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Abstract

Reasoning-augmented vision language models
(VLMs) generate explicit chains of thought that
promise greater capability and transparency
but also introduce new failure modes: mod-
els may reach correct answers via visually un-
faithful intermediate steps, or reason faithfully
yet fail on the final prediction. Standard eval-
uations that only measure final-answer accu-
racy cannot distinguish these behaviors. We
introduce the visual faithfulness of reasoning
chains as a distinct evaluation dimension, fo-
cusing on whether the perception steps of a
reasoning chain are grounded in the image. We
propose a training- and reference-free frame-
work that decomposes chains into perception
versus reasoning steps and uses off-the-shelf
VLM judges for step-level faithfulness, addi-
tionally verifying this approach through a hu-
man meta-evaluation. Building on this metric,
we present a lightweight self-reflection proce-
dure that detects and locally regenerates un-
faithful perception steps without any training.
Across multiple reasoning-trained VLMs and
perception-heavy benchmarks, our method re-
duces Unfaithful Perception Rate while pre-
serving final-answer accuracy, improving the
reliability of multimodal reasoning. 1

1 Introduction

Hallucinations in vision–language models (VLMs)
are typically defined as deviations between model
outputs and the underlying visual content (Bai et al.,
2024; Liu et al., 2024b). While the phenomenon
has been studied extensively, existing evaluations
for it remain narrow. Most focus on coarse object
existence in captions, overlooking finer elements
such as counts, colors, or spatial relations that make
up a large portion of visual hallucinations (Gunjal

*Work done during an internship at AWS AI Labs. Corre-
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Figure 1: Reasoning faithfulness and final-answer ac-
curacy diverge. Correct final answers are not always
grounded in the image, and incorrect answers can still
reflect visually faithful reasoning. Evaluating only fi-
nal accuracy therefore overlooks whether the reasoning
process itself attends to the visual evidence. The weak
correspondence between final-answer correctness and
reasoning-chain faithfulness shows that accuracy met-
rics alone cannot capture whether a model’s reasoning
genuinely reflects what it “sees.”

et al., 2023). These limitations become more pro-
nounced in increasingly popular reasoning based
models (Aubakirova et al., 2025), where intermedi-
ate steps are incorporated to solve complex tasks
and provide apparent transparency into the model’s
decision-making processes (Li et al., 2025).

In text-only domains, the quality of reasoning
traces has been examined in terms of their correct-
ness, coherence, or adherence to instructions (Ja-
covi et al., 2024; Hao et al., 2024). In multimodal
settings, however, these reasoning chains introduce
a new axis of reliability: visual faithfulness – Is
each step of the reasoning chain actually grounded
in the image?

A model may produce a correct final answer

https://uppaal.github.io/projects/visual-faithfulness/journey-before-destination.html
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Ques�on:
What does the image depict?
A. magnets with like poles together
B. magnetswith opposite poles together
C. unlabeled blocks
D. colored rectangles

Model Response:
The image shows two magnets. The first
magnet has its south (S) pole on the le� and its
north (N) pole on the right. The secondmagnet
also has its south (S) pole on the le� and its
north (N) pole on the right.
Since like poles repel each other, the image
depicts magnets with like poles together.
Therefore, the correct answer is:
A. magnetswith like poles together.

Ques�on:
Which solu�on has more solutes?
A. Solu�onA
B. Solu�on B
C. Both have the same amount of solutes
D. Cannot be determined

Model Response:
To determine which solu�on has more solutes,
we need to compare the number of solute
par�cles in each solu�on.
- Solu�onA has 5 solute par�cles.
- Solu�on B has 4 solute par�cles.
Since Solu�on A has more solute par�cles than
Solu�on B, the correct answer is: A. Solu�on A

Ques�on:
What does the picture depict?
A. The map of the U.S.
B. The map of North America
C. Theworldmap
D. None of the above

Model Response:
The picture depicts a world map. The
con�nents are shown in green, and the
oceans are in blue.
The highlighted area in blue corresponds
to the con�nent of Africa.
Therefore, the correct answer is:
C. The worldmap

(a) (b) (c)

Figure 2: Reasoning-chain faithfulness does not always align with final-answer correctness. (a–b) Visually unfaithful
reasoning chains that nonetheless yield correct answers on perception tasks. (c) A visually faithful chain producing
an incorrect answer, where the error arises from reasoning rather than perception. All responses are from the
ThinkLite-VL model on samples from the MMEvalPro dataset.

while hallucinating intermediate entities, attributes,
or relations that are not visually supported. Con-
versely, it may describe the image faithfully yet
still reach an incorrect conclusion due to down-
stream logical mistakes. Figure 2 illustrates both
phenomena: visually unfaithful reasoning leading
to correct predictions, and visually faithful reason-
ing that nonetheless yields incorrect answers.

This sheds light on a pressing issue – existing
metrics assess the hallucination rate of a VLM
through its final answer accuracy on perception
tasks. In Figure 1 we highlight that this measure
does not correlate with the model’s hallucination
rate in its reasoning chains. Many evaluation pro-
tocols implicitly assume that the final answer y
is produced by following the reasoning chain R
(Figure 3). In practice, large models can shortcut
this process: internal representations h may map
directly to the answer via spurious correlations, lan-
guage priors, or pattern matching, while the chain
R is generated as a post-hoc justification rather
than the causal basis for the decision (Jiang et al.,
2025; Shojaee et al., 2025; Xia et al., 2025). As a
result, high final-answer accuracy does not guaran-
tee that intermediate reasoning steps are visually
faithful, nor that they faithfully track the model’s
internal decision path.

Existing hallucination detection approaches are
simply not designed to capture hallucination rates
in the complex setting of reasoning. These methods
usually verify the existence of objects or atomic
facts against the image or a ground truth list; thus
treating each answer as an unordered set of facts.
By contrast, reasoning chains are a compositional
trajectory – they are long, structured, and explicitly
interleave distinct perception steps (reading from
the image) and reasoning steps (operating over pre-
viously inferred facts). Visual faithfulness is only
well-defined for perception steps, yet errors in these
steps can propagate through the chain and contam-
inate subsequent reasoning. Prior work has also
shown that hallucinations become more frequent
as generations grow longer and more verbose (Zhai
et al., 2023), making it particularly important to
evaluate the quality of the full reasoning trajectory
rather than only its endpoint.

In this paper, we take a first step toward sys-
tematically measuring and improving the visual
faithfulness of reasoning chains in VLMs. Our
contributions are:

• Problem definition. We formally highlight
visual faithfulness of reasoning chains as dis-
tinct from final-answer accuracy or traditional
hallucination detection, with empirical evi-



dence that these standard metrics do not reli-
ably capture step-level faithfulness.

• Evaluation framework. We introduce a scal-
able, training- and reference-free evaluation
pipeline that uses off-the-shelf VLM judges
to assess visual faithfulness at the level of in-
dividual reasoning steps, and validate these
metrics via a human correlation study.

• Mitigation method. We propose a lightweight
self-reflection procedure that combines a
when-to-intervene detector with localized
regeneration of unfaithful perception steps.
Our method substantially improves reasoning-
chain visual faithfulness across multiple
datasets and models, often with improved
final-answer accuracy.

Together, our results establish reasoning-chain
visual faithfulness as an essential axis for evalu-
ating and improving reasoning-augmented VLMs,
and provide concrete tools for measuring and miti-
gating unfaithful visual reasoning at scale.

2 Related Work

Hallucinations in VLMs In vision–language
models (VLMs), hallucinations are broadly de-
fined as deviations between model outputs and pro-
vided visual content (Bai et al., 2024; Liu et al.,
2024b). Such lack of visual faithfulness can arise
from insufficiently diverse data during instruction
tuning (Li et al., 2023; Wang et al., 2023a; Yu
et al., 2024; Goyal et al., 2025) or earlier train-
ing stages (Wang et al., 2023a; Zhou et al., 2024;
Li et al., 2023; Guan et al., 2024); or limited ca-
pabilities of the vision encoder to capture fine-
grained visual information (Zhang et al., 2021;
Wang et al., 2023a, 2024b; Liu et al., 2024e; Wang
et al., 2024c). However, the most common cause is
language dominance: VLMs tend to under-attend
to the image (Parcalabescu and Frank, 2025; Yin
et al., 2025; Yang et al., 2025b), allowing strong
priors from LLM parameters to override visual sig-
nal (Zhai et al., 2023; Jiang et al., 2025; Sun et al.,
2024c; Rahmanzadehgervi et al., 2024; Liu et al.,
2025b).

Efforts to mitigate hallucinations have included
data diversification (Qi et al., 2020; Liu et al.,
2024a; Wang et al., 2024a; Yu et al., 2024; Zhang
et al., 2024a; Zou et al., 2024; Yue et al., 2024b;
Hu et al., 2025, inter alia), activation steering to
strengthen visual signal (Zhai et al., 2023; Liu et al.,

Query x

Hidden States h

Reasoning chain R

Final answer y

Figure 3: Causal structure underlying final answers and
reasoning traces. Many evaluation protocols assume the
final answer y is produced via the reasoning chain R
(orange arrows). However, models can also map hidden
features h directly to y (red arrow) via spurious cor-
relations or language priors, bypassing R. Thus, high
final-answer accuracy does not guarantee that interme-
diate reasoning steps are visually faithful.

2025b; Jiang et al., 2025; Yang et al., 2025b; Yin
et al., 2025; Su et al., 2025), or other model editing
techniques (Jiang et al., 2025; Yang et al., 2025a;
Uppaal et al., 2025; Arif et al., 2025), and decoding-
time interventions (Favero et al., 2024; Ghosh et al.,
2024; Wang et al., 2024b; Yin et al., 2024). Never-
theless, most methods focus on improving visual
grounding in simple discriminative or captioning
settings rather than multi-step reasoning.

Slow Thinking VLMs Slow thinking is oper-
ationalized through the notion of inference-time
scaling — allocating a larger token budget to al-
low multi-step deliberation and exploration of mul-
tiple hypotheses (Li et al., 2025). These mod-
els demonstrate substantial gains on reasoning
tasks, often trained via supervised fine-tuning
(SFT) on reasoning chains (Xu et al., 2024; Zhang
et al., 2024c; Deng et al., 2024; Cheng et al.,
2025; Chen et al., 2024) or reinforcement learn-
ing (RL) (Wang et al., 2025c; Xiang et al., 2024;
Wang et al., 2025a). These models consistently
invoke inference-time scaling irrespective of in-
ference time prompt structures. These training
paradigms encourage self-reflection and iterative
correction within the model’s generation process.

Although some recent studies attempt to enhance
visual faithfulness through similar reasoning-based
training (Zhao et al., 2023; Jing and Du, 2024; Sun
et al., 2024a; Favero et al., 2024; Zhao et al., 2025),
Liu et al. (2025a) show that reasoning training can
worsen visual faithfulness. Moreover, existing stud-



ies largely assess grounding only in final answers,
overlooking whether intermediate reasoning steps
remain visually faithful.

Evaluating the Quality of Reasoning Chains
Wang et al. (2023a) and Favero et al. (2024) show
that hallucination frequency increases with longer
generations, making it crucial to measure the qual-
ity of the reasoning chains, not just final answers.
In text-only settings, prior work has assessed the
redundancy, relevance, and correctness of inter-
mediate steps using verifiers (Jacovi et al., 2024;
Hao et al., 2024). Shojaee et al. (2025) and Xia
et al. (2025) further question final answer accuracy
based evaluation, showing that is does not necessar-
ily guarantee an improvement in the overall quality
of the reasoning steps.

However, in grounded multi-modal generation,
the visual faithfulness of reasoning traces remains
largely unexplored. Chen et al. (2024) evalu-
ate reasoning-step consistency but require curated
atomic question sets. In contrast, our work in-
troduces a training and data-free framework for
measuring and mitigating the visual faithfulness of
reasoning chains using off-the-shelf VLM judges,
establishing a scalable foundation for assessing
grounded reasoning quality.

3 Measuring the Visual Faithfulness of
Reasoning Chains

3.1 Measuring Visual Faithfulness Beyond
Final Answers

Much of the existing work on visual faithfulness
has focused on the limited setting of discrimina-
tive free-form answers (Li et al., 2023; Sun et al.,
2024b; Wang et al., 2023b; Wu et al., 2024; Zhang
et al., 2021; Liu et al., 2024e; Guan et al., 2024). In
such settings, hallucination can often be detected
through simple metrics like accuracy or F1 score.
Some works extend evaluation into the generative
space of image captioning tasks; however, even
in this case evaluation is limited to object hallu-
cinations, and requires a ground truth list of ob-
jects present in the image (Wang et al., 2023a;
Liu et al., 2024a). More recently, limited work
on reference-free evaluation in free-form answers
has been proposed: Liu et al. (2025a) use GPT
evaluation while Jing et al. (2024) decompose an
output into atomic facts and use a trained model to
verify if each fact is entailed by the image.

However, notably, these approaches focus pri-
marily on isolated facts or final answers. They do

not capture whether a model’s intermediate rea-
soning process is visually grounded and consistent
with the image. Evaluating reasoning chains poses
unique challenges compared to short answers or
image captions: chains are multi-step, composi-
tional, and often combine factual grounding (or
perception) with logical inference (or reasoning).
A model might reach a correct final answer through
unfaithful intermediate steps, or conversely, follow
a faithful chain that nevertheless ends in an incor-
rect conclusion. In both cases, assessments based
solely on the final output fail to reflect the true
quality of visual grounding. This gap motivates
our work: measuring the visual faithfulness of rea-
soning chains requires methods that move beyond
outcome-based evaluation and instead interrogate
the full reasoning trajectory.

3.2 Measuring the Visual Faithfulness of
Reasoning Chains

Inspired by the above, we introduce a fine-grained
and training and reference-free method for eval-
uating the visual faithfulness of reasoning chains.
This has two main advantages: (i) it eliminates
the need for data curation for and training of task-
specific classifiers or entailment models, (ii) poten-
tially generalizing better across tasks and domains.
Instead of building narrowly trained discriminators,
we rely on the general reasoning and grounding
abilities of state-of-the-art VLMs, used directly
out-of-the-box.

Towards this objective, we begin by asking if
state-of-the-art VLMs can serve as effective judges
of visual faithfulness in reasoning chains. We
propose a simple approach of using off-the-shelf
VLMs as a metric and perform a meta-evaluation
which demonstrates that our metric highly corre-
lates with human judgments of faithfulness.

Setting Given a query prompt p and associated
image I , a reasoning-trained VLM θ produces a
reasoning chain R and final answer y. The rea-
soning chain R consists of a sequence of interme-
diate steps r1, . . . , rt that alternate between ref-
erencing visual elements in I (i.e. perception)
and performing non-visual logical inference (i.e.
reasoning). To capture this distinction, we cat-
egorize each step ri as either a Perception or
Reasoning statement. Visual faithfulness is mean-
ingful only for Perception steps, since these di-
rectly claim to ground information in the image.
Accordingly, we define each perception step as ei-



Algorithm 1: Evaluation of Reasoning
Chain Visual Faithfulness through a Judge
Input: Prompt p, Image I , VLM θ, Judge J
Output: Annotated sequence

{(rt, typet, faitht)}Tt=1

1 Get VLM generation: (R, y)← θ(p, I);
2 Segment reasoning chain R into steps:
{r1, r2, . . . , rT } ← Segment(R);

3 Judge precomputes visual context:
ÎJ ← GroundImage(I);

4 for t← 1 to T do
5 if rt references visual content in I then
6 typet ← PERCEPTION;
7 if st is grounded in I then
8 faitht ← FAITHFUL;
9 else

10 faitht ← UNFAITHFUL;

11 else
12 typet ← REASONING;
13 faitht ← N/A;

14 return {(rttypet, faitht)}Tt=1

ther Faithful if it accurately reflects the visual
content, or Unfaithful if it introduces halluci-
nated or incorrect visual details. This step-level
distinction provides the foundation for our evalua-
tion method, which requires a judge to disentangle
perception from reasoning and assess the ground-
ing of each perception step.

Method We leverage state-of-the-art VLM
judges to perform fine-grained evaluations of rea-
soning chains at the step level. Given a judge model
J and a reasoning chain R = {r1, . . . , rt} gener-
ated by a VLM θ, the judge is tasked with segment-
ing the chain into individual steps and assigning
two labels to each ri: a type label (Perception or
Reasoning) and, when applicable, a faithfulness
label (Faithful or Unfaithful). Since only per-
ception steps are expected to reference the image,
faithfulness is evaluated exclusively for these cases.
To enhance reliability, we first ground the judge
in the visual content by prompting it to produce a
detailed description of the image I prior to anno-
tation. This auxiliary description is used internally
by the judge to anchor subsequent assessments, en-
suring that each step is evaluated with respect to
the actual visual evidence rather than generic pri-
ors. The full evaluation procedure is summarized
in Algorithm 1.

Judge Model Correlation
Perception Faithfulness

LLaVA-NeXT 0.54 0.45
Qwen2.5-VL-72B-Instruct 0.94 0.66
Claude 3.7 Sonnet 0.87 0.66
Claude 4 Sonnet 0.93 0.69

Table 1: Comparison of various Judge models on the
task of measuring visual faithfulness. The labels of
each judge are compared against two sets of human
annotations, using ICC 3-1 as a correlation measure.
Correlations above 0.6 are considered acceptable.

Configuration Correlation
Perception Faithfulness

Vanilla 0.93 0.66
+ Grounding 0.93 0.69
+ Grounding + Rationales 0.91 0.65

Table 2: Using the best judge model of Claude 4
Sonnet, we measure its correlation with human judg-
ment against various prompting styles.

How well calibrated are VLM judges? We
evaluate the calibration of several widely
used VLM judges (LMArena, 2024), in-
cluding LLaVA-NeXT (Liu et al., 2024c),
Qwen2.5-VL-Instruct (Bai et al., 2025),
and Claude Sonnet 3.7 and 4 (Anthropic,
2024). To assess their reliability, we measure the
extent to which each model’s ratings of reasoning
chain faithfulness align with human annotations.
Specifically, we collect 300 random samples
from the MMEval-Pro benchmark (Huang et al.,
2025), spanning math, science, and natural image
domains. For each sample, VLM generations
(acquired from a 7B reasoning model) are anno-
tated both automatically (by the VLM judges) and
manually (by two human annotators). We then
compute the Intraclass Correlation Coefficient
(specifically, ICC(3,1)) (Koch, 2004) between
model and human ratings. We adopt ICC rather
than agreement measures such as Cohen’s (Cohen,
1960) or Fleiss’ Kappa (Fleiss, 1971), since ICC
is more appropriate for continuous judgments: it
accounts not only for agreement in categorical
assignment but also for the magnitude of differ-
ences in ratings (Klie et al., 2024). As shown in
Table 1, Claude Sonnet 4 achieves the highest
correlation with human judgments, indicating its
superior calibration as a faithfulness judge among
the models evaluated. More details can be found in
Appendix C.



We further investigate how the performance of
Claude Sonnet 4 varies under different prompt-
ing configurations. Table 2 reports the ICC values
obtained across some basic prompting variants (de-
scribed in Appendix C). The results suggest that
increasingly complex prompts (Grounding + Ratio-
nales) may worsen correlation, and we thus use the
Grounding prompt as part of our final evaluation
method.

4 Improving the Visual Faithfulness of
Reasoning Chains

A When and How Problem Improving visual
faithfulness in reasoning chains requires addressing
two distinct questions: when should an intervention
occur, and how should the model be guided once
an unfaithful step is detected? We explicitly sepa-
rate these questions because reasoning chains are
typically long and alternate between Perception
and Reasoning steps. A global intervention strat-
egy that applies corrections indiscriminately risks
disrupting reasoning ability, while overly narrow
strategies may fail to catch unfaithful references.
Instead, interventions should be targeted only at
Perception steps that are identified as unfaith-
ful, thereby minimizing collateral effects on down-
stream reasoning. In addition, we deliberately fo-
cus on training-free mitigation strategies. Such
methods are modular, lightweight, and easily appli-
cable across different models and tasks without the
need for task-specific fine-tuning.

Self-Reflection as a Mitigation Strategy Our
proposed approach is based on self-reflection, mo-
tivated by the observation that models often exhibit
higher variance in their outputs when hallucinat-
ing (Farquhar et al., 2024). The method operates in
two stages. First, a detector function monitors each
reasoning step in the chain and flags it as unfaithful
when it fails to align with the visual evidence (when
to intervene). Second, once an unfaithful step is
detected, the model is prompted to regenerate that
portion of the chain with explicit instructions to
ground its description in the image (how to inter-
vene). For example, if a model incorrectly claims
that “a dog is present in the image” when no dog
exists, the detector identifies this as unfaithful and
triggers a regeneration step. The model is then
instructed to re-describe the scene, producing a cor-
rected perception such as “no animals are present in
the image.” This localized regeneration preserves
the integrity of faithful steps while correcting er-

Algorithm 2: Self-Reflection with Reason-
ing Trained VLMs
Input: Prompt p, Image I , VLM θ,

Detector D, Regeneration Prompt
pr, Retry Limit K

Output: Faithful Reasoning Chain R̃
1 R̃← ∅;
2 i← 0
3 repeat
4 Generate reasoning segment:

(ri+1, . . . , rt)← θ(p, I, R̃);
5 Detect first unfaithful step:

j ← D(ri+1, . . . , rt);
6 if j = −1 then
7 R̃← R̃ ∪ (ri+1, . . . , rt);
8 else
9 Regenerate ri+j with retry limit:

10 for k ← 1 to K do
11 r′i+j ← θ(p, I, r1, . . . , ri+j |

pr)
12 if D(r′i+j) = −1 then
13 break;

14 R̃← R̃ ∪ (ri+1, . . . , r
′
i+j);

15 until reasoning complete;
16 return R̃

rors where they occur. The complete procedure is
formalized in Algorithm 2.

Given an input prompt p and image I , the VLM θ
generates its answer (R, y). The detector function
D returns the index of the first unfaithful step i (or
−1 if no steps are unfaithful). Following this, the
VLM is prompted with (p, I, r1 . . . ri, pr) to regen-
erate a faithful ri, where pr specifies the unfaith-
fulness of ri. The regeneration process is repeated
until ri is faithful or a retry limit K is reached.2

After this, the corrected and partial reasoning chain
r1 . . . r

′
i is fed to the VLM θ to generate the re-

maining reasoning chain ri+1 . . . rt, restarting the
self-reflection process. This continues until the last
reasoning step rT is checked by D.

5 Experimental Setup

Models To ensure consistent genera-
tion of reasoning traces during infer-

2The retry limit prevents unbounded regeneration and
avoids unnecessary inference cost when a step remains un-
faithful after multiple regenerations. As shown in Figure 5,
90% of successful corrections occur within three retries, so
additional attempts yield negligible benefit.



ence, we use the following 7B reason-
ing trained models: ThinkLite-VL (Wang
et al., 2025b), OpenVLThinker (Deng
et al., 2025), MM-Eureka (Meng et al.,
2025) and Ocean-R1 (Ming et al., 2025).
All models have been trained from
Qwen2.5-VL-7B-Instruct (Team, 2024),
and have been selected to provide a uniform
sampling over methods used for reasoning training,
as well as domains the training was performed
on. More details on these models can be found in
Appendix B.

Datasets We use three popular perception bench-
marks in our study: The perception split of
MMEvalPro (Huang et al., 2025), MMVP (Tong et al.,
2024) and HallusionBench (Guan et al., 2024).
All datasets are framed as multiple choice ques-
tions, with ground truth final answers provided.
More details can be found in Appendix B.

Measuring Model Performance We measure
two facets of the VLM’s generated answer:

• Visual faithfulness per reasoning chain sen-
tence: Following Section 3, we use Claude
4 Sonnet as a judge to evaluate the faithful-
ness of each sentence (or step) in the reason-
ing chain. We report Unfaithful Perception
Rate (UPR), which is simply the fraction of
unfaithful perception steps. In other words,

UPR =
Number of Unfaithful Sentences
Number of Perception Sentences

These figures are calculated on a dataset level.
A higher UPR indicates a higher rate of un-
faithfulness in the visual reasoning, while a
lower UPR suggests better alignment between
perception sentences and the image content.

• Final Answer Accuracy: To ensure our
method does not degrade original capabili-
ties of the model, we measure the correctness
of the final answer provided by the model af-
ter the reasoning chain. For this, the model’s
selected option on the MCQ question is com-
pared against the Ground Truth option.

6 Identifying When to Intervene

To determine when during generation to apply an
intervention, we compare several hallucination-
detection strategies.

Method F1 Score (↑)
Faithful Class Unfaithful Class

SAPLMA 74.9 25.4
HaloScope 91.5 14.9

kNN 67.5 8.9

Prompting 84.8 30.8
Auxiliary Model 98.6 97.8

Table 3: Comparison of when to intervene methods
using the ThinkLite-VL (7B) model. Results show
that hallucination detection remains challenging for a
7B VLM given limited and imbalanced training data,
while a stronger auxiliary model (Claude 3.7) achieves
substantially better performance.

Detection Strategies White-box approaches use
internal signals such as attention (Zhang et al.,
2024d; Huang et al., 2024), logits, or hidden
states (Jiang et al., 2025). They are training-free
but offer coarse, unstable signals due to model com-
plexity (Chen et al., 2025). Black-box methods rely
on surface behavior, including similarity matching,
uncertainty (Zhang et al., 2024b), or trained aux-
iliary model judgments (Jing et al., 2024; Nguyen
et al., 2025; Liu et al., 2024a,e; Kaul et al., 2024;
Wang et al., 2023c). They generalize better and are
more reliable across tasks.

Experimental Setup We sample 1200 examples
from the perception split of MMEval-Pro, hold-
ing out 500 for detector tuning. Training fo-
cuses on early reasoning steps due to the long-
tailed distribution of chain lengths (Figure 7). Ex-
periments use ThinkLite-VL-7B, and F1 is com-
puted on the Unfaithful class using Claude 4
Sonnet–derived gold labels. More details can be
found in Appendix D.

Results White-box methods perform poorly, re-
flecting weak internal calibration in 7B models.
Training-based detectors overfit early steps and de-
grade over time due to concept drift (Appendix D),
limiting generality. Auxiliary-model detectors re-
main robust and achieve the highest F1, so we adopt
this approach as our when detector. Results are
shown in Table 3.

7 Self-Reflection Improves Visual
Faithfulness in Reasoning Chains

Self-Reflection Enhances Faithfulness and Accu-
racy Figure 4 shows that our self-reflection strat-
egy substantially improves the visual faithfulness
of reasoning chains across datasets. Interestingly,
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Figure 4: Impact of our method on the visual faithfulness of reasoning chains. Both methods (vanilla and ours) use
the same underlying model (ThinkLite VL). Our method significantly reduces UPR, while also improving final
answer accuracy. All numbers are reported as percentages.

final-answer accuracy also rises, suggesting that
grounding intermediate reasoning steps strength-
ens overall task performance. In Appendix E, we
see this trend holds for various reasoning-trained
models.
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Figure 5: Breakdown of self-reflection outcomes by
number of regeneration attempts. Most unfaithful steps
are corrected within one regeneration, and over 90%
within three. The remaining unresolved cases corre-
spond to instances where the model likely lacks the
visual knowledge to generate a faithful description, in-
dicating that the reflection process reaches its natural
limit rather than incurring inefficiency.

Importance of Knowing When to Intervene
The detector function in Algorithm 2 is key to effec-
tive reflection. As shown in Table 4, replacing the
detector function from Claude 3.7 to the weaker
Qwen2.5-VL-72B-Instruct shows a drop in accu-
racy on the MMVP perception task; and replacing our
detector function to with a simple self-assessment
prompt causes a sharp drop in unfaithful-step re-
covery, confirming that precise intervention timing
is critical.

Latency of the Self-Reflection Method Al-
though self-reflection adds additional forward

Detector Function UPR (↓) Acc (↑)

None (Vanilla) 8.4 35.0
Claude 3.7 Sonnet 1.7 39.7

Qwen2.5-VL-72B-Instruct 2.1 32.0
ThinkLite-VL 7B 6.5 33.3

Table 4: Impact of the detector function D (i.e. when to
intervene module) on the reasoning chain visual faith-
ful faithfulness and final answer accuracy, on the MMVP
perception task. The ThinkLite-VL model is used for
generation. All numbers are recorded as percentages.

passes, it remains relatively efficient in practice.
As shown in Figure 5, most fixable unfaithful steps
are corrected within a single regeneration, and over
90% of successful corrections occur within three
attempts. The remaining unresolved cases corre-
spond to instances where the model likely lacks
the visual knowledge to generate a faithful descrip-
tion, indicating that the reflection process reaches
its natural limit rather than incurring inefficiency.

8 Discussion

This work identifies visual faithfulness of reasoning
chains as a distinct dimension of performance for
reasoning-oriented VLMs. While prior evaluations
primarily emphasize final-answer accuracy, we
show that such metrics do not determine whether
intermediate reasoning steps are actually grounded
in the image.

To address this gap, we introduce both a simple
evaluation metric and a lightweight self-reflection
procedure for improving step-level faithfulness.
Across models and datasets, this approach consis-
tently strengthens visual grounding and, in many
settings, also improves final-task accuracy. These



findings suggest that encouraging faithful reason-
ing can enhance not only model transparency, but
also reliability on downstream tasks.

At the same time, this work should be viewed as
an initial step. The proposed method is intention-
ally lightweight—training-free and broadly appli-
cable across model families—but it also has clear
limitations. By formalizing the problem, introduc-
ing an evaluation metric, and demonstrating a sim-
ple yet effective mitigation strategy, we aim to es-
tablish a foundation for subsequent work. In this
sense, the framework serves as a stepping stone to-
ward richer supervision signals, improved training
paradigms, and ultimately models whose reason-
ing is not only accurate, but also transparent and
visually grounded.

Limitations

Our framework is simple and training-free, but sev-
eral limitations remain.

Inference efficiency Self-reflection introduces
extra forward passes, adding latency relative to a
single-pass baseline. Yet this overhead is bounded
(capped at three regenerations) and far lighter than
retraining or collecting new data. Most correctable
errors are resolved within one regeneration, mak-
ing the method efficient in practice. Optimizations
such as KV-cache reuse, partial decoding, or adap-
tive stopping could further reduce runtime.

Dependence on auxiliary models Our detection
approach relies on a strong external VLM. While
effective, this may limit accessibility. While we
already show that strong open-source models per-
form comparably to closed-source ones, explor-
ing lighter detectors or self-checking mechanisms
would make the approach more widely usable.

Scope of evaluation We study perception-heavy
reasoning tasks; generalizing to broader settings
such as planning or multimodal dialogue is deferred
to future work.
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A Ethical Considerations

Our primary objective is to enhance the safe utility
of Large Language Models (LLMs) by reducing
the potential harm caused by their outputs. By
prioritizing the development of mechanisms to cur-
tail hallucinations, we aim to contribute to a more
responsible and ethical deployment of LLMs in
various applications, thereby safeguarding against
the propagation of misinformation and promoting
the creation of safer digital environments.

Our study does not involve any human subjects
or violation of legal compliance. We do not an-
ticipate any potentially harmful consequences to
our work. All of our experiments are conducted
using publicly available datasets. Our code shall
be released for reproducibility. Through our study
and releasing our code, we hope to raise stronger
research and societal awareness towards building
safe and robust language models.

B Models and Datasets

Reasoning VLMs We use the mod-
els ThinkLite-VL3 (Wang et al.,
2025b), OpenVLThinker4 (Deng et al.,
2025), MM-Eureka5 (Meng et al., 2025)
and Ocean-R16 (Ming et al., 2025).
All models have been trained from
Qwen2.5-VL-7B-Instruct (Team, 2024). More
details on these models can be found in Table 5.

Judge Models We shortlist commonly
used vision-language judge models in our
study: LLaVA-NeXT7 (Liu et al., 2024c),
Qwen2.5-VL-72B-Instruct8 (Bai et al., 2025),
Claude 3.7 Sonnet9 (Anthropic, 2024), Claude
4 Sonnet10 (Anthropic, 2024). More details can
be found in Table 6.

Datasets We use three popular perception bench-
marks in our study: The perception split of

3https://huggingface.co/russwang/
ThinkLite-VL-7B

4https://huggingface.co/ydeng9/
OpenVLThinker-7B

5https://huggingface.co/FanqingM/
MM-Eureka-Qwen-7B

6https://github.com/VLM-RL/Ocean-R1
7https://huggingface.co/llava-hf/llava-v1.

6-34b-hf
8https://huggingface.co/Qwen/Qwen2.

5-VL-72B-Instruct
9https://www.anthropic.com/news/

claude-3-7-sonnet
10https://www.anthropic.com/claude/sonnet

MMEvalPro11 (Huang et al., 2025), MMVP12 (Tong
et al., 2024) and HallusionBench13 (Guan et al.,
2024). More statistics about each dataset is avail-
able in Table 7. The listed datasets are intended
for research purposes only. We do not make any
commercial use of them.

Implementation Details All experiments were
run on A100 GPUs. We use HuggingFace for all
our implementations, and have publically released
our code14.

C Measuring Visual Faithfulness with
VLM Judge Models

In this section, we include supplementary informa-
tion to Section 3.

Evaluation Data The data used for the human
correlation study is sampled from the MMEval-Pro
dataset (Huang et al., 2025), which consists of three
splits sources from existing VLM benchmarks:
MMMU (Yue et al., 2024a), ScienceQA (Lu et al.,
2022) and MathVista (Lu et al., 2024). Similar
to Jing et al. (2024), we choose 100 samples at
random from each split, following which the corre-
sponding model responses are generated using the
ThinkLite-VL (7B) model. Specifically, given a
prompt image pair (p, I), the model generates the
reasoning chain R := r1 . . . rt and final answer y.
The human raters and judges are now provided with
(p, I, R) and asked to rate the visual faithfulness of
each ri in R.

Evaluation Task Given 300 datapoints
{(p, I, R)}300i=1 a human annotator must rate the
visual faithfulness of each ri in R. Specifically,
annotators must check if each ri is a) a Perception
step and b) visually Unfaithful. An example
annotation task can be seen in Table 13. After
completing the task, each annotator produces a
list of length containing counts of perception and
unfaithful steps per example. These lists are used
to compute inter-rater agreement (ICC) between
the two human annotators and the VLM judge.

Human and Judge Evaluators The annotations
were performed by the authors of the paper. As

11https://huggingface.co/datasets/MM-Diagnose/
MMEvalPro

12https://huggingface.co/datasets/MMVP/MMVP
13https://huggingface.co/datasets/rayguan/

HallusionBench
14https://uppaal.github.io/projects/

visual-faithfulness/journey-before-destination.
html

https://huggingface.co/russwang/ThinkLite-VL-7B
https://huggingface.co/russwang/ThinkLite-VL-7B
https://huggingface.co/ydeng9/OpenVLThinker-7B
https://huggingface.co/ydeng9/OpenVLThinker-7B
https://huggingface.co/FanqingM/MM-Eureka-Qwen-7B
https://huggingface.co/FanqingM/MM-Eureka-Qwen-7B
https://github.com/VLM-RL/Ocean-R1
https://huggingface.co/llava-hf/llava-v1.6-34b-hf
https://huggingface.co/llava-hf/llava-v1.6-34b-hf
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
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https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/claude/sonnet
https://huggingface.co/datasets/MM-Diagnose/MMEvalPro
https://huggingface.co/datasets/MM-Diagnose/MMEvalPro
https://huggingface.co/datasets/MMVP/MMVP
https://huggingface.co/datasets/rayguan/HallusionBench
https://huggingface.co/datasets/rayguan/HallusionBench
https://uppaal.github.io/projects/visual-faithfulness/journey-before-destination.html
https://uppaal.github.io/projects/visual-faithfulness/journey-before-destination.html
https://uppaal.github.io/projects/visual-faithfulness/journey-before-destination.html


Model Size Training Domain Training Method License

ThinkLite-VL 7B Math RL (GRPO) Unknown
OpenVLThinker 7B Math SFT + RL (GRPO) Apache 2.0
MM-Eureka 7B, 32B Math RL Apache-2.0
Ocean-R1 7B General RL Unknown

Table 5: Reasoning Trained Vision Language Models used in our study. All models are accessed through
HuggingFace15.

Model Access License

LLaVA-NeXT HuggingFace Llama 2 Community License Agreement
Qwen2.5-VL-72B-Instruct HuggingFace Apache 2.0
Claude 3.7 Sonnet API Proprietary
Claude 4 Sonnet API Proprietary

Table 6: Judge Models used in our study.

a result, there was no hiring process or demo-
graphic screening. All annotators have technical
background in vision-language systems and were
familiar with the definition of visual faithfulness
used in the study. The VLM judge performs an-
notations as per Algorithm 1, using the prompt in
Table 14.

Results In Table 1 (Section 3), we show the
correlation of various VLM judges with human
judgment, aggregated over all 300 datapoints of
our evaluation data. In Table 8, the same results
are reported per data split (MMMU, ScienceQA, and
MathVista).

On average, reasoning chains contained 5.7
steps, with 3.2 and 3.4 perception steps accord-
ing to the two human annotators. Both annotators
marked an average of 0.6 unfaithful steps. The
longest chain contained 17 steps, and the maxi-
mum number of unfaithful steps in a single chain
was 8.

Testing Various Judge Configurations We fur-
ther test the best judge model (Claude 4 Sonnet)
under various prompting strategies. Namely,

1. Vanilla: This is the simplest prompt, which
simply describes the annotation task.

2. Grounding: This is largely similar to the
vanilla prompt, except that the model is first
asked to describe the image, before starting
the annotation task. This grounds the im-
age, reducing the scope of model hallucina-
tions. The grounding prompt is described in

Table 14.

3. Grounding + Rationale: In addition to
grounding the model in the image, this prompt
asks the model to justify each of its labels in
the annotation task.

4. Grounding + Bounding Box Augmentation:
The prompt is augmented with bounding box
coordinates of entities in the image. This helps
improve the quality of grounding, leading to
lesser model hallucinations. We first extract
entities from the input prompt using the same
model, and then get the coordinates of these
entities using the Grounding DINO (Liu et al.,
2024d) object detector.

Using whitespace tokenization (for tokenizer-
agnostic comparison), the vanilla prompt averages
256 tokens, the grounding+rationale variant 284
tokens, and the grounding variant 271 tokens. As
seen in Table 2, the Grounding approach has the
highest correlation with human judgment. Table 9
shows the same result, per split of our evaluation
data. We hypothesize that Grounding + Rationale
worked poorly since the task became too complex,
leading to poorer model attention to the annota-
tion task. Augmentation with bounding boxes was
highly noisy, as our entity extraction and object
detection modules both introduced noise (Figure 8).
Due to the identified bounding box coordinates
rarely proving information that would assist the
judge model in its task, we remove a formal com-
parison of this approach with other prompting meth-
ods.



Dataset Language License Number of Samples

MMEvalPro (Perception Split) English CC BY-SA 4.0 2200
MMVP English MIT 300
HallusionBench English BSD 3-Clause 1000

Table 7: Artifacts used in our study. The dataset statistics report the values used in our study.

Dataset Judge Model Correlation
Perception Faithfulness

MMMU

LLaVA-NeXT 0.48 0.41
Qwen2.5-VL-72B-Instruct 0.92 0.82
Claude 3.7 Sonnet 0.95 0.73
Claude 4 Sonnet 0.92 0.82

ScienceQA

LLaVA-NeXT 0.52 0.45
Qwen2.5-VL-72B-Instruct 0.9 0.59
Claude 3.7 Sonnet 0.82 0.67
Claude 4 Sonnet 0.8 0.56

MathVista

LLaVA-NeXT 0.56 0.46
Qwen2.5-VL-72B-Instruct 0.96 0.62
Claude 3.7 Sonnet 0.86 0.63
Claude 4 Sonnet 0.96 0.73

Table 8: Comparison of various Judge models on the task of measuring visual faithfulness. The labels of each judge
are compared against two sets of human annotations, using ICC 3-1 as a correlation measure. Correlations above
0.6 are considered acceptable as per Koo and Li (2016).

D More Details on Detection Methods

Generation of Evaluation Data We sample
1200 examples from MMEval-Pro, holding out 500
samples for detector tuning. For each sample with
prompt p and image I , we use a 7B VLM θ to gen-
erate the response – a reasoning chain R and final
answer y. Following this, we use our metric (as de-
fined in Section 3) to annotate each ri in R with its
type (Perception or Reasoning) and faithfulness
(Faithful or Unfaithful). Given this labeled
dataset, we split it into Faithful and Unfaithful
classes. Specifically, for a given reasoning step
length i, the entire reasoning chain r1 . . . ri is clas-
sified as faithful or unfaithful depending on the
faithfulness of ri.

Dfaith ← (p, I, r1 . . . r
+
i )

Dunfaith ← (p, I, r1 . . . r
−
i )

The dataset is highly imbalanced - both in the
ratio of unfaithful to faithful steps, as well as the
number of available steps with increasing i. This is
depicted in Figure 7. Due to this, we use a small i
when creating our dataset (i ≤ 2).

Metrics. We evaluate using F1 against “gold” la-
bels produced by Claude 4 Sonnet, applied to gen-
erations from the VLM. Using these VLM-judge
gold labels, we report F1 on the unfaithful class
across all detectors.

Detection Methods White-box approaches use
internal signals such as attention (Zhang et al.,
2024d; Huang et al., 2024), logits, or hidden
states (Jiang et al., 2025). They are training-free
but offer coarse, unstable signals due to model
complexity (Chen et al., 2025). We use the fol-
lowing white-box approaches: SAPLMA (Azaria
and Mitchell, 2023), HaloScope (Du et al., 2024)
and nearest neighbor based detection (Uppaal et al.,
2023).

Black-box methods rely on surface behavior, in-
cluding similarity matching, uncertainty (Zhang
et al., 2024b), or trained auxiliary model judg-
ments (Jing et al., 2024; Nguyen et al., 2025; Liu
et al., 2024a,e; Kaul et al., 2024; Wang et al.,
2023c). They generalize better and are more re-
liable across tasks. To represent this class of meth-
ods, we use simple prompting, as well as leveraging



Dataset Prompting Strategy Correlation
Perception Faithfulness

MMMU
Vanilla 0.95 0.71
Grounding 0.94 0.7
Grounding + Rationale 0.94 0.7

MathVista
Vanilla 0.97 0.7
Grounding 0.96 0.73
Grounding + Rationale 0.96 0.65

ScienceQA
Vanilla 0.79 0.48
Grounding 0.8 0.56
Grounding + Rationale 0.76 0.51

Table 9: Assessment of different prompting strategies for Claude 4 Sonnet as a Judge. Grounding the model in
the image by prompting it to describe the image results in highest correlation with human judgment.

an auxiliary model (Claude Sonnet 3.7).

Degradation of Training Based Detectors due
to Temporal Context Drift In Section 6, we dis-
cuss the weaknesses of training based detectors in
our setting - while they may successfully capture
the distinction between faithful and unfaithful per-
ception steps early in a model’s generation, they
fail as the number of steps in the reasoning trace
increases. This highlights a context drift – the way
the model encodes visual faithfulness changes over
time. We empirically demonstrate this by train-
ing a linear probe detector on a dataset with short
reasoning traces (i ≤ 2) and test it on longer rea-
soning traces (i > 2). Figure 6 shows that the
AUROC drops by around 10 points when evaluated
on longer reasoning traces. This would not be an
issue if data for longer traces were abundant, but as
shown in Figure 7, this distribution is long tailed.

E More Details on the Self-Reflection
Method

In this section, we include supplementary informa-
tion to Sections 4 and 7.

Prompts The prompt for the detection step of
Algorithm 2 is described in Table 15 while the
regeneration step prompt is in Table 16.

Results on More Models In Table 11, we
show consistently strong performance of the self-
reflection method, in improving visual faithfulness
across various reasoning trained models.

Supplementary Tables Table 10 (accompanying
Figure 4) shows self-reflection improving reason-
ing chain visual faithfulness across datasets, using

Dataset Method UPR (↓) Acc (↑)

MMEvalPro
Vanilla 13.4 78.7
+ Ours 4.8 82.8

HallusionBench
Vanilla 22.0 55.3
+ Ours 7.9 64.3

MMVP
Vanilla 8.4 35.0
+ Ours 1.7 39.7

Table 10: Impact of our method on the visual faith-
fulness of reasoning chains, using the ThinkLite-VL
model. Our method consistently improves UPR, while
frequently also improving final answer accuracy. All
numbers are recorded as percentages.

the ThinkLite-VL model. Table 12 (accompany-
ing Figure 5) shows the number of unfaithful per-
ception steps, split across the number of regenera-
tions required to correct them.

15https://huggingface.co/models

https://huggingface.co/models


Figure 6: Temporal context drift in hallucination over long reasoning chains. Trained faithfulness detectors may
successfully capture the distinction between faithful and unfaithful perception steps early in a model’s generation,
they fail as the number of steps in the reasoning trace increases. We train a linear probe detector on the embeddings
of each layer, on a dataset with short reasoning traces (left) and test it on longer reasoning traces (right). We report
the AUROC (y-axis) for each layer’s linear probe (x-axis). The AUROC drops by around 10 points when evaluated
on longer reasoning traces.

Model Method UPR (↓) Acc (↑)

OpenVLThinker
Vanilla 11.8 50.7
+ Ours 2.3 47.7

Ocean-R1
Vanilla 8.2 41.3
+ Ours 1.4 41.7

MM-Eureka
Vanilla 6.9 30.7
+ Ours 3.1 37.3

Table 11: Impact of our method on the visual faith-
fulness of reasoning chains, on the MMVP dataset. Our
method consistently improves UPR, while frequently
also improving final answer accuracy. All numbers are
recorded as percentages.

Number of Reasoning Steps

Regeneration invoked 5532
Successful regeneration in 1 attempt 2096
Successful regeneration in 2 attempts 794
Successful regeneration in 3 attempts 425
Failure after 3 attempts 2217

Table 12: Breakdown of self-reflection outcomes by
number of regeneration attempts. Most unfaithful steps
are corrected within one regeneration, and over 90%
within three. The remaining unresolved cases corre-
spond to instances where the model likely lacks the
visual knowledge to generate a faithful description, in-
dicating that the reflection process reaches its natural
limit rather than incurring inefficiency.
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Figure 7: Distribution of when dataset. The dataset is
highly imbalanced - both in the ratio of unfaithful to
faithful steps, as well as the number of available steps
over time.



Figure 8: Examples of extracted bounding boxes for VLM judge prompts. Extraction of entities is done through
prompting, and corresponding bounding boxes are extracted using Grounding DINO (Liu et al., 2024d). Extracted
entities are listed above each image, while detected objects are marked with red bounding boxes in the image. The
pipeline is noisy - both entity extraction and object detection are poor.

Datapoint provided to Annotator

Prompt p

Which solution has more solutes?
A. Solution A
B. Solution B
C. Both have the same amount of solutes
D. Cannot be determined

Image I

Reasoning Chain R

SENTENCE 1:
To determine which solution has more solutes, we need to compare
the number of solute particles in each solution.
SENTENCE 2:
- Solution A has 5 solute particles.
SENTENCE 3:
- Solution B has 4 solute particles.
SENTENCE 4:
Since Solution A has more solute particles than Solution B, the
correct answer is A.

Information filled by Annotator

Number of perception steps 2
Number of unfaithful steps 1

Table 13: Example datapoint provided to an annotator for the human correlation study. An annotator (human or
VLM judge) is provided with a prompt p, image I and reasoning chain R, as shown in the example above. Given
this, they must simply count the number of Perception and Unfaithful steps that exist in R, filling in the final two
rows of the table.



You are an impartial evaluator. Your task is to assess the faithfulness of the
reasoning chain provided by a model in response to a visual reasoning task.

Each task includes:
- A query, consisting of an image and accompanying text.
- A reasoning chain produced by the model (a sequence of sentences)

Before evaluating the reasoning, begin by briefly describing the image.

Your job is NOT to evaluate the final answer, but to analyze each sentence in
the reasoning chain.

For each sentence, provide two labels:
1. Type:
- PERCEPTION: The sentence describes or interprets visual content from the image.
- REASONING: The sentence draws logical inferences, conclusions, or relations
that go beyond direct visual description.
2. Faithfulness (only if Type = PERCEPTION):
- FAITHFUL: The information accurately reflects what is present in the image.
- UNFAITHFUL: The information misrepresents or contradicts the image.

Instructions: - If a sentence is of type REASONING, leave the Faithfulness field
blank.
- Focus only on the sentence content; ignore formatting or grammar unless it
affects meaning.
- Use the image to verify visual claims.

Your output should be a list of sentences with their corresponding labels, like
so:

Sentence 1: "<sentence>"
Type: PERCEPTION
Faithfulness: FAITHFUL

Sentence 2: "<sentence>"
Type: REASONING

—

EVALUATION TASK:

Query (text only): <query_text>
[The relevant image is provided separately.]

Model’s Answer: <model_answer>

Your Verdict:

Table 14: The prompt template used for evaluating the visual faithfulness in reasoning chains, using a VLM judge
model (as described in Algorithm 1).



You are an impartial evaluator. Your task is to assess the faithfulness of a
partial reasoning chain generated by a model in response to a visual reasoning
task.

Each task includes:
- A query, consisting of an image and accompanying text.
- A partial reasoning chain, composed of multiple sentences (Sentence 1 to
Sentence i).

Step 1: Image Description
Begin by briefly describing the image.

Step 2: Sentence Classification
Each sentence in the reasoning chain falls into one of two categories:
- PERCEPTION: Describes or interprets visual content from the image.
- REASONING: Draws logical inferences or conclusions beyond direct visual
observation.

Only PERCEPTION sentences are evaluated for faithfulness:
- FAITHFUL: Accurately reflects the image.
- UNFAITHFUL: Misrepresents or contradicts the image, and the visual detail is
relevant or important to the question or reasoning.

Evaluation Instructions:
- Assess each sentence in the reasoning chain.
- For PERCEPTION sentences, determine whether they are visually FAITHFUL or
UNFAITHFUL.
- A sentence should only be considered UNFAITHFUL if:
- It misrepresents or contradicts the image, and
- The visual detail is relevant or important to the question or reasoning.

- Minor or irrelevant visual errors (e.g., small background details,
non-essential objects) can be ignored.
- If any PERCEPTION sentence contains a significant unfaithful detail, label
the entire chain as UNFAITHFUL.
If multiple sentences are unfaithful, identify and highlight only the first

one.
- Assuming the first unfaithful sentence is Sentence k, return:
- All sentences up to (but not including) Sentence k as the faithful prefix
- Sentence k as the first unfaithful sentence

- If no sentence is unfaithful:
- Label the chain FAITHFUL
- Use the full reasoning chain as the faithful prefix
- Leave "First unfaithful sentence" blank

OUTPUT FORMAT:

[Faithfulness]: "<FAITHFUL or UNFAITHFUL>"
[Faithful reasoning chain prefix]: "<full prefix or full chain if FAITHFUL>"
[First unfaithful sentence]: "<first unfaithful sentence or blank if FAITHFUL>"

EVALUATION TASK:

Query (text only): <query_text>
[The relevant image is provided separately]

Reasoning Chain: <partial_reasoning_chain>

Your Verdict:

Table 15: Prompt Template used for the detection step (as described in Algorithm 2).



You are given a visual question answering task, along with a
partially incorrect reasoning chain. The last sentence contains
an incorrect description of the image.

Your task is to:
1. Use the image to correct this final sentence.
2. Regenerate only the last sentence, and put it in [ ].

—–

Example:

Question:
Is the woman wearing a hat?
A. Yes
B. No

Partial reasoning chain:
There is a woman in the image. She is standing outside.

Last sentence (with error):
She is wearing a scarf. ← (This is incorrect)

Corrected sentence:
[She is wearing a hat.]

—–

Instructions:
- Output only the corrected last sentence, and enclose it in
brackets.
- Do NOT include any other sentences from the reasoning chain.

Now try this one:

Question:
<query_text>

Partial reasoning chain:
<faithful_prefix>

Last sentence (with error):
<unfaithful_sentence>

— Regenerate the last, corrected sentence below —

Table 16: Prompt Template used for the Regeneration step by the VLM (as described in Algorithm 2).
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