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Vectorized High-Definition (HD) maps offer rich and
precise environmental information about driving scenes,
playing a crucial role in improving driver safety by support-
ing autonomous driving and advanced driver-assistance sys-
tems (ADAS). Processing individual camera images creates
fragmented view of the world requiring complex and error-
prone merging. Existing multi-view camera methods train
deep neural networks to directly generate a unified bird’s-
eye view (BEV) features used to learn HD map construc-
tion. Nevertheless, a significant limitation is the lack of
direct supervision of the learned BEV features based on
the ground-truth map elements. To overcome this limita-
tion, we propose a novel method, referred to as Semantic
Map Guidance (SMG), for explicit alignment of the learned
BEV features and the corresponding semantic representa-
tions by utilizing ground-truth label during training. We
demonstrate the effectiveness of the proposed SMG method
by incorporating it into multiple state-of-the-art BEV-based
methods for online HD map construction task. We per-
form extensive experiments on two widely used HD map
datasets, nuScenes and Argoverse 2, demonstrating that
SMG, without any bells and whistles, consistently improves
the accuracy of all the tested networks by using the same
base network implementation and hyperparameters without
any additional inference time.

1. Introduction

High-definition (HD) maps provide highly instance-level
vectorized representations, such as lane dividers, road
boundaries, pedestrian crossings, and more features. The
rich semantic information about road topology and traffic
rules is crucial for improving navigation efficiency and en-
abling both human drivers and autonomous systems to make
safer and more efficient decisions on the road. Tradition-
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ally, HD maps were built offline using SLAM-based meth-
ods [27, 28, 33], which involve complex pipelines and high
maintenance. Recent online approaches generate maps dy-
namically at runtime with onboard sensors, reducing man-
ual effort.

Early works [3, 17] use line-shape priors to detect lanes
from front-view cameras, while other single-view meth-
ods [9, 29] detect driving scene elements from one camera.
Multi-camera setups require merging fragmented views,
which is complex and error-prone. With advancements in
bird’s-eye view (BEV) representation learning [14, 21, 22],
recent multi-view methods [18, 24, 25, 31] generate unified
BEV maps directly from multiple cameras, leveraging com-
plementary views to improve depth estimation, occlusion
handling, and scene unification, making them more accu-
rate and practical for safety-critical applications.

However, current HD map construction approaches that
use BEV representations, such as MapTR [15], ensure
the quality of BEV features indirectly by reconstructing
specific map elements, such as lanes or road boundaries,
through a transformer decoder. While these models are
trained end-to-end and intermediate BEV features are op-
timized indirectly, the supervision signal comes primar-
ily from the final map reconstruction. As a result, the
learned BEV features may not be explicitly encouraged to
align with the ground-truth map structure. To address this,
we propose aligning generated BEV features directly with
ground-truth semantic and spatial information, providing an
additional training signal that can help the model better cap-
ture map element classes and boundaries.

To demonstrate the value of aligning BEV features with
ground-truth BEV output, we conduct a preliminary exper-
iment in nuScenes dataset [1], using MapTR as the baseline
model. We convert the ground-truth semantic maps into
masked binary class images and use UNet [26] to process
these images. This constrains the output feature map to be
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Figure 1. Preliminary experiment of replacing MapTR BEV encoder output features with perfectly aligned masked binary class map
images from the ground-truth BEV HD maps, processed by UNet. The HD map decoder and prediction head are kept unchanged. The
significant mAP increase across all map elements demonstrates the advantage of aligning the BEV features with the target ground-truth
semantic maps.

AP div. AP ped. AP bou. mAP

MapTR 51.06 43.92 52.55 49.18

MapTR - perfectly-aligned BEV feature 86.15 47.91 71.27 68.44

Table 1. Comparison of the original MapTR with its variant that
replaces BEV features with features from UNet that are perfectly
aligned with BEV HD maps

perfectly aligned with the ground-truth HD map. Then we
pass that output, instead of original BEV encoder output
in MapTR, to the HD map generation decoder head while
keeping the decoder and prediction head unchanged. The
pipeline is illustrated in Fig. 1. Feeding the model with this
enriched ground-truth BEV features, we show that ground-
truth BEV information provides valuable spatial and seman-
tic cues, highlighting the natural alignment between HD
maps and BEV representation. The results, summarized
in Tab.1, show that using masked class images improves
mean Average Precision (mAP) by 19.26% over the origi-
nal MapTR and significantly outperforms it across all map
elements, demonstrating the significant advantage of align-
ing the BEV features with the target ground-truth semantic
maps.

However, in the experiment above, ground-truth infor-
mation is used during inference, albeit indirectly, which is
not permissible. To address this, we propose the Semantic
Map Guidance (SMG) Module, which incorporates direct
supervision during the encoding phase but is discarded dur-
ing inference, enhancing BEV feature generation without
relying on ground-truth information at test time. Specifi-
cally, SMG guides the BEV encoding process by extracting
ground-truth semantic features and using spatial informa-
tion to align them with the corresponding regions in the
generated BEV features. Here, we employ a contrastive
learning technique [5, 25] to align the generated BEV with
the ground-truth BEV, ensuring precise alignment of BEV
elements according to their class labels. This explicit align-
ment, driven by ground-truth semantic and spatial informa-

tion guidance, strengthens the model’s perceptual capabili-
ties, thereby improving the accuracy of HD map construc-
tion from the BEV feature map.

In this paper, we propose a simple yet effective SMG
module that enhances BEV representations by explicitly in-
tegrating ground-truth semantic and spatial feature guid-
ance into the BEV encoding process. SMG is a plug-and-
play module that can be seamlessly integrated with exist-
ing BEV-based methods to improve their accuracy in an
end-to-end training manner. The module is applied exclu-
sively during training, ensuring that it incurs no additional
computational overhead at inference time. We present ex-
tensive experimental results and comparisons with several
state-of-the-art (SOTA) methods on two widely used HD
map construction datasets, namely nuScenes [1] and Argo-
verse2 [30]. The results demonstrate that incorporating the
proposed SMG module consistently enhances HD map con-
struction performance across these networks. We conduct
a detailed ablation study, showing that using either a sim-
ple multilayer perceptron (MLP) or the more sophisticated
CLIP text encoder [25] to extract semantic features consis-
tently improves performance across multiple baseline mod-
els. In addition, we examine the impact of leveraging dif-
ferent types of ground-truth information and various align-
ment losses, demonstrating how these factors influence the
performance of the networks.

2. Related Work

2.1. HD Map Construction
With the recent advancements in perspective-to-BEV (PV-
to-BEV) techniques [3, 30], HD map construction has in-
creasingly been approached as a segmentation task using
surround-view images captured by vehicle-mounted cam-
eras. Several works [4, 10, 14, 22] generate rasterized maps
by performing semantic segmentation in the BEV space. To
construct vectorized HD maps, HDMapNet [13] relies on
grouping pixel-wise semantic segmentation outputs through



heuristic and time-consuming post-processing steps to pro-
duce vectorized representations. In contrast, VectorMap-
Net [18] introduces the first end-to-end solution, employ-
ing a two-stage coarse-to-fine pipeline with an autoregres-
sive decoder that predicts points sequentially. However,
the auto-regressive model of VectorMapNet leads to a long
training time. MapTR [15] employs a one-stage Trans-
former framework built upon DETR [2], using permutation-
equvalent point set modeling. The improved version, Map-
TRv2 [16], incorporates auxiliary dense segmentation su-
pervision heads, decoupled self-attention in the decoder,
and a one-to-many matching strategy, resulting in signif-
icant performance gains. MapVR [32] produces a vec-
torized map using differentiable rasterization, which en-
ables instance-level segmentation supervision. StreamMap-
Net [31] is the first work to leverage temporal informa-
tion from past frames to enable online HD map estimation
from streaming data. Departing from point set representa-
tions, BeMapNet [24] adopts an instance-level approach us-
ing a piecewise Bézier head. Similarly, PivotNet [6] trans-
forms point-level representations into instance-level repre-
sentations through a point-to-line mask module. Different
from prior works, rather than designing a new model from
scratch, we introduce a flexible module that can be plugged
into existing methods to enhance their performance and ef-
ficiency.

2.2. Bird’s-Eye View Perception

BEV perception methods have been widely explored in 3D
object detection and BEV segmentation tasks. It can be
broadly classified into two categories [19]: bottom-up and
top-down approaches. Bottom-up methods follow a forward
process that transforms perspective-view features into 3D
space. Lift-Splat-Shoot (LSS) [22] is representative of this
approach, it lifts features from 2D to 3D space by predicting
a categorical distribution over depth and a context vector.
The outer product determines the feature at each point along
the perspective ray, enabling a more accurate approximation
of the true depth distribution. However, LSS-related meth-
ods suffer from high memory and computation costs due
to explicit computation, storage, and preprocessing of large
frustum features. BEVPool v2 [11] overcomes this by using
precomputed voxel and frustum indices to directly access
features during processing, eliminating the need for heavy
frustum feature handling, which greatly reduces memory
use and speeds up inference.

Top-down methods directly construct BEV queries,
which then search for and attend to corresponding fea-
tures in perspective images using a cross-attention mech-
anism. BEVFormer [14] leverages deformable attention
mechanisms to enable interaction between dense BEV-
plane queries and multi-view image features. It introduces a
set of historical BEV queries and leverages temporal infor-

mation through deformable attention between the current
and historical queries. SimpleBEV [8] applies a variation
of Inverse Perspective Mapping (IPM) [20] to sample fea-
tures from 2D images onto predefined BEV anchor points.
GKT [4] uses fixed-offset deformable attention on unfolded
2D kernel regions around reference points, enabling a fixed
BEV-to-pixel mapping with a BEV-to-2D look-up table for
fast inference.

2.3. Feature Alignment
Feature alignment is a key objective in many computer
vision tasks, such as image classification, detection, and
cross-modal retrieval. Techniques like contrastive learning
(e.g., SimCLR [5]) have been widely adopted to enforce
representation similarity by pulling positive pairs together
and pushing negatives apart in the feature space. CLIP [25]
extends this idea to align image and text embeddings across
modalities. Previous works [7, 34] typically use two sepa-
rate pathways to combine different types of data and align
the features. Mean Squared Error (MSE) is another align-
ment method. In the field of online map segmentation using
BEV representations, PCT [12] employs MSE loss to align
features from the teacher and student models for unsuper-
vised domain adaptation. Different from prior approaches
that align features across modalities or between models, we
align features from the ground-truth semantic and spatial
information directly with the learned BEV features. This
alignment acts as a training signal without adding parame-
ters or affecting inference.

3. Semantic Map Guidance (SMG)
We present the technical details of our proposed method il-
lustrated in Figure 2. The core innovation of our proposed
model lies in its incorporation of ground-truth features to
guide the generation of BEV representations. We first re-
view the architecture of the previous methods, in Sec. 3.1.
Next, we explore the details of the Semantic Map Guidance
(SGM) Module in Sec. 3.2. The training loss function for
our framework is presented in Sec. 3.3.

3.1. Preliminary
In many other BEV-based HD map construction models, the
processing pipeline begins with multi-view camera images
Xviews which are first processed through an image back-
bone. This is followed by a BEV base model that integrates
relevant image features into a unified top-down BEV feature
map Xbev ∈ RH×W×C , where H,W,C denotes height,
width, and number of feature channels of produced BEV
feature map, respectively. The BEV base model leverages
a series of self-attention and cross-attention mechanisms to
integrate relevant image features and produce a top-down
representation of the scene. Based on a transformer archi-
tecture, a set of decoder queries qdec is initialized to ex-



Figure 2. Proposed SMG module directly supervise the generated BEV representations by utilizing a semantic feature extractor to extract
semantic features and a contrastive learning framework to enhance the quality of the BEV representations.

tract information from the BEV feature map. These queries
are responsible for decoding spatial and semantic informa-
tion specific to the map features (e.g., roads, pedestrian
crossings) within the receptive field. The informed decoder
queries are then passed to a map construction head to gener-
ate the predicted vectorized map, each query corresponds to
a prediction for a specific map feature or an empty region.
Afterwards, the final map construction loss is computed by
applying a loss function between the predicted positions and
classes of the queries and their corresponding ground-truth
map features. Formally, this process can be expressed as:

Xbev = BEV Base(Xviews), (1)

q
′

dec = Dec(Xbev, qdec), (2)

qpred = Head(q
′

dec, y), (3)
Lmap = Lposition + Lclass, (4)

where BEV Base and Dec denote the BEV base model and
perception decoder, respectively, y denotes the ground-truth
of the task. Lposition and Lclass represent the point posi-
tion regression loss and classification loss, respectively. If
the used decoder isn’t transformer-based, the qdec input is
removed from the above formulation.

3.2. Semantic Map Guidance (SMG) Module
In previous models, the lack of direct supervision on the
BEV representation often results in inaccurate alignment
of object classes and boundaries with the ground-truth

which is in BEV perspective. This misalignment limits the
model’s ability to construct precise map features, leading to
inherent constraints in the quality and accuracy of the gener-
ated vectorized map. To address this limitation, we propose
the SMG module. The primary goal of SMG is to align
the generated BEV representation with the features from
ground-truth information, ensuring a precise organization
of BEV elements according to their class labels, positions,
and boundaries.

As illustrated in Fig. 2, in SMG, to enable the gener-
ated BEV features to incorporate ground-truth semantic in-
formation, we first feed semantic information ci of the ith

instance on the BEV map into a semantic feature extractor
SFE:

gi = SFE(ci), (5)

where gi with the same feature dimension C as the BEV
feature, represents the encoded ground-truth semantic fea-
ture of the ith instance on the BEV map.

To incorporate ground-truth spatial information and pre-
cisely align the semantic features derived from ground-
truth labels with BEV features, we crop the correspond-
ing regions in the produced BEV feature. This can be
done using either bounding box coordinates or point posi-
tions. Point-based cropping offers fine-grained localization,
whereas bounding boxes provide broader coverage. To bal-
ance precision and coverage, we adopt two bounding boxes
for road boundaries and a single bounding box for the other
two classes of dividers and crosswalks. Road boundaries



often exhibit irregular shapes; thus, two bounding boxes
better capture their geometry while reducing irrelevant re-
gions. In contrast, both crosswalks and lane dividers can
be effectively enclosed within a single bounding box, since
crosswalks are polygon-shaped and lane dividers are always
straight lines. As illustrated in Fig. 3, we visualize the
cropping process using a point, a single bounding box, and
two bounding boxes to provide a clear and intuitive under-
standing of the approach. For crosswalks and dividers, the
bounding box bi is computed from the minimum and maxi-
mum x and y coordinates of all points. For road boundaries,
the two bounding boxes bi1 and bi2 are obtained by sorting
the point set, splitting it into two subsets, and calculating the
min–max coordinates separately for each. Supporting ex-
perimental results for different cropping strategies are pro-
vided in Sec. 5.1.

After cropping the corresponding region in the BEV fea-
ture map, a pooling operation is then applied to the cropped
tensor, which serves as the representation for the corre-
sponding object, the process can be expressed below:

oi = Pool(Crop(Xbev, bi)). (6)

To bring the learned BEV features and semantic embed-
dings closer together, we leverage contrastive learning to
refine the relationships and spatial distances between ele-
ments in the BEV feature space, as expressed in the follow-
ing formulation:

LSMG = −1

2

(
N∑
i=1

log
exp

(
sim(gi,oi)

τ

)
∑N

j=1 exp
(

sim(gi,oj)
τ

)
+

N∑
i=1

log
exp

(
sim(oi,gi)

τ

)
∑N

j=1 exp
(

sim(oi,gj)
τ

)), (7)

where sim(gi, oi) denotes the similarity between the
ground-truth feature gi and the learned feature oi for the ith

instance. This similarity is computed using cosine similar-
ity, which measures the alignment between the two feature
vectors in terms of their direction:

sim(gi, oi) =
gi · oi

∥gi∥∥oi∥
. (8)

After that process, the produced BEV features could learn
the information from both ground-truth semantic and spatial
cues.

3.3. Loss
The training loss formulation for our method consists of two
components: the baseline map loss Lmap and semantic su-
pervision loss LSMG:

L = λ1Lmap + λ2LSMG, (9)

Figure 3. Comparison of cropping the produced BEV feature using
point position, one bounding box and two bounding boxes.

where λ1 and λ2 are hyper-parameters to balance the two
loss components. In this work, we set both parameters to
1. The semantic supervision, applied solely during training
via the SMG module, introduces no additional parameters
or computational overhead during inference. This ensures
that the efficiency of the original model is preserved at the
inference stage.

4. Experiments

4.1. Dataset and Metrics
Datasets. To evaluate our proposed approach, we conduct
experiments on the widely used nuScenes dataset [1], which
contains 28,130 training samples and 6,019 validation sam-
ples, corresponding to 700 and 150 driving scenes, respec-
tively. Each scene comprises roughly 40 samples, each
sample contains RGB images from 6 cameras of the same
model, each with a horizontal field of view of about 70 de-
grees. Together, these cameras provide a full 360 degrees
horizontal view around the ego-vehicle. For a fair compar-
ison, all experimental settings and metrics are kept consis-
tent with baseline models.

Additionally, we evaluate our method on the Argoverse2
dataset [30], which includes 1,000 driving sequences, each
capturing 15 seconds of data. The dataset provides 20
Hz RGB images from seven high-resolution ring cameras
(2048 × 1550), 10 Hz LiDAR sweeps, and a 3D vector-
ized map. The train, validation, and test splits comprise
700, 150, and 150 logs, respectively. Note that unlike
StreamMapNet [31], which re-splits the official datasets,
we retain the original splits used by MapTR [15] and Map-
TRv2 [16].

Following previous works [16, 31], we report results on
the validation sets of both the Argoverse 2 and nuScenes
datasets, focusing on the same three map elements as de-
fined in nuScenes, lane dividers, pedestrian crosswalks, and
road boundaries. For a fair comparison, all experimental
settings and evaluation metrics are kept consistent with the
baseline models, and all experiments are conducted on 8
NVIDIA A100 GPUs.

Metrics. We adopt the standard evaluation metrics com-



Method
BEV

Base Model
BEV
Size

SMG
Input

SMG
Encoder AP div. AP ped. AP bou. AP 0.5m AP 1.0m AP 1.5m mAP FPS

MapTR-nano GKT 200× 100 - - 49.9 39.6 48.2 - - - 45.9 35.0
MapTR

GKT 200× 100
- - 51.06 43.92 52.55 24.92 53.92 68.71 49.18

15.1MapTR+SMG One-hot MLP 53.23 47.99 53.26 26.73 56.49 71.25 51.49
MapTR+SMG Text CLIP-Text 53.15 47.67 54.68 27.74 56.91 70.86 51.83

MapTR
BEVFormer 200× 100

- - 50.05 44.85 52.18 24.44 53.64 69.45 49.18
15.0MapTR+SMG One-hot MLP 52.48 47.39 53.97 25.5 57.01 71.33 51.28

MapTR+SMG Text CLIP-Text 51.73 43.91 54.19 25.11 54.65 70.07 49.95
MapTR

BEV Pool v2 200× 100
- - 52.04 43.95 52.7 24.19 54.73 69.76 49.56

14.7MapTR+SMG One-hot MLP 53.51 48.3 54.26 27.43 57.71 71.29 52.14
MapTR+SMG Text CLIP-Text 53.62 47.62 54.93 26.92 57.52 71.73 52.06

MapTR V2
BEVPool v2 200× 100

- - 60.19 59.23 61.64 37.89 66.21 76.95 60.35
14.1MapTR V2+SMG One-hot MLP 62.53 59.53 62.99 38.75 67.84 78.47 61.69

MapTR V2+SMG Text CLIP-Text 62.32 58.09 62.32 38.48 65.99 78.26 60.93
StreamMapNet

BEVFormer 50× 100
- - 66.19 61.14 60.96 37.67 69.15 81.46 62.76

14.2StreamMapNet+SMG One-hot MLP 67.15 62.93 62.47 40.14 70.86 81.55 64.18
StreamMapNet+SMG Text CLIP-Text 66.56 62.7 61.68 38.93 70.23 81.78 63.65

Table 2. Performance comparison with baseline methods on nuScenes Validation set. FPS values are measured on the same machine
equipped with an RTX 3090. A dash (“–”) indicates unavailable results.

monly used in prior works [15, 16, 31]. The perception area
is set to [-15m, 15m] along the X-axis and [-30m, 30m]
along the Y-axis. Average Precision (AP) is used to assess
map construction quality, with Chamfer Distance DChamfer
determining matches between predictions and ground-truth.
We compute AP τ under multiple DChamfer thresholds τ ∈
{0.5, 1.0, 1.5} and report: (1) per-class AP, evaluating each
map element category (pedestrian crossings, lane dividers,
and road boundaries); (2) per-threshold AP, capturing per-
formance at each distance threshold; and (3) mean Average
Precision (mAP), the average across all classes and thresh-
olds for an overall score.

4.2. Performance on nuScenes
To demonstrate the generalizability of the proposed SMG
module and its ability to enhance various networks, we in-
tegrated it into MapTR [15] using different BEV encoders.
These include top-down methods such as GKT [4] and
BEVFormer [14], the bottom-up method BEVPool v2 [11],
as well as state-of-the-art approaches like MapTR v2 [16]
and StreamMapNet [31]. The results is summarized in
Tab. 2. As shown, the proposed SMG module consis-
tently improves performance across all five models and map
elements, including Average Precision (AP) for dividers,
crossings, and boundaries, AP at different distance thresh-
olds (0.5m, 1.0m, and 1.5m), as well as the overall mean
Average Precision (mAP). For MapTR with BEVPool v2
as the encoder, our method using one-hot class labels and
text descriptions as input outperforms the baseline by 2.58%
and 2.5% mAP, respectively. For more recent methods, in-
corporating SMG yields improvements of 1.34% mAP for
MapTR v2 and 1.42% for StreamMapNet.

The consistent improvements across various model con-
figurations and architectures, whether incorporating tempo-
ral information or not, demonstrate the effectiveness and

generalizability of injecting semantic information to guide
the BEV encoding process in HD map construction. No-
tably, using text descriptions as SMG input and employ-
ing CLIP’s text encoder to extract features improves all
baselines across all classes, thresholds, and mAP. However,
compared to the simpler MLP-based extractor, the more
complex feature extractor does not yield additional gains
in most cases, except when using MapTR with GKT as the
BEV encoder. A possible reason is that the semantic input
space is relatively simple, with only three classes. In this
setting, the powerful representation capability of CLIP’s en-
coder may be underutilized, offering limited advantage over
lightweight alternatives like MLPs.

Figures 4 and 5 illustrate how SMG enhances online vec-
torized map construction. For comparison, we present the
ground-truth map, the vectorized maps predicted by MapTR
and MapTR v2, and the results obtained after incorporating
our proposed SMG. Guided by semantic features, the out-
puts align more closely with the ground-truth. For instance,
in the first two rows of Figure 4, SMG enables more accu-
rate capture of map details compared to the original MapTR
and MapTR v2, as highlighted by the red circles. In the last
row of Fig. 4, the boundaries of pedestrian crossings are
also more precisely delineated. In night scenes, as shown
in Fig. 5, our method produces clearer map elements than
the baseline models. Overall, SMG improves the alignment
between predictions and ground-truth, demonstrating its ef-
fectiveness in enhancing the quality of BEV feature maps.

4.3. Performance on Argoverse 2
We also evaluate our framework on the Argoverse 2 dataset,
which provides 3D vectorized maps with additional height
information compared to the nuScenes dataset. As shown
in Tab. 3, the proposed SMG consistently improves mAP
and AP under all thresholds, as well as AP for most classes,



Figure 4. Visual comparison of MapTR and MapTR+SMG, as well as MapTRv2 and MapTRv2+SMG, on the nuScenes validation set
for day scenes. The blue, yellow, and green lines represent pedestrian crossings, dividers, and road boundaries, respectively. Our method
shows noticeably improved alignment with the ground-truth maps.

Figure 5. Visual comparison of MapTR and MapTR+SMG, as well as MapTRv2 and MapTRv2+SMG, on the nuScenes validation set for
night scenes.

across all models. Specifically, it boosts the baseline perfor-
mance by 1.88%, 1.60%, and 0.87% for MapTR, MapTR
v2, and StreamMapNet, respectively.

5. Ablation Studies

We conducted ablation studies on the nuScenes dataset us-
ing MapTR (with GKT as the BEV encoder) as the baseline
to evaluate the impact of each component in our proposed
model.

5.1. The effectiveness of Cropping Strategy

As introduced in Sec.3.2, there are three methods to crop the
corresponding region in the BEV feature: using point posi-
tions, using a bounding box for each instance, and using two
bounding boxes for the road boundary with one bounding
box for the other two map elements—crosswalk and divider.
The comparison is summarized in Tab.4. It can be seen that
cropping with bounding boxes slightly outperforms point-
based cropping in terms of mAP and yields better results



Method
BEV

Base Model
BEV
Size

SMG
Input

SMG
Encoder AP div. AP ped. AP bou. AP 0.5m AP 1.0m AP 1.5m mAP

MapTR
GKT 200× 100

- - 63.16 54.09 60.53 31.85 66.11 78.82 59.26
MapTR+SMG One-hot MLP 63.53 55.81 60.65 33.06 66.91 80.02 60.00
MapTR+SMG Text CLIP-Text 65.66 57.51 60.26 34.51 68.06 80.86 61.14

MapTR V2
BEVPool v2 200× 100

- - 67.66 58.85 64.29 38.16 70.71 81.93 63.60
MapTR V2+SMG One-hot MLP 69.62 61.1 64.88 39.74 72.55 83.3 65.20
MapTR V2+SMG Text CLIP-Text 69.14 60.16 65.19 39.94 71.87 82.68 64.83

StreamMapNet
BEVFormer 50× 100

- - 54.95 66.51 55.07 42.76 61.81 71.97 58.84
StreamMapNet+SMG One-hot MLP 56.39 66.5 56.24 44.38 62.27 72.48 59.71
StreamMapNet+SMG Text CLIP-Text 55.4 66.09 56.52 43.98 61.8 72.23 59.34

Table 3. Performance comparison with baseline methods on Argoverse 2 Validation set

across most classes. This may be because bounding boxes
aggregate features over a wider area, providing stronger
spatial cues that help the model localize more effectively.
Using two bounding boxes to split the road boundary while
employing one bounding box for the divider and crosswalk
significantly outperforms both the single bounding box ap-
proach and the point-based method, improving mAP by
1.26% and 1.39%, respectively.

Cropping Strategy AP div. AP ped. AP bou. mAP
Point 51.26 46.34 52.69 50.10
Box 51.28 47.00 52.41 50.23

DualBox-bou 53.23 47.99 53.26 51.49

Table 4. Ablation study on different cropping methods

5.2. SMG input format and SMG encoder
We use either one-hot class labels or text descriptions as
the semantic input to the semantic feature extractor (SFE).
One-hot encoding represents each class as a binary vector
with a single active position, allowing the model to clearly
distinguish between classes without implying any ordinal
relationship. To further explore the effectiveness of this in-
put format, we enhance it by incorporating point position
information for each map element. This additional input
enriches the feature set and provides spatial cues to guide
the decoder in predicting point positions. We evaluate both
a simple MLP and a more expressive model, PointNet [23],
as the feature extractor.

In addition to digital formats, we also experiment with
using visual inputs. Specifically, we create three masked
images—one per class—to clearly show the positions of
each map element and employ UNet [26] as the feature ex-
tractor. The results of these experiments are summarized in
Tab. 5. As shown, incorporating point position, whether us-
ing a simple MLP or a more complex PointNet for feature
extraction—results in the two worst performances. A poten-
tial reason is that the model already captures spatial struc-
ture through BEV supervision with ground-truth labels. In-
troducing explicit point coordinates may create redundancy,
leading the model to overfit specific spatial patterns rather
than learning generalizable geometric or semantic features.

SMG Input SMG Encoder AP div. AP ped. AP bou. mAP

label MLP 53.23 47.99 53.26 51.49

label + point position MLP 49.24 43.52 51.39 48.05

label + point position PointNet 49.73 43.9 52.27 48.64

masked class images UNet 51.41 45.63 52.89 49.97

Table 5. Ablation study on SMG input format and SMG encoder

5.3. Feature Alignment

In our method, we employ contrastive learning to align the
produced BEV features with the ground-truth BEV features.
Additionally, we use mean squared error (MSE) loss for
alignment. The results, shown in 6, indicate that contrastive
loss provides better performance. However, compared to
the baseline (MapTR), using MSE for alignment also yields
satisfactory results.

Alignment loss AP div. AP ped. AP bou. mAP

W/o alignment 51.06 43.92 52.55 49.18

MSE 51.39 45.53 53.35 50.09

Contrastive loss 53.23 47.99 53.26 51.49

Table 6. Ablation study on different alignment loss functions

6. Conclusion
In this study, we propose a Semantic Map Guidance Mod-
ule (SMG) for online HD map construction using BEV
representations. The module leverages ground-truth la-
bels to guide BEV encoding and employs a contrastive
loss to align semantic features with the corresponding
BEV features. This enables the SMG to explicitly or-
ganize BEV elements based on class labels, enhancing
their alignment with ground-truth structures. Extensive
experiments on the nuScenes and Argoverse 2 datasets
demonstrate that SMG accuracy gain is generalizable across
different network architectures and consistently improves
the performance of several state-of-the-art baselines. No-
tably, SMG is only applied during training and introduces
no additional computational cost during inference, mak-
ing it both effective and practical for real-world deploy-
ment.
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