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Abstract

We describe QuakerBot, a dialog system that helps users with household tasks
and a participant in the Alexa Prize TaskBot Challenge. QuakerBot can process
a variety of user requests, search for instructions from web resources such as
wikiHow or Whole Foods Market recipes, answer related questions, and so on. Its
components simultaneously consist of large language models with an impressive
few-shot performance, and rule-based models with robust service.

1 Introduction

Dialog systems, agents that can converse with users, have long been a significant point of interest in
natural language processing (NLP) (Bobrow et al.,|1977). With the advance of massive, pre-trained
language models, large-scale and open-domain dialog systems have also seen rapid progress (Miller
et al.,|2017; Zhang et al.| 2020¢)). In contrast with chatbots, task-oriented dialog systems are those
that help users with specific tasks, such as booking tickets (Zhang et al., 2020f).

With the universal use of digital assistants such as Alexa, Siri, Google Home, Cortana, etc. and a
plethora of online know-how resources, there has been increasing work on the domain of complex
household tasks involving a series of steps (Zhou et al,2019; Zhang et al.,|2020ald)). However, there
is still a considerable gap between such research and real-life applications, as there has been little
work of bridging dialog systems and the knowledge of such complex tasks.

The Alexa Prize TaskBot Challeng fills in this gap. It is a competition where university teams
develop dialog systems that assist customers in completing household tasks, such as cooking and
home improvement. The participant dialog systems are invoked via an Alexa Skill and can be
accessed by all Alexa users in the United States. At the end of each conversation, the user provides
an integral rating on the scale of 1 to 5. Figure [2shows an illustrative, imaginary conversation.

We present QuakerBot, a participating dialog system in the competition. QuakerBot consists of a
mixture of rule-based and neural components, thus providing flexible and robust service. Our dialog
state manager and some simple components are rule-based and deterministic for utmost stability.
However, the majority of the rest of our components are powered by neural language models, which
can effectively handle considerable variance of user utterances, while requiring minimal labeled
training data. In addition to developing a production-ready dialog system that helps with household

'https://www.amazon.science/alexa-prize/taskbot-challenge
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tasks, we also advance NLP techniques such as intent detection, slot filling, question answering,
document retrieval, and so on, in an applied and practical setting.

The rest of this report is structured as follows. §2] provides a high-level overview of the architecture
of QuakerBot. §3|enumerates the natural language understanding (NLU) components to extract
pertinent information from user utterances. §4|enumerates the responders that output appropriate
agent utterances depending on scenarios. §3|introduces our automatic testing framework by leveraging
language models to generate synthetic dialogs.

2 System Overview
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Figure 1: Overview of the QuakerBot’s architecture.

Figure [I] depicts QuakerBot’s architecture. When the user speaks, the utterance is parsed by the
Amazon automatic speech recognition (ASR) module into text, which is then parsed by an NLP
pipeline consisting of sentiment analysis (§3.4)), co reference resolution, semantic role labeling,
intent detection (§3.1)), topic classification, and slot filling (§3.2). In order to speed up QuakerBot’s
responses, we also cache the intents of the utterances. If a future utterance is identical to a seen
one, the cached intent is automatically used. Once the NLP pipeline is completed, the utterance is
passed through a harm classification module that flags the utterance if it is inappropriate (§3.3)) and
re-prompts the user for a different request.

The outputs of the NLP pipeline are stored in the state manager, and are used by a selecting strategy
to determine the potential responders that would be appropriate to elicit. The candidate responders
are then filtered by the reranking strategy. Both the selecting and reranking strategy heavily rely on
the intent and the current place in the flow of the conversation. The key difference between the two
strategies is that the reranking strategy can take advantage of the information available in the actual
outputs from the responders.

An example conversation can be found in Figure [2] with each dialog turn annotated by the user’s
intent and the elicited responder.

3 Utterance Processing

After a user speaks, the ASR system is run, transcribing the speech into text. We then run a suite of
utterance processing components on the textual utterance.



Utterance

User: let's work together
Bot: Hi, this is an Alexa Prize Taskbot. Try asking me how to do a task or search for a
specific recipe.

Comments

Intent: Launch
Responder: Launch Responder

2 User: How to make chocolate cake? Intent: Getting Instructions
Bot: Here's what | found in Whole Foods Market for chocolate cake. The top results Responder: Whole Foods Responder
are Chocolate Cake, and Vegan Chocolate Cake. You can select an option or say, Comments: WikiHow Responder is selected if the task is a home
show more, for more recipes. improvement or any non recipe task
3 User: First one Intent: Option
Bot: This recipe has 4.4 stars and can be completed in 11 steps. Do you want to Responder: Steps Responder
continue? You can say go back to hear the options. Comments: ‘go back’ takes the state back to step 2 and the bot
responds with more options.
4 User: Continue Intent: Acknowledge
Bot: Chocolate Cake sounds yum! Responder: Steps Responder
Quick heads up, this recipe has a total of 11 steps and 11 ingredients. Comments: The user can say ‘list all ingredients’ to listen to all
Before we get started, Please be careful when using any tools or equipment. ingredients at once.
Remember, safety first!
Let's start with the ingredients. The first ingredient is: 1 % cups all purpose flour.
5 User: Next ingredient Intent: Next
Bot: 2 cups sugar Responder: Steps Responder
Comments: At this point the user can also ask the user to repeat
the ingredient
6 User: Start Cooking Intent: Start Cooking
Bot: Step 1 of 11 Preheat oven to 350 degrees Responder: Steps Responder
Comments: The user can start cooking at any point to start with
the recipe steps
7 User: What should be the oven temperature again? Intent: Step Inquiry
Bot: 350 degrees. Do you want to continue? Responder: Question Answer Responder
8 User: Next step Intent: Next
Bot: Step 2 of 11 Prepare two 9-inch cake pans by rubbing with butter, sprinkling with Responder: Steps Responder
flour and tapping out extra
9 User: How much flour do | need? Intent: Step Inquiry
Bot: You need 1 % cups all purpose flour Do you want to continue? Responder: Question Answer Responder
10 User: Okay let’s continue Intent: Next
Bot:Step 3 of 11 . In a large bowl combine flour, sugar, cocoa, baking soda, baking Responder: Steps Responder
powder and salt
User: How to make tomato soup? Intent: Getting Instructions
Bot: Sorry, | cannot help you with the new task. Let’s finish the current task first. Do Responder: Switch Tasks Responder
you want to continue? Comments: If the user has already started with a task, the bot
does not allow user to switch tasks.
11 User: Go to step 11 Intent: Getting Instructions
Bot: This is the last step. Remove cake from pans and cool on racks. When you're Responder: Steps Responder
finished you can say complete to finish the task, or say previous to go back to the
previous step.
12 User: Complete Intent: Next
Bot: Nice job! It was a pleasure working with you. | hope you enjoy the recipe! Responder: Steps Responder
13 User: Stop Intent: Stop

Bot: Asks user for rating.

Responder: None

Figure 2: An imaginary example conversation that demonstrates the conversation flow of QuakerBot.

3.1 Intent Detection

It is paramount to accurately determine the intent of an utterance, so that the dialog system can
respond appropriately. Such is the task of intent detection. For some dialog systems, the scope of the
conversation is limited, and so is the set of intents. For example, a virtual alarm clock may only need
to handle several static intents such as setting, canceling, and changing alarms. This is not the case
for QuakerBot, which needs to handle a variety of intents. Moreover, the set of intents is dynamically
growing as more functions are added. Traditional supervised learning methods are likely to fail in
this scenario, since data annotation is unlikely to scale. Hence, few-shot and open-domain intent
detection (Xia et al.,|2018};|Zhang et al., [2020blic) is imperative. At the time of writing, QuakerBot
supports 20 intents. We treat intent detection as a sentence classification problem, where the input is
an utterance sentence and the output is one of the intents. For each intent, the team members write
down some corresponding utterances as annotated data. The list of intents, examples and statistics
are shown in Table [Tl

In QuakerBot, we use a large pretrained language model (LPLM ) that has achieved state-of-the-art
in many few-shot learning tasks, to perform intent detection. The LPLM we used has two paradigms
for training and inference: prompting and finetuning.



Intent Size  Example Utterance \ Intent Size  Example Utterance

'Gettmg' 53 make tomato soup List 14 add carrots to the list
instructions
Acknowle- 48 sure Restriction 20 I don’t have cabbage
dgement
Denial 40 I don’t think so Stanl 7 begin cooking
cooking
Option 70 the first one Next 14 what’s next
None of S ) - -
the above 15 I don’t want any of those Previous 8 go back
Show more 19 got something else? Stop 8 I’'m done
- Switch . .

Step inquiry 91 how do I do that exactly task 5 help with something else
General inquiry 13 what’s a socket wrench? Help 8 what can you do
Repeat 29 it again Ingredient 5} many apples?

epeal say it aga Quantity ow many apples?
Timer 23 set a five minute timer Substitute 11 can I use celery instead?

Table 1: The list of intents, the number of annotated examples for each of them, and some example
utterances.

In the prompting paradigm, the input to the LPLM is some texts that describe what the model is
supposed do, optionally accompanied by some training examples(aka the shots in few-shot learning).
We use an intuitive prompt shown in Table[2] Since the LPLM only allows up to 2048 tokens shared
between the prompt and response, we randomly sample 110 out of 413 examples from the train split
and apply them to the prompt. We use the default hyperparameters: temperature as 0.7, top P as 1,
stop sequence as the new line character, and no frequency penalty or presence penalty. We set the
maximum of response tokens to 5 which exceeds the length of any of our intent names. As there is
no mechanism to ensure that the model must output one of the intent names, we iteratively check for
exact match and sub-string match, and return error if there is no match.

If someone says "help me make chicken", their intent is "Getting instructions".
If someone says "all right", their intent is "Acknowledgement".

If someone says "the first recipe", their intent is "Option".

If someone says "[input utterance]", their intent is* "[output intent]".

Table 2: An illustrative example of the prompt used for LPLM intent detection. Each line consists of
an example in a fixed, pre-determined template. The asterisk * marks the end of the prompt and the
beginning of model completion.

A viable alternative is LPLM finetuning, where there is no prompt. The model learns by training on
labeled examples, and makes predictions based on a short query. Finetuning places no limit on the
number of training examples and costs a lot less. The format of the data for finetuning is shown in
Table[3

help me make chicken \n\n#\n\n  Getting instructions
all right \n\n#\n\n  Acknowledgement
the first recipe \n\n#\n\n  Option

Table 3: An illustrative example of the data at finetuning time and at inference time for LPLM intent
detection. Each line consists of a training example in a fixed, pre-determined template. We use the
customary sequence ‘\n\n#\n\n’ as the separator.

We randomly split these utterances into 8:2 train and test splits. A validation set is not needed as we
do not systematically tune any hyperparameter. We make the train split available to the models, but
hold out the test split for evaluation. Additionally, we gather some examples from errors of intent



detection from the conversation logs throughout the competition. This dataset contains realistic user
utterances and their annotated intents.

The performance of our intent detection models on our test set is shown in Table [d] On our test split,
LPLM finetuning leads to the best performance, greatly outperforming the prompting paradigm. At
the time of writing, QuakerBot uses finetuned LPLM for intent detection. For utmost robustness, the
output of the model is used in conjunction with a set of rules that deal with simple and known cases.
We omit the details here.

Model prompt  finetuning
Accuracy on test split 702 856
Accuracy on log errors  .400 510

Table 4: Models’ accuracy of classifying intents on our test set. We compare LPLM prompting and
LPLM finetuning with just the seed data (train split), just the augmented data, and the concatenation
of the two. The best performance is in bold.

3.2 Slot Filling

Some intents come with “slots”, required information that is necessary for responding. For example,
if a user says “I want to make tomato soup”, the system should know not only that the user is “getting
instructions”, but also that “tomato soup” is the subject of the instructions. Such is the task of
slot filling. While many existing methods jointly tackle intent detection and slot filling (Goo et al.,
2018; Wu et al., 2020), we perform slot filling independently as it only has two primary use cases in
QuakerBot: getting the task or the dish.

Since slot filling presents the challenge of few-shot learning in our scenario, similar to intent dection,
we also leverage LPLM .Concretely, we use prompting, because empirically a short prompt with
dozens of training examples is sufficient to lead to good performance. We engineer two prompts in a
similar fashion for getting the task and getting the dish, as shown in Table[5]

If someone says "i am trying to hang a painting", they want to "hang a painting".
If someone says "how should I fix my kitchen sink", they want to "fix my kitchen sink".

If someone says "teach me how to make a vegan dinner", they want to make "vegan dinner".
If someone says "meat sauce sounds good", they want to make "meat sauce".
If someone says "[input utterance]", they want to make* "[output slot filling]".

Table 5: An illustrative example of the prompt used for LPLM slot filling. Each line consists of an
example in a fixed, pre-determined template. The asterisk * marks the end of the prompt and the
beginning of model completion.

This simple approach works well empirically during the competition, so we do not provide experi-
mental evaluation. As before, the output of the model is used in conjunction with a set of rules that
deal with simple and known cases. We omit the details here.

3.3 Harm Classification

Our harm classifier rejects inappropriate and unsupported task requests. Table[6]contains examples
for each type of task requests.

To tackle the task, we collect and annotate a dataset from wikiHow’s over 100K tasks. We use a
human-in-the-loop approach to first automatically label the task, and then manually validate the labels.
First, we use string-matching based on some keywords provided by Amazorﬂ to acquire silver label
for all tasks. We then split these examples into train, development, and test sets. To ensure annotation
quality of the test set, we then manually validate all test examples, so that they all have gold labels.
This way, the test set can be used to evaluate models’ ability to accurately label all wikiHow tasks.

2For legal reasons, we are unable to share of display them publicly.



Medical Information Request [MED] Legal Advice Request [LEG]

how to relieve stuffy nose in toodlers how to report a mortgage fraud

how to improve your health with coconut water how to schedule a court hearing

how to make your teeth straight how to file for a divorce

how to cure a wound in your cat how to file for bankruptcy

how to relieve a headache how to defend your company in court
Harm to property [HARM-P] Unsupported tasks [UNS]

how to measure a roof how to know if a guy wants to kiss you
how to charge my electric car how to ignore your feelings for someone
how to avoid false alarms with your smoke alarm how to buy firearms online legally

how to make an engine from a battery wire and a magnet ~ how to become a good muslim girl

how to repair a leaking roof how to defend pro life beliefs

Financial Advice Request [FIN] Harm to human [HARM-H]

how to invest a small amount of money online how to get a tatoo

how to apply for a credit card how to make a spear

how to invest in bitcoin how to make a bomb out of household items
how to know when to sell a stock how to buy a chainsaw

how to pay for college without going broke how to set up a campfire

Permitted Tasks [GOOD]

How to sell comics

How to paint a wall

How often to water my cactus

How to choose the right dinnerware

Table 6: Examples of task requests per class of harm classification.

Specifically, 45 graduate students from a U.S. university each annotates up to 500 examples. In total,
we end of with 13,306 task labels.

Class Train  Dev  Test  Agreement # Annotations
HARM-H 588 39 37 22.4% 98

HARM-P 521 36 44 25.3% 79

UNS 11493 722 646  43.4% 1506

MED 9277 691 623  47.1% 454

LEG 2238 130 174 44.9% 1862

FIN 2581 156 152 42.4% 559

GOOD 73943 4161 3957 54.0% 15022

Table 7: Statistics of our harm classification dataset.

In Table[/| we report the data statistics and annotation agreement per class, as well as total annotation
agreement. We observe that the annotation agreement for the task is relatively IOWE]D potentially
because the definitions of the classes separation are subject to ambiguity and subjectivity. The
annotators were provided with the examples in table [§and asked to annotate new examples from
the WikiHow pool. Most annotation disagreement is between [GOOD] and and another label. For
example, ‘how to eat a nutritious diet’ can be classifier as [GOOD] but also as [MED]. On the test set,
we observe that a significant amount of tasks whose gold labels are [GOOD] are misclassified by
the keyword matching approach. To improve the performance of automatic labeling, we propose to
instead label fine-grained task categories (e.g., caring for pets, jogging) and apply the category labels
to all tasks within. This approach is based upon the intuition that most tasks would share the same
labels within a category that is fine-grained enough. For this reason we collect 4,543 fine-grained
labels for each wikiHow task from TaskHierarchy138 a resource with annotated, fine-grained
categories of wikiHow tasks. We then manually annotate each category by labeling 10 examples from
that category and taking a majority label. While not ideal, this approach outperforms the keyword
method. On the manually annotated test set, we observe classifying by categories brings about a 89%
accuracy, compared to 68% using the keyword approach. We use this approach to label the train and
development sets to be later used by supervised models.

3The dataset will not be released as is, instead we will leave it as future work to gather human annotations
for all the data points and provide a higher quality dataset
*https://usercontext.github.io/TaskHierarchy138K/
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We experiment with three different models, taking a task request utterance as input.

Keyword Matching. If an Amazon keyword is contained in the sentence, we classify it as the class
that the keyword corresponds to.

BERT (Devlin et al.,2019). We perform a seven-way classification task using a BERT-large model
finetuned on our training set. Note we include only use a subset of GOOD tasks in each iteration to
counter the effects of unbalanced training data.

BART (Lewis et al., [2020) Textual Entailment (TE). We follow |Yin et al.| (2019) to recast the
classification task into a TE task of classifying whether a hypothesis sentence is entailed in a premise
sentence. In this case, we set the premise to be a task request such as "How to make a bomb" and
provide as hypothesis "This sentence is about {label}", where {label} can take values: legal matters,
health, financial advice, harmful behavior, property harm, or a household task, a recipe, or arts and
crafts. We finetune a BART model pretrained on MultiNLI (Williams et al.|[2017) on our training set.

On the test set, apart from the standard accuracy and F1 score, we use Matthews Correlation
Coefficient (MCC) (Matthews), [1975) as the evaluation metric which computes the correlation
coefficient between ground truth and predicted classifications. The values range from +1 to -1, where
+1 is a perfect prediction, 0 is a random prediction, and -1 is an inverse prediction. The results are
shown in Table[8] Across all metrics, BART achieves the best performance with up to 85% accuracy,
outperforming BERT and Keyword Matching.

Model accuracy  fl-score (weighted) recall (weighted) MCC
Keywords  0.676 0.681 0.677 0.321
BERT 0.761 0.700 0.761 0.397
BARTTE 0.854 0.851 0.854 0.689

Table 8: Model performance on the test set of our harm classification dataset.

3.4 Sentiment

For sentiment classification, we use DistilBERT (Sanh et al., 2019) finetuned on SST-2 (Socher et al.}
2013)), a standard sentiment classification dataset. The sentiment is used to evaluate the user feedback
when asking about their progress in a task, which is a part of the Navigation Responder (§4.1).
However, upon feedback that this interrupts the step navigation flow, it is disabled in later versions.

4 Responders

Once QuakerBot detects the intent of an utterance, a corresponding responder is run to generate our
system’s utterance. Below are a selection of our primary responders.

4.1 Utility

The Launch Responder handles the initial state of the skill, which is adapted on whether the user
is returning or not. In addition, it handles the preset options on multimodal devices, as well as the
special options on the headless devices. We use flags to enable or not different holiday specials, as
well as take into account the time of the device to suggest lunch and dinner special recipes. The
launch responder is only triggered in the beginning of a session and is never defaulted to after the
initial launch request.

The Help Responder suggests standard utterances to users so that they can make better use of
QuakerBot. It is an adaptable responder that takes into account the current state and only suggests
applicable utterances at that state. Also, we default to the Help Responder when an utterance is not
handled by the skill, in which case the response will be “I heard {unhandled utterance} but I do not
have a response for you right now, you can say help to see the available options.”

The Repeat Responder repeats the previous utterance while maintaining the current state so that
the users can continue from a repeated statement without interruption on the flow.

The Reject Responder adapts to the current state and is triggered by utterances expressing negation.
For example, we provide users with the option to confirm a task before starting it, and if they express



denial, the reject responder will default to showing the available wikiHow or Whole Food options
again. In addition, we often ask users if they want to continue with a task, if they interrupt it in some
way, either through questions or an unparsable or offensive utterance, they have the option to say no.
In this case the reject responder will end the session and invite the users to restart the skill if they
want to start a new task. Another use case of the reject responder is when a user wants to switch the
task query either before confirmation, or during the ingredient presentation in a recipe. Finally, the
reject responder will be triggered on cancel requests, which end the task at any point.

Once the user starts working on a task, the Navigation Responder is invoked and guides the user
through the task. It can either: a) jump to the previous, the next, or any step by index, or b) display
and read a step. Long steps from wikiHow additionally undergo a summarization module to be
condensed into shorter steps. We experiment with two summarization modules: BART and LPLM
prompted with few shots. We only employ summarization on wikiHow article steps, since recipe
steps tend to be more concise and contain less superfluous information. We deploy the LPLM module
since it was empirically shown to perform better summarization, with less logical gaps and more
coherence in the summaries.

4.2 Task Selection

When the user asks for help with a task, one of the two task responders, wikiHow Responder and
WholeFoods Responder, is invoked. Each of them leverages the API provided by Amazon to first
retrieve suitable candidate articles (instructions or recipes) from wikiHow or Whole Foods Market
Recipes, before presenting the options to the user and handling the user’s selection. The user can also
ask for more options or a different task, and the responder would react accordingly. At the core of the
task responders is a retrieval module that serves a straightforward objective, to provide users with the
most relevant instructions given a query about how to complete a task.

We decompose the retrieval process into three steps. First, we extract keywords describing the main
objective from a user utterance using the slot-filling module based on LPLM (§3.2). Second, we
retrieve a small subset of related articles with simple ranking strategies. Third, we locally re-rank
articles with a more sophisticated method like semantic similarity. If this approach fails for some
reason, we use a simple fuzzy-matching model as a fallback plan.

Figure [3|depicts the article retrieval pipeline. For instance, suppose the user asks “My computer is
not working, how can I fix it?”” The slot filling model will extract the task query as “fix computer.”
Next, our system applies the Elasticsearch API with fuzzy-matching, a text search API provided by
Amazon, to the article title and the summary text to quickly filter out a small subset of articles from
the entire database that are relevant to the query. After this stage, while the titles of the filtered articles
may contain keywords like "computer” or "fix", they may not be relevant to "fix computer” (e.g.,
“How to hack a computer?”’). Moreover, fuzzy matching may fail to detect paraphrases like “set up
Christmas light” and “hang Christmas light”. To re-rank the candidate articles, we use SentenceBERT
(Reimers and Gurevychl 2019) to compute the sentence embeddings of the query and the articles
(title and summaries). Then, we use cosine distance to calculate the semantic similarity between the
retrieved articles and the user query to re-rank the articles. Finally, we present the top three results to
the user.

We focus on the re-ranking algorithm since the control over Elasticsearch API (for initial ranking) is
limited. We collect and hold out a dataset to evaluate the re-ranking algorithm. We first collect 98
queries from past conversations. Then, for each query, we use the Elasticsearch API to retrieve 15
related articles via fuzzy matching for each question. Next, we manually annotate them with binary
labels: hit (helpful for the query) or a miss (unhelpful for the query).

We first use SentenceBERT to convert the concatenation of the article title and summary text to
a document vector for each retrieval during the re-ranking stage. Then, we use the same model
to map extracted user query to its query vector. Later, we calculate the dot product between each
query-document pair and use the dot product as a measure of relevance. The higher the dot product,
the more relevant a document is to that user query. Finally, the rankings are assigned accordingly.

We evaluate the re-ranking performance by Top-k Mean Reciprocal Rank (MRR @k), which measures
where the first relevant retrieval is located within the first k£ results. Given N user queries, the
system proposes N corresponding rankings. Then, we calculate the mean of reciprocal rank of the
first relevant document r;’s. If the rank is greater than &, we say the system fails to retrieve for this
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Figure 3: Our pipeline for article retrieval.

query and give it a score of zero. This truncation is controlled by the indicator function 1[r; < k.
In a word, higher MRR with smaller  is better, with the maximum being one. The performance is
summarized in Table 0]

Model k=3 k=6 k=15
No Reranking .69 .70 1
BM25 .65 .67 .67
SBERT .80 80 81
Perfect 83 .83 .83

Table 9: Re-rank Performance by MRR@E

Reranking algorithms take both article title and summary text as inputs. BM25 is another efficient
keywords matching based measure of document relevance. However, due to its exact-matching
nature, the reranking performance actually lowered comparing to Elasticsearch initial fuzzy matching
ranking. On the other hand, we can see that the SentenceBERT-based model is very close to the
perfect ranking result where relevant document is always ranked the first.

4.3 Question Answering

If the user asks a question during the conversation, the Question Answering Responder provides
an answer. It handles five types of questions: Ingredient Questions (e.g., “How much butter do I
need?”), Context Dependent Questions (e.g., “What temperature should I set the oven to?”), General
Questions (e.g., “How many tablespoons in half a cup of sugar?”), Step Related Questions (e.g.,
“How many steps are left?”’), and Article Related Questions (e.g., “How long does this recipe take?”).

LPLM

LPLM + last 4 steps
. if EVI else LPLM

is_question

hard-coded
keyword matching to
hardcoded answer

Figure 4: Our question answering pipeline.

Figure [] depicts the question answering pipeline. If the intent of an utterance is classified as a
question, the pipeline proceeds. We use a combination of rules and LPLM intent detection (§3.1)) to



classify the question type. In particular, we use keywords to identify if the question is an ingredient,
steps, or article question, and LPLM intent detection to distinguish between general and context
dependent questions. Then, we parse the question based on its type. For ingredient, steps, and article
related questions, we extract the relevant information from the recipe or instructions and present it
to the user. For general questions, we rely on the EVI API (a question-answering service provided
by Amazon) if it has high confidence, and revert to LPLM question answering (see below for the
prompt). Finally for context dependent questions we use LPLM prompting with the prompt template
shown in Table[10]

# goal: how to remove the lightbulb?

# step: make sure the power is turned off.
# context: last four steps

Use the context to answer the question:
#Q: how can i turn off the power?

#A: *

Example Answer (without using context):

#A: You can turn off the power by flipping the switch on the wall
Example Answer (with context):

#A: Switch the red power button to “off” in your fuse box

Table 10: An illustrative example of the prompt used for LPLM question answering.
S Synthetic Dialogues

During the competition, our main source of error analysis is the historic conversations. However,
these conversations might be too few for troubleshooting and improving QuakerBot. Hence, we
pilot an experiment with automatically generating synthetic dialogues, allowing us to obtain more
conversation data. To create realistic synthetic dialogues, we model single-turn interactions and
utilize the LPLM to generate “user” responses to different prompt types, by finetuning the LPLM
on the dialog turns in our past conversations. We thus create complete synthetic conversations by
combining these single-turn dialogs.

QuakerBot: Hi, this is an Alexa Prize TaskBot. Try asking me how to do a task or search for a recipe.
LPLM : how do i make mole sauce

QuakerBot: Sure, I can help you with Turkey Mole sauce... (instructions start)
LPLM : next

QuakerBot: 1 tablespoon ground cinnamon.
LPLM : can i use ground nutmeg instead?

Table 11: An example of a synthetic multi-turn dialogue.

Table|l I|contains an example of a synthetic multi-turn dialog. This excerpt demonstrates the ability
of the module to navigate through a conversation and even exercise more complicated behaviors that
a user might exhibit such as asking clarifying questions. Synthetic dialogues like the example shown
aid us in testing and improving QuakerBot, all while ensuring the privacy of user data by not directly
leveraging the user data. In the future, we plan to continue improving this module by incorporating
features such as human-in-the-loop and crowdsourcing components.

6 Conclusion and Future Work

We present QuakerBot, a production-ready dialog system that helps users with household tasks.
The mixed use of large language models and rule-based components proves crucial to ensure both
flexibility and robustness. While QuakerBot can effectively handle most utterances and situations,
it sometimes cannot correctly detect some intents or retrieve some relevant instructions, two of
the most common failure cases throughout the competition. Fortunately, many of our learning
components including intent detection, slot filling, question answering, and document retrieval can
be steadily improved by having access to more labeled data. Future work may also attempt more
precise troubleshooting, by taking into consideration and reasoning about the current state of the task,
instead of relying on an end-to-end black-box system.
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