explainable

item-set recommendation problem. Our EX3 framework takes as input a pivot/query item and a list of candidate items

as well as their catalog features (e.g., title, item type), and adaptively outputs sets of recommended items associated

with important attributes as explanations. Specifically, in the first Extract-step, we introduce an attention-based item

embedding learning framework, which is scalable to generating embeddings for billions of items, and can be leveraged

to refine coarse-grained candidate items for a given pivot item. Then, in the Expect-step, we propose an Attribute-

Differentiating Network to learn the expected utility score on the tuples of {query item, candidate item, attribute} to
indicate how the difference on attribute values between query item and candidate item affects users’ purchase decision.

The goal of this step is to learn attribute importance based on the impact of value changes towards user purchase

behavior. For instance, if we observe that value changes of “shoe size” affected more user purchase decisions than color

changes, the Expect-step is more likely to predict higher utility score on {query shoe, candidate shoe, size} than {query
shoe, candidate shoe, color}. Given the refined candidate items and the estimated utility scores, we propose a bipartite
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b-Matching-based algorithm in the Explain-step to balance the relevance and behavior-driven attribute importance to

deliver the final results for item-set recommendation. Such a multi-step framework design provides the flexibility to

serve the explainable attribute-aware item-set recommendation and other relevant applications.

To guarantee the robustness and scalability in real world environment, EX3 is carefully designed to overcome several

inherent challenges. (1) The foremost challenge is how to dynamically recommend items and attributes that provide

comprehensive information contributed to users’ purchase decision. In this work, we propose to train EX3 with user

behavior signals in the distant supervision manner, and leverage attribute value difference and historical purchase

signals to capture user-behavior driven important attributes. We believe that the important attributes are those whose

value changes will critically affect users’ purchase decision, e.g., size for shoes, roast type for coffee. (2) In real-world

environment, we are always facing data challenges, especially on the attribute missing/sparsity issues. To have a robust

performance even when attribute coverage is poor, we develop a robust attention mechanism called Random-masking

Attention Block in Expect-step to bound the softmax output based on prior attribute coverage information. (3) Scaling

EX3 to millions of different items is also challenging. To ensure EX3 to be generalized to multiple item types and large-scale

items, we introduce a highly-scalable item embedding framework in Extract-step, design an attribute-driven attention

mechanism in Expect-step to directly learn attribute importance from user behavior without human labeling, and

propose a constrained bipartite b-Matching algorithm in Explain-step that can be easily parallelized to generate top

items and important attributes for explainable item-set recommendation. The contributions of this paper are three-fold.

• We highlight the importance of jointly considering important attributes and relevant items in achieving the

optimal user experience in explainable recommendations.

• We propose a novel three-step framework, EX3, to approach the explainable attribute-aware item-set recommen-

dation problem along with couples of novel components. The whole framework is carefully designed towards

large-scale real-world scenario.

• We extensively conduct experiments on the real-world benchmark for item-set recommendations. The results

show that EX3 achieves 11.35% better NDCG than state-of-the-art baselines, as well as better explainability in

terms of important attribute ranking.

2 PRELIMINARY

In this section, we start with the introduction of relevant concepts and formulation of the explainable attribute-aware

item-set recommendation problem. Then, we introduce how to approach this problem via distant supervision.

Problem Formulation. Let P be the universal set of items andA be the set of all available attributes. We define the

attribute value to be a function 𝑣 : P ×A ↦→ C𝑑𝑣 that maps an item and an attribute to a sequence of characters, where

C denotes a set of predefined characters and 𝑑𝑣 is the maximum length of the sequence.
1
An item 𝑝 ∈ P is said to have

value 𝑣 (𝑝, 𝑎) on attribute 𝑎 ∈ A if 𝑣 (𝑝, 𝑎) ≠ ∅. Accordingly, the attribute-value pairs of an item 𝑝 on multiple attributes

are defined as 𝐴𝑝 = {(𝑎1, 𝑣1), . . . , (𝑎 |𝐴𝑝 |, 𝑣 |𝐴𝑝 |) | 𝑎𝑖 ∈ A, 𝑣𝑖 = 𝑣 (𝑝, 𝑎𝑖 ), 𝑣𝑖 ≠ ∅, 𝑖 = 1, . . . , |𝐴𝑝 |}. In addition, we define an

explainable group 𝐺𝑎 = (𝑎, 𝑃𝑎) to be a tuple of an attribute 𝑎 ∈ A and a subset of items 𝑃𝑎 ⊂ P and each item in 𝑃𝑎 has

non-empty value on attribute 𝑎. The item set 𝑃𝑎 is assumed for recommendation and the attribute 𝑎 is used to generate

the explanation. The problem of explainable attribute-aware item-set recommendation can be formalized as follows.

1
Note that in practice an attribute value can be of arbitrary data types such as string, numeric, timestamp. In this work, we regard it to be string (character

sequence) for simplicity since any other types can be converted to a string.
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Definition 1 (Problem Definition). Given the pivot item 𝑞 ∈ P with attribute-value pairs 𝐴𝑞 , and the number of

groups, 𝐾 , the goal is to output 𝐾 ordered explainable groups 𝐺𝑎 (1) , . . . ,𝐺𝑎 (𝐾 ) such that the user utility (e.g., purchase) of

displaying 𝐾 such groups is maximized.

Intuitively, the goal of the problem is to recommend 𝐾 groups of items with attributes such that the likelihood of

these recommended items being clicked or purchased is maximized after users compare them with the pivot item

and view the displayed attribute-based justifications. In other words, it is required to generate important attributes

given different pivot and candidate items so that they are useful to users, e.g., “screen resolution” is relatively more

important than “height” for a TV item. Note that the explainable item set recommendation can be considered to be a

item-to-item-set recommendation problem in e-commerce shopping scenario, and we assume user context information

is not available in this work. The challenges of this problem are threefold.

• How to automatically identify important attributes without supervision and aggregate relevant items into the

corresponding groups for recommendation?

• How to make the model robust to the data issues including missing attributes and noisy and arbitrary values?

• How to effectively reduce the search space of seeking similar items for item set recommendation and make the

model scalable to large real-world dataset?

Distant Supervision. In order to capture the comparable relationship among various items, we consider three

common user behavior signals to construct datasets to provide distant supervision [11, 20, 30]: co-purchase (Bcp),

co-view (Bcv) and purchase-after-view (Bpv) between items, where Bcp,Bcv,Bpv ⊆ P × P denote how items are

co-purchased, co-viewed and view-then-purchased together. From the above definition, one can notice that Bpv offers

an opportunity to simulate users’ shopping behaviors. When users view an item and then purchase another one in

a short period of time (e.g., within the same session), it is reasonable to assume that users are making comparison

between relevant items. Through empirical analysis on Amazon Mechanical Turk (MTurk), we observe that item pairs

within Bpv have more than 80% similarities, which verifies our assumption that users are comparing similar items

before purchase. In order to further improve the relevance from raw behavior signals to build up distant supervision

with high quality, by further combing Bcp and Bcv, we conduct several annotation experiments via MTurk and observe

that B = Bcv ∩ Bpv − Bcp, which contains items pairs in both Bcv and Bpv but not in Bcp, gives us the best relevance

signals and mimics users’ shopping actions on Bpv. Throughout the paper, we will use this way to construct datasets

for model learning and offline evaluation on multiple item categories.

3 PROPOSED METHOD

In this section, we first formulate an optimization-based method for the explainable attribute-aware item-set recom-

mendation problem and pose several potential issues of this solution in industrial scenario. Then, we propose a novel

learning-based framework called Extract-Expect-Explain (EX3) as a feasible and scalable alternative.

An Optimization-based Method. Suppose we have a utility function 𝑢 (𝑞, 𝑝, 𝑎) that estimates how likely users

will click (or purchase) a recommended item 𝑝 ∈ P after comparing it with the pivot item 𝑞 ∈ P on attribute 𝑎 ∈ A,

i.e., 𝑢 : P × P × A ↦→ [0, 1]. We can formulate an optimization problem for explainable item set recommendation as

follows. Given a pivot item 𝑞,𝑚 candidate items {𝑝1, . . . , 𝑝𝑚} ⊆ P and 𝑛 attributes {𝑎1, . . . , 𝑎𝑛} ⊆ A, we aim to find an
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Fig. 1. Illustration of the proposed framework Extract-Expect-Explain (EX3).

assignment 𝑋 ∈ {0, 1}𝑚×𝑛
that maximizes the overall utilities subject to some constraints:

max

𝑋

∑
𝑖∈[𝑚], 𝑗∈[𝑛]

𝑢 (𝑞, 𝑝𝑖 , 𝑎 𝑗 )𝑋𝑖 𝑗

s.t.

𝑚∑
𝑖=1

𝑋𝑖 𝑗 ≤ 𝐷grp, ∀𝑗 ∈ [𝑛] (Group capacity constraint)

𝑛∑
𝑗=1

𝑋𝑖 𝑗 ≤ 𝐷div
, ∀𝑖 ∈ [𝑚] (Item diversity constraint)

(1)

where 𝑋𝑖 𝑗 = 1 means the item 𝑝𝑖 is assigned to the explainable group𝐺𝑎 𝑗 with attribute 𝑎 𝑗 , and otherwise 𝑋𝑖 𝑗 = 0. The

group capacity constraint restricts the max number of items assigned in each group with an upperbound 𝐷grp ∈ N,
while the item diversity constraint limits the occurrence of each item in overall recommendations with upperbound

𝐷
div

∈ N. The problem defined in Eq. 1 can be deemed as the weighted bipartite b-matching problem [22], which can be

solved by modern LP solvers. Once the 𝑛 sets of item assignments are derived from 𝑋 , we can easily select top-𝐾 groups

with any heuristic method based on group-level utility, e.g., the average of all item-attribute utilities in the group.

However, there are two major issues with this method. First, the optimization in Eq. 1 cannot be efficiently solved

when𝑚 is very large and let alone take all items in P as input. Second, the utility 𝑢 (𝑞, 𝑝, 𝑎) is not directly available

from distant user behavior signal (e.g. view-then-purchase) because users will not explicitly express which attributes

are important to them to compare the items. Meanwhile, attribute frequency is also not a good indicator for 𝑢 (𝑞, 𝑝, 𝑎)
due to the common data issue of large amount of missing attribute values.

To this end, we propose a learning based multi-step framework called Extract-Expect-Explain (EX3). As

illustrated in Fig. 1, the first Extract step aims to reduce the search space of candidate items by learning item

embeddings with distant supervision and approximating coarse-grained item similarity. Next, the Expect step aims

to estimate the utility function 𝑢 (𝑞, 𝑝, 𝑎) by decomposing it into two parts: fine-grained item relevance and attribute

importance. The last Explain step leverages the outputs from two previous steps to solve the optimization problem

and derive the 𝐾 explainable groups for item set recommendations.

3.1 Extract-Step
In this step, we aim to learn an item encoder 𝜙 : P ↦→ R𝑑𝑝 that maps each item in P to 𝑑𝑝 -dimensional space such

that the items with relationships in B are closer in the latent space. The latent item vectors generated by 𝜙 can be

subsequently used as pretrained item embeddings in downstream steps and extracting coarse-grained similar candidates

with respect to pivot items.
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Specifically, each item 𝑝 ∈ P is initialized with either a one-hot vector or a raw feature vector extracted from

metadata such as item title and category. Then, it is fed to the item encoder 𝜙 , which is modeled as a multilayer

perceptron (MLP) with non-linear activation function. In order to capture relatedness among items, we assume that

each item is similar to its related items in B and is distinguishable from other unrelated items. As illustrated in Fig. 1(a),

let 𝑁𝑝 = {𝑝𝑖 | (𝑝, 𝑝𝑖 ) ∈ B} be the related items for an item 𝑝 ∈ P. We define a metric function 𝑓 (𝑝, 𝑁𝑝 ) to measure the

distance between the item and its related items:

𝑓 (𝑝, 𝑁𝑝 ) = 𝜆 − ∥𝜙 (𝑝) − ℎ (𝑁𝑝 ) ∥22, (2)

where 𝜆 is the base distance to distinguish 𝑝 and 𝑁𝑝 , and ℎ(·) denotes an aggregation function over item set 𝑁𝑝 , which

encodes 𝑁𝑝 into the same 𝑑𝑝 -dimensional space as 𝜙 (𝑝). In this work, we define ℎ(·) to be a weighted sum over item

embeddings via dot-product attention:

ℎ (𝑁𝑝 ) =
∑
𝑝𝑖 ∈𝑁𝑝

𝛼𝑖𝜙 (𝑝𝑖 ), 𝛼𝑖 =
exp (𝜙 (𝑝)⊺𝜙 (𝑝𝑖 ))∑

𝑝 𝑗 ∈𝑁𝑝 exp
(
𝜙 (𝑝)⊺𝜙 (𝑝 𝑗 )

) (3)

We assign a positive label 𝑦+ = 1 for each pair of (𝑝, 𝑁𝑝 ). For non-trivial learning to distinguish item relatedness, for

each item 𝑝 , we also randomly sample |𝑁𝑝 | items from Bpv as negative samples denoted by 𝑁−
𝑝 with assigned label

𝑦− = −1. Therefore, the encoder 𝜙 can be trained by minimizing a hinge loss with the following objective function:

ℓextract =
∑
𝑝∈P

max(0, 𝜖 − 𝑦+ 𝑓 (𝑝, 𝑁𝑝 )) +max(0, 𝜖 − 𝑦− 𝑓 (𝑝, 𝑁 −
𝑝 )), (4)

where 𝜖 is the margin distance.

Once the item encoder 𝜙 is trained, for each pivot item 𝑞 ∈ P, we can retrieve a set of 𝑚 ( |𝑁𝑝 | ≪ 𝑚 ≪ |P|)
coarse-grained related items as its candidate set 𝐶𝑞 , i.e., 𝐶𝑞 = {𝑝𝑖 |rank (𝑓 (𝑞, {𝑞})) = 𝑖, 𝑝𝑖 ∈ P \ {𝑞}, 𝑖 ∈ [𝑚]}.

3.2 Expect-Step

The goal of this step is to learn the utility function 𝑢 (𝑞, 𝑝, 𝑎) to estimate how likely a candidate item 𝑝 will be clicked or

purchased by users after being compared with pivot item 𝑞 on attribute 𝑎. For simplicity of modeling, we assume that

the utility function can be decomposed into two parts:

𝑢 (𝑞, 𝑝, 𝑎) = 𝑔( 𝑢
rel
(𝑞, 𝑝)︸    ︷︷    ︸

Item relevance

, 𝑢att (𝑎 |𝑞, 𝑝)︸       ︷︷       ︸
Attribute importance

), (5)

where 𝑔 : [0, 1] × [0, 1] ↦→ [0, 1] is a binary operation. The first term 𝑢
rel
(𝑞, 𝑝) reveals the fine-grained item relevance, or

equivalently, the likelihood of item 𝑝 being clicked by users after compared with pivot 𝑞 (no matter which attributes are

considered). The second term 𝑢att (𝑎 |𝑞, 𝑝) indicates the importance of displaying attribute 𝑎 to users when they compare

items 𝑞 and 𝑝 . It is natural to learn these two functions if well-curated datasets are available. However, practically,

even though the item relevance can be simulated from distant user behavior signals, e.g., Bpv view-then-purchased,

the groundtruth of important attributes still remain unknown. This is because users will not explicitly express the

usefulness of item attributes when they do online shopping, which leads to the challenge of how to infer the attribute

importance without supervision. In addition, the data issue of missing attributes and noisy values is quite common

since it costs much time and effort to manually align all the attributes of items. That is to say each item may contain

arbitrary number of attributes and their values may contain arbitrary content and data types.

To overcome the issues, we propose a novel neural model named Attribute Differentiating Network (ADN) to jointly

approximate𝑢
rel

and𝑢att. Formally, it takes as input a pivot item 𝑞 and a candidate item 𝑝 along with the corresponding 𝑛
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Fig. 2. Network architecture of the proposed Attribute Differentiating Network (ADN) including (a) a value-difference module, (b) an
attention-based attribute scorer, and (c) a relevance predictor.

attribute-value pairs𝐴𝑞, 𝐴𝑝 (e.g.,𝐴𝑞 = {(𝑎1, 𝑣 (𝑞, 𝑎1)), . . . , (𝑎𝑛, 𝑣 (𝑞, 𝑎𝑛))}), and simultaneously outputs an item relevance

score 𝑌𝑝 ∈ [0, 1] and attribute importance scores 𝑦𝑝,𝑗 ∈ [0, 1] for attribute 𝑎 𝑗 ( 𝑗 = 1, . . . , 𝑛).
Network Overview. As illustrated in Fig. 2, ADN consists of three components: a value-difference module to capture

the difference levels of attribute values of two items, an attention-based attribute scorer to implicitly predict the attribute

contribution, and a relevance predictor that estimates the fine-grained relevance of two items. Specifically, two input

items are first respectively vectorized by the encoder 𝜙 from the Extract step. The derived item embeddings are

then mapped into low-dimensional space via linear transformation, i.e. x𝑞𝑝 =𝑊𝑝 [𝜙 (𝑞);𝜙 (𝑝)], where [; ] denotes the
concatenation and𝑊𝑝 is the learnable parameters. Then, each attribute-value tuple (𝑎 𝑗 , 𝑣 (𝑞, 𝑎 𝑗 ), 𝑣 (𝑝, 𝑎 𝑗 )) is encoded
by the value-difference module into a vector denoted by x𝑣𝑗 . All these vectors x𝑣1 , . . . , x𝑣𝑛 together with x𝑞𝑝 will be

further fed to the attention-based attribute scorer to produce attribute importance scores 𝑦𝑝,1, . . . , 𝑦𝑝,𝑛 as well as an

aggregated vector z𝑣 about value-difference information on all attributes. The relevance predictor finally yields 𝑌𝑝

based on the joint of x𝑞𝑝 and z𝑣 .

Value-Difference Module. As shown in Fig. 2(b), we represent each attribute 𝑎 𝑗 as a one-hot vector and then embed

it into 𝑑𝑎-dimensional space via linear transformation, i.e., a𝑗 =𝑊𝑎𝑎 𝑗 , with learnable parameters𝑊𝑎 . Since the value

𝑣 (𝑝, 𝑎 𝑗 ) of item 𝑝 and attribute 𝑎 𝑗 can be of arbitrary type, inspired by character-level CNN, we treat it as a sequence of

characters and each character is embedded into a 𝑑𝑐 -dimensional vector via linear transformation with parameters𝑊𝑐 .

Suppose the length of character sequence is at most 𝑛𝑐 . We can represent the value 𝑣 (𝑝, 𝑎 𝑗 ) as a matrix v𝑝 𝑗 ∈ R𝑛𝑐×𝑑𝑐 .
Then, we adopt convolutional layers to encode the character sequence as follows:

x𝑣𝑗 = maxpool(ReLU(conv(ReLU(conv(v𝑝 𝑗 ))))) (6)

where conv(·) denotes the 1D convolution layer and maxpool(·) is the 1D max pooling layer. The output x𝑖 𝑗 ∈ R𝑑𝑐

is the latent representation of arbitrary value 𝑣𝑖 𝑗 . To capture value difference on attribute 𝑎 𝑗 between items 𝑞, 𝑝 , we

7



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Xian, et al.

further encode the attribute vector a𝑗 and the value vectors x𝑞𝑗 and x𝑝 𝑗 via an MLP:

x𝑣𝑗 = MLP𝑣 ( [a𝑗 ; x𝑞𝑗 ; x𝑖 𝑗 ]), (7)

where x𝑣𝑗 is supposed to encode the value-difference information between values 𝑣 (𝑞, 𝑎 𝑗 ) and 𝑣 (𝑝, 𝑎 𝑗 ) on attribute 𝑎 𝑗 .

Attention-based Attribute Scorer. Since our goal is to detect important attributes with respect to the pair of items,

we further entangle each value-difference vector x𝑣𝑗 of attribute 𝑎 𝑗 conditioned on item vector x𝑞𝑝 as follows:

w𝑝 𝑗 = MLP𝑝 ( [x𝑞𝑝 ; x𝑣𝑗 ; x𝑞𝑝 ⊙ 𝑥𝑣𝑗 ; ∥x𝑞𝑝 − x𝑣𝑗 ∥]), (8)

where another MLP𝑝 is employed to generate the item-conditioned value-difference vector w𝑝 𝑗 .
Natually, we can use attention mechanism to aggregate 𝑛 item-conditioned attribute vectors w𝑝1, . . . ,w𝑝𝑛 for better

representation and automatic detection of important attributes. However, directly applying existing attentionmechanism

here will encounter several issues. First, the learned attention weights may have bias on frequent attributes. That is

higher weights may not necessarily indicate attribute importance, but only because they are easily to acquire and hence

occur frequently in datasets. Second, attribute cardinality varies from items to items due to the issue of missing attribute

values, so model performance is not supposed to only rely on a single attribute, i.e. distributing large weight on one

attribute. To this end, we propose the Random-masking Attention Block (RAB) to alleviate the issues. Specifically, given

item vector x𝑞𝑝 and 𝑛 item-conditioned value-difference vectors w𝑝1, . . . ,w𝑝𝑛 , the RAB block is defined as follows.

𝑄 =𝑊𝑄x𝑞𝑝 , 𝐾𝑗 =𝑊𝐾w𝑝 𝑗 ,𝑉𝑗 =𝑊𝑉w𝑝 𝑗 , 𝑗 ∈ [𝑛] (9)

𝑦𝑝,𝑗 =

exp

(
𝑄⊺𝐾𝑗√
𝑑𝜏 𝑗

)
· 𝜂 𝑗∑

𝑖∈[𝑛] exp
(
𝑄⊺𝐾𝑖√
𝑑𝜏𝑖

)
· 𝜂𝑖

(10)

z𝑣 = ln(MLP𝑜 (𝑜) + 𝑜), 𝑜 = ln(𝑄 +
∑
𝑗

𝑦𝑝,𝑗𝑉𝑗 ), (11)

where 𝜂 𝑗 is a random mask that has value 𝛾 with probability 𝑓 𝑟𝑒𝑞 𝑗 (frequency of attribute 𝑎 𝑗 ) in training and value 1

otherwise. It is used to alleviate the influence by imbalanced attribute frequencies. 𝜏 𝑗 is known as the temperature in

softmax and is set as (1 + 𝑓 𝑟𝑒𝑞 𝑗 ) by default, which is used to shrink the attention on the attribute assigned with large

weight. The RAB block can be regarded as a variant of the scaled dot-product attention by incorporating randomness of

attribute frequencies and item-conditioned information. The attention weights {𝑦𝑝,𝑗 } 𝑗 ∈[𝑛] are used to approximate

attribute importance 𝑢att (𝑎 𝑗 |𝑞, 𝑝). The output z𝑣 encodes the aggregated information contributed by all attributes.

Relevance Predictor. We adopt a linear classifier model to predict the relevance of two items based on the item

vector as well as encoded attribute-value vector:

𝑌𝑝 = 𝜎 (𝑊𝑦 [x𝑞𝑝 ; z𝑣]) (12)

We treat the problem as a binary classification with the objective function defined as follows:

ℓexpect = −
∑

(𝑞,𝑝,𝑌 )
𝑌 log𝑌𝑝 − (1 − 𝑌 ) log(1 − 𝑌𝑝 ). (13)

Note that pairwise ranking loss can also easily be extended here and the choice of a better ranking loss function is

beyond the scope of this paper.
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Algorithm 1 Explain-step Inference Algorithm

1: Input: pivot item 𝑞, all items P, all attributes A, upperbounds 𝐷grp, 𝐷div

2: Output: 𝐾 groups 𝐺𝑎 (1) , . . . ,𝐺𝑎 (𝐾 )
3: procedureMain()

4: Get candidate set 𝐶𝑞 in the Extract-step.

5: for 𝑝𝑖 ∈ 𝐶𝑞 do
6: Make forward pass of ADN to obtain 𝑌𝑝𝑖 , {𝑦𝑝𝑖 , 𝑗 }.
7: Compute 𝑢𝑖 𝑗 = 𝑌𝑝𝑖 · 𝑦𝑝𝑖 , 𝑗 , for 𝑗 = 1, . . . , |A|.
8: Solve optimization in Eq. 1 and obtain 𝑋 .

9: Initialize |A| priority queues, 𝐺1, . . . ,𝐺 |A | .
10: for 𝑎 𝑗 ∈ A do
11: for 𝑝𝑖 ∈ 𝐶𝑝 do
12: if 𝑋𝑖 𝑗 = 1 then Insert (𝑝𝑖 , 𝑢𝑖 𝑗 ) into queue 𝐺 𝑗 ordered by 𝑢𝑖 𝑗 in descending order.

13: Compute 𝑠 𝑗 =
∑

(𝑝𝑖 ,𝑢𝑖 𝑗 ) ∈𝐺 𝑗 𝑢𝑖 𝑗/|𝐺 𝑗 |.
14: Get top 𝐾 groups 𝐺 (1) , . . . ,𝐺 (𝐾) s.t. 𝑠 (1) ≥ · · · ≥ 𝑠 (𝐾) .
15: return 𝐺 (1) , . . . ,𝐺 (𝐾)

Once the model is trained, we can obtain the relevance score 𝑢
rel
(𝑞, 𝑝) ≈ 𝑌𝑝 that implies whether candidate

item 𝑝 is relevant to query item 𝑞, and the attribute importance score 𝑢att (𝑎 𝑗 |𝑞, 𝑝) ≈ 𝑦𝑝,𝑗 ( 𝑗 = 1, . . . , 𝑛) indicating
how important each attribute 𝑎 𝑗 is to users when they compare items 𝑞 and 𝑝 . We adopt a simple binary operation

𝑔(𝑢
rel
(𝑞, 𝑝), 𝑢att (𝑎 𝑗 |𝑞, 𝑝)) ≈ 𝑌𝑝 · 𝑦𝑝,𝑗 to estimate the utility value 𝑢 (𝑞, 𝑝, 𝑎 𝑗 ).

3.3 Explain-Step

In this step, the goal is to present 𝐾 explainable groups 𝐺𝑎 (1) , . . . ,𝐺𝑎 (𝐾 ) such that the whole utility is maximized. The

complete inference algorithm is described in Alg. 1. Specifically, it first extracts a small subset of similar candidate items

𝐶𝑞 with respect to the pivot item 𝑞. For each pair of 𝑞 and 𝑝𝑖 ∈ C𝑞 , it computes the relevance score of two items as well

as the importance scores of attributes. Then, the LP problem defined in Eq. 1 is solved to obtain the assignments of

candidate items on attribute-based groups. For each group, the algorithm takes the score from the most significant item

as the heuristic score for group-level ranking. Finally, the top 𝐾 groups are generated as the recommendation with

attribute-based explanations. Note that we adopt template-based generation approach to generate the natural language

explanation based on attributes, which is not the focus in this paper.

3.4 Implementation Detail

In the Extract-step, the raw features of each item consist in n-gram features extracted from items’ titles, key words

and categories. The feature extractor 𝜙 consists of 3 fully-connected layers of sizes 1024, 1024, 128 with ReLU [24] as

nonlinear activation function. Margin parameters 𝜆 = 1.0 and 𝜖 = 1.0. The model is trained with Adam optimizer with

learning rate 0.001 and batch size 128.

In the Expect-step, the network parameters are as follows.𝑊𝑝 ∈ R256×64,𝑊𝑎 ∈ R |A |×64
. We restrict maximum

character sequence length to 𝑛𝑐 = 200 and the value of characters ranges from 0 – 255. The character embedding

size 𝑑𝑐 = 64 with𝑊𝑐 = R
255×64

. Each convolution layer contains 64 filters is 64 and kernels of size 3. The multilayer

perceptron MLP𝑣 consists of two fully-connected layers of sizes 172, 64 with ReLU as activation. The MLP𝑝 has two

fully-connected layers of sizes 256, 64. In attention,𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ R64×64 and MLP𝑜 contains two fully-connected layers

of sizes 64, 64. Masking value 𝜂 is set to 0.3 and the attribute frequency freq𝑗 is estimated from the training set. The
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Dataset Overall Battery Coffee I. Protector Laundry Shampoo T. Paper Vitamin

#Items 286K 114K 61K 29K 11K 35K 6K 30K

#Attributes 19 19 19 19 19 19 19 19

Bcv pairs 16.9M 2.9M 3.3M 1.7M 4.1M 1.4M 2.3M 1.2M

Bcp pairs 3.1M 490K 1M 557K 130K 412K 45K 489K

Bpv pairs 709K 203K 205K 88K 31K 98K 12K 80K

Table 1. Dataset statistics across 7 subdomains.

linear predictor layer𝑊𝑦 ∈ R128×1. The Expect model is trained with Adam optimizer with learning rate of 5 × 10
−4
,

weight decay 10
−5

in total 20 epochs. All deep neural model are implemented in PyTorch and deployed based on Spark.

In the Explain-step, we set both 𝐷grp and 𝐷att to be 5 by default. Candidate set size |𝐶𝑞 | = 30, |A| = 19 and 𝐾 = 5.

The LP problem is solved by PuLP library
2
.

4 EXPERIMENTS

In this section, we comprehensively evaluate the performance of the proposed method EX3 in terms of both recommen-

dation and attribute ranking on a real-world benchmark.

4.1 Experimental Setup

Dataset. We take experiments on a real-world industrial dataset collected fromAmazon.com including 7 subcategories:

Battery, Coffee, Incontinence Protector, Laundry Detergent, Shampoo, Toilet Paper and Vitamin. Following distant

supervision manner mentioned in Section 2, each subset can be regarded as an individual benchmark. To enable fast

experiments, we randomly sample products from each product category and select their corresponding attributes to

construct the datasets. The statistics of these datasets are summarized in Table 1. Similar metadata can also be found in

[20, 21]. Due to the large-scale product pool, we generate candidate products for each query product via the proposed

Extract-Step, which leads to around 30 similar candidate products per query. Our model and all the baselines are trained

and evaluated based on the extracted candidates. We randomly split the dataset into training set (80%), validation set

(10%) and test set (10%).

Baselines & Metrics. We compare our method with following baselines.

• Relevance is the method that computes item similarity based on item embeddings learned in Extract step.

• BPR [26] is the Bayesian personalized ranking method for making recommendations, which is modified to

item-to-item prediction in this work.

• ACCM [27] is a CF-based and CB-based recommendation approach that leverages attribute to enrich the repre-

sentation of items. We adapt this method to our item-to-item recommendation.

• A2CF [3] is the state-of-the-art attribute-based recommendation model that outputs substitutes for pivot items.

• EX3 is our approach proposed in Expect step.

For fair comparison, we generate the a candidate set of 30 items for each pivot from the Extract step. All the baselines

are evaluated based on the candidate set and also leverage the pretrained item embeddings as input if necessary.

We adopt NDCG@10, Recall@10, Precision@10 as the metrics to evaluate the top-N recommendation performance.

4.2 Top-N Recommendation Performance (Expect-Step)

In this experiment, we first evaluate the recommendation performance output by the Expect step, which produces the

same results as traditional recommendations. Specifically, given a pivot item, both our method and all other baselines

2
https://pypi.org/project/PuLP/
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Overall Battery Coffee Incontinence Protector

Measures (%) NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec.

Relevance 0.4489 0.6875 0.1310 0.3252 0.5916 0.1062 0.4656 0.6724 0.1475 0.3887 0.6613 0.1052

BPR 0.6373 0.8409 0.1695 0.5536 0.7609 0.1410 0.7246 0.8816 0.2041 0.5794 0.8353 0.1372

ACCM 0.6969 0.9029 0.1817 0.5849 0.8162 0.1507 0.7532 0.9305 0.2151 0.7333 0.9425 0.1568

A2CF 0.7207 0.9184 0.1854 0.6209 0.8589 0.1580 0.7898 0.9451 0.2194 0.7482 0.9483 0.1577

EX3 0.8177 0.9667 0.1953 0.7304 0.9245 0.1700 0.8716 0.9786 0.2278 0.8660 0.9783 0.1635

Improve 11.35% 5.26% 5.34% 17.64% 7.64% 7.59% 10.36% 3.54% 3.83% 15.74% 3.16% 3.68%

Laundry Detergent Shampoo Toilet Paper Vitamin

Measures (%) NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec.

Relevance 0.3650 0.5958 0.0987 0.4771 0.7689 0.1176 0.2591 0.3893 0.0695 0.4379 0.7116 0.1247

BPR 0.4882 0.7066 0.1246 0.5440 0.8230 0.1276 0.5016 0.6793 0.1246 0.5608 0.8001 0.1450

ACCM 0.5253 0.7399 0.1329 0.6753 0.9276 0.1447 0.4619 0.6337 0.1158 0.6061 0.8375 0.1535

A2CF 0.5368 0.7595 0.1371 0.6737 0.9329 0.1456 0.4966 0.6813 0.1251 0.6307 0.8715 0.1606

EX3 0.7351 0.9158 0.1658 0.7609 0.9703 0.1517 0.7750 0.9135 0.1715 0.7392 0.9405 0.1734

Improve (%) 36.94% 20.58% 20.93% 12.94% 4.01% 4.19% 54.50% 34.08% 37.09% 17.20% 7.92% 7.80%

Table 2. EX3 wins. Top-10 recommendation performance of our model and baselines on the dataset across 7 subdomains.

outputs top 10 recommendations from 30 candidates generated by Extract step. The goal of this experiment is to verify

if our model can output more relevant items than others.

The results are reported in Table 2. We observe that our model EX3 consistently outperforms all baselines across

all datasets on all metrics. For instance, our model achieves NDCG of 0.8177, Recall of 0.9667 and Precision of 0.1953,

which are higher than the results produced by the best baseline A2CF by a large margin. It is interesting to see that

our model shows significant improvements on the item ranking performance, resulting at least 11.35% improvement

in NDCG in Overall dataset and 10.36%–56.06% improvements across 7 subdomains. In addition, we notice that for

datasets Coffee and Incontinence Protector, the recommendation performance of all models are better than the overall

(average) performance. For example, our model achieves NDCG of 0.8716 and 0.8660 respectively, which are higher

than Overall NDCG of 0.8177. Other models share similar trends. This indicates that the cases in these two datasets are

easier to learn to capture user behavior.

4.3 Model Robustness to Missing Attributes

We further show our model is robust to missing attributes in inference data with the proposed masking attention.
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Fig. 3. Results of Top-N recommendation under different degrees
of missing attributes on Overall dataset.

Specifically, we randomly drop 10%, 20%, 30%, 40% and 50%

attributes in the test set and evaluate the top-N recommen-

dation performance of our model with and without the

proposed attention mechanism. All other settings remain

the same. As shown in Fig. 3, our model w/ the technique

(red curve) is consistently better than the baseline (blue

curve) under different attribute dropping ratios in both

NDCG and precision. In addition, we notice that the per-

formance decrease of our model is slower than that of

baseline, as the slope of the curve is smaller. This results imply that the proposed model is robust to the missing

attributes during inference, which is essential in real-world scenarios.
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Random Greedy EX3

Measures Avg. Norm. Avg. Norm. Avg. Norm.

𝐷
div

= 1, 𝐷grp = 2 1.158 2.879 2.050 4.929 2.272 5.380
𝐷
div

= 1, 𝐷grp = 3 1.180 2.836 2.051 4.890 2.277 5.400
𝐷
div

= 1, 𝐷grp = 5 1.173 2.852 2.048 4.884 2.271 5.347
𝐷
div

= 2, 𝐷grp = 2 1.164 2.792 2.068 4.797 2.273 5.408
𝐷
div

= 2, 𝐷grp = 3 1.158 2.951 2.035 4.883 2.279 5.439
𝐷
div

= 2, 𝐷grp = 5 1.156 2.934 2.046 4.895 2.277 5.400
𝐷
div

= 3, 𝐷grp = 2 1.146 2.867 2.031 4.850 2.279 5.424
𝐷
div

= 3, 𝐷grp = 3 1.162 2.800 2.070 4.810 2.273 5.435
𝐷
div

= 3, 𝐷grp = 5 1.157 2.794 2.065 4.808 2.273 5.427

Table 3. Results of attribute ranking performance on Overall
dataset. Avg. is average score and Norm. is normalized score.

Attr./Items B000YG1INI B082FPF9HZ B0153VTN9E B00FU5BY2S

scent peppermint peppermint Tea Tree eucalyptus

brand Desert Essence Natural V.I.P HONEYDEW Trader Joe’s

special ingredient tea-tree-oil – tea-tree-oil tea-tree-oil

hair type all types Dry Dry All types

target gender unisex – unisex unisex

Attr./Items B000YG1INI B01KPUTIM0 B00N648M66 B001B3RFK8

scent peppermint lemon coconut Lemon Tea

hair type All types Color treated dry, frizzy Oily

special ingredient tea-tree-oil – jojoba-oil –

brand Desert Essence Desert Essence Desert Essence Desert Essence

target gender unisex – unisex unisex

Table 4. Example of adaptive attribute ranking under different can-
didate items given same pivot item “B000YG1INI”.

4.4 Attribute Ranking Performance (Explain-Step)

Effectiveness of Attribute Ranking. In this experiment, we evaluate the performance of the proposed Explain-Step

in identifying important attributes. We specifically consider following three baselines.

• Random is a simple grouping algorithm by randomly assigning items into attribute-based groups as long as the

corresponding value exists. Then the groups are ordered in the way same as Alg. 1 (line 13–14).

• Greedy is an iterative algorithm by always picking the pair of item and attribute with larger utility value

• EX3 is our proposed method of the Explain-Step.

Note that all compared methods differ in the grouping ways but take the same utility function as input, which is

generated by the Expect-step for fair comparison. To quantify the attribute ranking performance, we randomly sample

around 1000 cases and ask human evaluators to manually score each attribute in a 5-point scale given a pivot item

and a set of candidate items. Then we can calculate the average and the normalized score of the predicted important

attributes by each model. The results are reported in Table 3.

We observe that our method EX3 gives the better performance in important attribute ranking compared with two

baselines. One interesting fact is that the Greedy algorithm is actually an approximation algorithm for the optimization

problem Eq. 1, which interprets that its performance is slightly worse than ours.

Adaptive attribute ranking. In addition, we show that for the same pivot item, our model will rank attributes

differently if the candidates are different. We showcase an example in Table 4 to demonstrate this characteristics of

our model. Given a shampoo product with ID “B000YG1INI” as pivot item
3
, whose attributes are listed in the second

column, we feed two sets of candidate items to our model that is able to generate two different attribute rankings as

shown in the upper and lower parts of the table. It is interesting to see that the model is able to rank attributes based on

value differences and diversity. Take “brand” attribute as example. In the first case (upper table), “brand” is ranked in

the second place and considered as a relatively important attributes when users compare different shampoo products.

In contrast, in the second case (lower table), “brand” is ranked lower because all the candidates have the same brand

“Desert Essence” and it is less informative for users to enhance their shopping experience.

4.5 Ablation Study

We first show the recommendation performance under different masking ratios (𝜂) in the proposed attention mechanism.

Specifically, we adopt different values of 𝜂 to train the model of Expect step, e.g. 𝜂 = 0, 0.1, . . . , 0.9, 1.0. Note that 𝜂 = 0

3
Product detail can be found in https://www.amazon.com/dp/B000YG1INI
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Fig. 4. Top-N Recommendation performance on the overall dataset under different masking ratios (𝜂) in attention (Fig. (a), (b)), and
under different temperatures (𝜏) in attention (Fig. (c), (d)).

means the attribute is completely dropped while 𝜂 = 1 means there is no attribute dropping. We report the top-N

recommendation performance under various 𝜂’s in Fig. 4 (a, b). We observe that the masking ratios influence on ranking

performance (NDCG) and the model achieves the best performance when 𝜂 = 0.3. For precision, we find that the

performance does not vary a lot, but still show similar trends as the NDCG, i.e. 𝜂 = 0.4 leads to the relatively better

performance.

Next, we evaluate the influence of different values of temperatures (𝜏) in the attention mechanism. Specifically, we

experiment with two ways of imposing temperatures over softmax function. The first one relies on the predefined

attribute frequencies, i.e. 𝜏 = (1 + 𝑓 𝑟𝑒𝑞𝑖 )𝑛 with 𝑛 = 1, 2. The other one uses the fixed value of 𝜏 = 1, 1.5, 2, 10. All other

training settings remain the same. The results of top N recommendation are reported in Fig. 4 (c, d). We can see that the

default choice of 𝜏 = 1 + 𝑓 𝑟𝑒𝑞𝑖 leads to the best performance in both NDCG and precision. Besides, note that when

𝜏 = 1, it is equivalent to the original softmax function. Our model with the default 𝜏 shows superior performance over

such setup, which indicates the effectiveness of the proposed attention mechanism.

4.6 Online Simulation and Experiments

In this experiment, we evaluate the overall performance of the group-form explainable item set recommendation. Before

serving the proposed method to real users, we generate a batch of explainable item set recommendations in an offline

mode and leverage human annotators to help us evaluate the recommendation quality. For each of 7 product categories,

we sample top 50 most popular pivot products from our recommendation dataset and ask the annotators to evaluate

whether the attribute-based explainable recommendations can help users make better purchase decision. Note that

the evaluation metric contains two-fold interactive measurement on both product relevance and attribute importance,

as the ranked important attribute list should depend on what products are recommended to users. Through human

evaluation, we obtain over 80% acceptance rate on high-quality item set recommendations with over 86% accuracy on

comparable product recommendation performance, which is 2x higher than using raw Bpv data for recommendation.

We also conduct online A/B testing through real user traffic on a large-scale e-commerce website, and the results show

significant increase of conversion (+0.080%) and revenue (+0.105%) in online A/B experiments.

5 RELATEDWORK

In this section, we discuss the related work regarding explainable recommendation and item relationship mining.

Explainable Recommendation. In the era of e-commerce, recommender systems have been widely used to provide

users with relevant item suggestions. Most of existing methods are based on collaborative filtering [16], matrix

factorization [17] and neural recommendation model [34]. Recently, to further improve user experience of recommender

systems [18], great research efforts have been promoted to explainable recommendation problems [6, 7, 35]. One common
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way to generate explanation for recommendation is to leverage knowledge graphs [5, 15, 31, 33, 39]. For example, Xian

et al. [32] propose to leverage reinforcement learning on knowledge graph to provide behavior-based explanation

for product recommendations, while Zhao et al. [37] also employs reinforcement learning but propose a different

demonstration-based knowledge graph reasoning framework for explainable recommendation. Besides knowledge graph,

sentiment/opinion based explainable recommendation is also a popular research topic [2, 8]. Zhang et al. [36] integrate

sentiment analysis into factorization model to improve explainable recommendation performance. Wang et al. [29]

develop a multi-task learning solution for explainable recommendation, where two learning tasks on user preference

modeling for recommendation and opinionated content modeling for explanation are joint learning via a shared tensor

factorization framework. There are also research work around attribute-based explainable recommendation. Hou

et al. [14] extract visual attributes from product images to conduct explainable fashion recommendation. Chen et al. [3]

propose to leverage both user and item attributes to generate interpretable recommendations. Most of existing work

focuses on explainable user-item recommendation problems but lack of the discussion on explainable item-to-item-set

recommendation tasks, which is also important for e-commerce platforms. Moreover, explainable item-to-item-set

recommendation problem is a harder case in explainable recommendation. Unlike explainable user-item recommendation

problem where users and items do not always share same properties and thus allow more tolerance on generating

explanations, in explainable item-to-item-set scenario, (1) we need to explicitly and rigorously provide reasonable

attribute-based explanations between items since they always share same properties, e.g., display size for all TVs, and

(2) the item set recommendations should balance both relevance and diversity on multiple item attributes.

Item Relationship Mining. As our work is around item-to-item-set recommendation, we will also discuss existing

work on item relationship mining. Identifying relationships among items is a fundamental component of many real-

world recommender systems [20, 30]. Linden et al. [19] designs an item-to-item collaborative filtering to generate

similar item recommendation for Amazon.com. Zhang et al. [38] discuss the impact of substitute and complement

relationship between items on recommendations. Similar efforts [1, 12] have been put to target at explicitly modeling

relationship between items for recommendations. Representative examples include Sceptre [20], which proposes a topic

modeling method to infer networks of products, and PMSC [30], which incorporates path constraints in item pairwise

relational modeling. He et al. [13] design a framework to use visual features to identify compatibility relationship

between clothes and jewelry. These methods seek to distinguish substitutes, complements and compatibilities, but fail

to provide any clear explanation on why these items are substitutable and comparable.

6 CONCLUSION

In this work, we study the important problem of explainable attribute-aware item-set recommendation. We propose a

multi-step learning-based framework called Extract-Expect-Explain (EX3) to approach the problem by first extracting

coarse-grained candidate sets of items with respect to the pivot to reduce the search space of similar items (Extract-step),

followed by a joint prediction of pairwise item relevance and attribute importance (Expect-step), which are subsequently

fed to a constrained optimization solver to generate the group-form recommendations with explanations (Explain-step).

The experiments are conducted on a real-world large-scale dataset and the results demonstrate that our proposed

model achieves over 10% higher NDCG than state-of-the-art baselines in the explainable recommendation domain.

Moreover, our proposed method can adaptively generate attribute-based explanations for various products, and the

resulting explainable item-set recommendations are also shown to be effective in large-scale online experiments. There

are several promising areas that we consider for future work, such as leveraging the learnt important attributes for

query rewriting and product categorization.
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