Clustering of conditional mutual information for quantum Gibbs states above a threshold temperature

Tomotaka Kuwahara∗
Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP),
1-4-1 Nikonobashi, Chuo-ku, Tokyo 103-0027, Japan
Department of Mathematics, Faculty of Science and Technology,
Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan and
interdisciplinary Theoretical & Mathematical Sciences Program
(iTHEMS) RIKEN 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

Kohtaro Kato†
Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, CA 91125, USA

Fernando G. S. L. Brandão‡
Amazon Web Services, AWS Center for Quantum Computing, Pasadena, CA 91125, USA and
Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, CA 91125, USA

We prove that quantum Gibbs states of spin systems above a certain threshold temperature are approximate quantum Markov networks, meaning that the conditional mutual information decays rapidly with distance. We prove exponential decay (power-law decay) for short-ranged (long-ranged) interacting systems. As consequences, we establish the efficiency of quantum Gibbs sampling algorithms, a strong version of the area law, the quasi-locality of effective Hamiltonians on subsystems, a clustering theorem for mutual information, and a polynomial-time algorithm for classical Gibbs state simulation.

Introduction.— Quantum Gibbs states describe the thermal equilibrium properties of quantum systems. The advent of quantum information science opened up new investigation avenues in the study of Gibbs states, such as the stability of topological quantum memory [1–4], thermalization in isolated quantum systems [5–10], and Hamiltonian complexity [11–14]. Efficient methods to prepare quantum Gibbs states in quantum computers have also found useful in giving quantum speed-ups for problems such as semidefinite programming [15–17] and quantum machine learning [18–22].

Quantum Gibbs state also inherit the locality property of their parent Hamiltonian, which allows for an efficient classical description in many cases. One of the simple characterizations is the exponential decay of bipartite correlation functions which is shown to be true in general one-dimension quantum spin lattices [23] and in higher dimensions above a threshold temperature [24–28]. Another characterization is that at arbitrary finite temperatures, the mutual information between a region and its complement obeys the area law [29]. Quantum Gibbs states also have efficient representations in terms of tensor networks [30, 31].

In classical systems, there are even stronger structural results for Gibbs states. For instance, the Hammersley–Clifford theorem [32] states that classical Gibbs states are equivalent to a class of probability distributions called Markov networks. They satisfy the Markov property, that is, a site is independent from all others conditioned on its neighbors. Therefore, for classical Gibbs states all the correlations between two separated variables are induced by intermediate vertices connecting them.

Although the notion of conditional probability distribution is missing in quantum systems, we can still generalize Markov networks to quantum systems by using the (quantum) conditional mutual information.

\[I_{AB}(A : C|B) := S(\rho^{ABC}) - S(\rho^{AB}) - S(\rho^{BC}) + S(\rho^B), \]

where \(\rho^{AB} \) is the reduced density matrix in the subsystem \(AB = A \cup B \) and \(S(\rho^{AB}) \) is the von Neumann entropy, namely, \(S(\rho^{AB}) := \text{tr}(\rho^{AB} \log \rho^{AB}) \) with the natural base. In classical systems, the conditional mutual information become zero if and only if the state is conditionally independent, and therefore it provides a natural measure of conditional independence.

The quantum version of the Hammersley–Clifford theorem has been established for the case where the Hamiltonian is short-range and commuting [33, 34]: any quantum Gibbs state of such Hamiltonian on a triangle-free graph is a Markov network and vise versa. More recently, it has been shown that the Hammersley–Clifford theorem approximately holds in one-dimensional lattice [35], in the sense that the conditional mutual information of any Gibbs state decays subexponentially with respect to distance.

In the present work, we establish the approximate Markov property for quantum Gibbs states in spin systems interacting on generic graphs at high temperatures; in other words, we prove the decay of conditional mutual information between two separated subsystems with respect to the size of the conditioning region (using the Manhattan distance on the graph). Herein, we consider not only short-range interactions but also long-range (i.e., power-law decaying) interactions on graphs.

We show that above a certain threshold tempera-
FIG. 1. (color online) Decomposition of the total system into A, B, C, and D. It is possible that a quantum state has no correlation between A and C when looking at only the subsystems A and C but has a strong correlation when looking at them via the subsystem B. This kind of correlation between A and B related to C is measured by conditional mutual information (1). Physically, conditional mutual information characterizes tripartite correlations between A, B, and C. A representative example is the topological entanglement entropy $[36, 37]$, which is a special form of the conditional mutual information.

In our work, that is, the conditional mutual information decays exponentially (polynomially) for short ranged (long ranged) models. Above the temperature threshold, our result strengthens the 1D result from Ref. [35], the area law for mutual information $[29]$ and the standard cluster expansion entropy $[36, 37]$, which is a special form of the conditional mutual information.

The main purpose of this study is to characterize the decay rate of the conditional mutual information $I_p(A : C|B)$ with respect to the distance $d_{A,C}$ on the graph. To concentrate on the physics given by the theorems, that is, the conditional mutual information above a temperature threshold τ, the decay rate of the conditional mutual information ρ strongly depends on the selection of the subsystem $V_0 \subseteq V$. To see this point, let us consider a one-dimensional graph. Then, the GHZ state ρ is a Markov network for $\forall V_0 \subseteq V$, but not globally, namely, $I_p(A : C|B) = 1$ for $ABC = V$. In contrast, the cluster state $[40]$ is globally a Markov network, but not for particular selections of V_0 (e.g., $V_0 = \{2, 4, 6, 8, \ldots, 2[n/2]\}$) $[41, 42]$ (see also $[43]$). Based on the example of the cluster state, which has a finite correlation length and is described by the matrix product state with bond dimension 2 $[44]$, we cannot ensure the Markov property only by the clustering theorem and the matrix product (or tensor network) representation of the quantum Gibbs state.

Our purpose is to discuss the Markov property of Gibbs states. Let $V_0 \subseteq V$ be an arbitrary subsystem. Consider a tripartite partitioning of V_0 as $V_0 = ABC$, where we denote $A \cup B$ by AB for simplicity. We notice that the subsystems $\{A, B, C\}$ are not necessarily concatenated on the graph (see Fig. 1). If any two nonadjacent subsystems A and C are conditionally independent of the other subsystem $B (= V_0 \setminus AC)$, we say that ρ is the quantum Markov network on V_0. Mathematically, this implies $I_p(A : C|B) = 0$ for $d_{A,C} > 0$ $[33, 39]$, where $I_p(A : C|B)$ is defined in Eq. (1). It is noteworthy that the Markov property of ρ strongly depends on the selection of the subsystem $V_0 \subseteq V$. To see this point, let us consider a one-dimensional graph. Then, the GHZ state is a Markov network for $\forall V_0 \subseteq V$, but not globally, namely, $I_p(A : C|B) = 1$ for $ABC = V$.

We prove the exponential decay of the conditional mutual information above a temperature threshold $(1/\beta_c)$, where β_c does not depend on the system size n but only on k in Eq. (2).
Theorem 1. Let the interaction length r be finite, namely, $f(R) = 0$ for $R > r \in \mathbb{N}$ in Ineq. (3). Then, the condition

$$\beta < \beta_c := \frac{1}{8e^3 k}$$

implies that the Gibbs state ρ is an approximate Markov network on an arbitrary subset $V_0 \subseteq V$ in the sense that

$$\mathcal{I}_\rho(A;C|B) \leq c \min(|\partial A_c|,|\partial C_i|)\left(\frac{\beta/\beta_c}{1-\beta/\beta_c}\right)^{d_{A_c}d_{C_i}/r},$$

where $V_0 = ABC$. We define the surface region of an arbitrary subsystem $L \subseteq V$ as $\partial L_i := \{v \in L|d_{c,v} \leq l\}$,

$$\partial L_i := \{v \in L|d_{c,v} \leq l\},$$

where L^c is the complementary set of L (i.e., $L \cup L^c = V$).

We notice that if we select B as an empty set (i.e., $B = \emptyset$), the conditional mutual information reduces to bipartite mutual information:

$$\mathcal{I}_\rho(A;C|\emptyset) = \mathcal{I}_\rho(A;C),$$

where $\mathcal{I}_\rho(A;C) := S(\rho^A) + S(\rho^{AC}) - S(\rho^{AC})$. Therefore, inequality (8) also implies the exponential decay of the mutual information between two separated subsystems. It is an improved version of the standard clustering theorem for the bipartite operator correlation $\text{Cor}_\rho(O_A, O_B) := tr(\rho O_A O_B) - tr(\rho O_A)tr(\rho O_B)$, where O_A and O_B are arbitrary operators with unit norm (i.e., $\|O_A\| = \|O_B\| = 1$) supported on subsystems A and B, respectively. From the relation $|\text{Cor}_\rho(O_A, O_B)|^2 \leq 2\mathcal{I}_\rho(A;B)$ [29], the clustering theorem can be derived from the exponential decay of the mutual information. Moreover, it is well known [50, 51] in the context of data hiding that even if the operator correlation is arbitrarily small in a quantum state, the state may still be highly correlated in the mutual information [29].

An important implication of this theorem is related to the quantum sampling of Gibbs states. Based on the Fawzi–Renner theorem (6), an approximate Markov network can be efficiently reconstructed from its reduced density matrix using a quantum computer. According to Ref. [38], the clustering and Markov properties ensure an efficient preparation of quantum Gibbs states on finite-dimensional lattices. By combining our theorem 1 with Theorem 5 in Ref. [38], we obtain the following corollary:

Corollary 2. Let the graph G be a D-dimensional lattice. Then, under the assumption of Theorem 1, there exists a $(D + 1)$-depth circuit of quantum channels $F = F_{D+1} \cdots F_2 F_1$ such that

$$\|F(\psi) - \rho\|_1 = 1/poly(n),$$

where ψ is an arbitrary quantum state and each quasilocality of $\{F_s\}_{s=1}^{D+1}$ is composed of quasilocal CPTP maps that act on $O(\log^D n)$ spins.

The number of the elementary gates for each quasilocality channel $\{F_s\}_{s=1}^{D+1}$ is of order $\exp[O(\log^D n)] = n^{O(\log^{D-1} n)}$ [52, 53]. This also provides the computational time of Gibbs sampling by the quantum computer. This algorithm requires only quasipolynomial computational time, and it is considerably better than a few existing algorithms [54, 55]. The algorithm is worse than the algorithms proposed in Refs. [56] and [57], which require polynomial computational time. However, our method has advantages in the following senses: the method in [56] is applicable only to commuting Hamiltonians and the method in [57] requires twice the number of qubits (i.e., $2n$ qubits) for implementation.

The second implication of the theorem is the strengthening of the area law. The area law for mutual information has been derived at arbitrary temperatures in Ref. [29] in the form of

$$\mathcal{I}_\rho(A;B) \leq c\beta|\partial A|,$$

where $AB = V$ and c is an $O(1)$ constant. The area law implies that $\mathcal{I}_\rho(A;B')$ saturates as $B' \subset B$ grows to B, however Eq. (11) does not provide the saturation rate. Our result implies it saturates exponentially fast, and the mutual information between two subsystems is exponentially localized around the boundary between A and B. To see more details, let us decompose B into l_0 slices, $B_1, B_2 \cdots B_{l_0}$, with $d_{A,B_l} = l$ for $l = 1, 2, \ldots, l_0$ (see Fig. 2). Then, the question is how rapidly the mutual information $\mathcal{I}_\rho(A;B_1 \cdots B_i)$ saturates to $\mathcal{I}_\rho(A;B)$. From the relation $\mathcal{I}(A;C|B) = \mathcal{I}(A;BC) - \mathcal{I}(A;B)$ and Ineq. (8), we have

$$\mathcal{I}_\rho(A;B_1 \cdots B_i) = \mathcal{I}_\rho(A;B_{i+1} \cdots B_{l_0}) - (\beta/\beta_c)^{l_0-i/r},$$

which shows exponential decay with respect to l.

Effective Hamiltonian on subsystem and classical simulation of Gibbs state.—Theorem 1 is related to the locality of the effective Hamiltonian. We define the effective Hamiltonian of the local reduced density matrix as

$$\tilde{H}_L := -\beta^{-1} \log tr_{L'}(e^{-\beta H}).$$

We formally describe \tilde{H}_L as

$$\tilde{H}_L = H_L + \Phi_L,$$
where H_L id composed of the original interacting terms in H on subsystem L, namely, $H_L = \sum_{X \subset L} h_X$, and Φ_L is the effective interaction term. We are interested in the locality of Φ_L. Typically, it is computationally difficult to determine the effective term, even in classical Gibbs states [58]. Our present question is whether the (quasi-)locality of Φ_L can be ensured or not (Fig. 3).

In classical Gibbs states or systems with commuting Hamiltonians, Φ_L is exactly localized around the surface region of L (not necessarily localized along the boundary). This point is crucial for the Gibbs states to be the exact Markov network [33, 38]. Additionally, for systems with non-commuting Hamiltonians, the quasi-locality of Φ_L is numerically verified in Ref. [59]. By following the same analysis as the proof of Theorem 1, we can rigorously prove the quasi-locality of Φ_L not only the direction orthogonal to the boundary, but also along the boundary.

Theorem 3. Under the setup and assumption of Theorem 1, Φ_L is approximated by a localized operator $\Phi_{\partial L}$, as follows:

$$\|\Phi_L - \Phi_{\partial L}\| \leq \frac{e^{(\beta/\beta_0)^{1/r}}}{d_L} |\partial L|,$$

where $\Phi_{\partial L}$ is supported on the region ∂L that is separated from the boundary ∂L by a distance of at most l (see Eq. (9) for the definition). In addition, $\Phi_{\partial L}$ is composed of local operators that act on at most $(k \log d_G)$ spins (see the supplementary materials [49] for an explicit form of $\Phi_{\partial L}$). Moreover, computation of Φ_L up to an error norm of ϵ is performed with the runtime bounded from above by

$$n(1/\epsilon)^{O(k \log(d_G))},$$

where d_G is the degree of the graph G.

This theorem immediately implies that the classical simulation of the Gibbs states is possible in polynomial time within an error of $1/\text{poly}(n)$. We note that the definition (13) implies $\Phi_L = -\beta^{-1} \log(Z)$ for $L = \emptyset$, i.e. we can calculate the partition function by the same algorithm. We can also calculate the expectation values of local observables or the local entropy by explicitly obtaining expression of $\rho_L = e^{-\beta H_L}$. This is summarized as the following corollary.

Corollary 4. Thermodynamic properties such as local observables (e.g., energy and magnetization), the partition function $\log(Z)$, and local entropy $-\text{tr}(\rho^L \log \rho^L)$ are classically simulated in polynomial time $\text{poly}(n)$ as long as an error of $1/\text{poly}(n)$ is allowed.

Long-range interacting systems.—Finally, we extend Theorem 1 from short-range interacting systems to long-range interacting systems. We define the Hamiltonian with the power-law decay interaction by assuming that $f(R)$ in (3) is given by

$$f(R) = R^{-\alpha},$$

where $\alpha > 0$. To consider a more general form as $f(R) = gR^{-\alpha}$, we must only scale the inverse temperature from β to β/g. For example, we can consider the following Hamiltonian on a graph with a D-dimensional structure:

$$H = \sum_{i,j \in V} \frac{J}{R_{i,j}} |_{1/2} \rho_{i,j}$$

where $R_{i,j}$ is the distance between spins i and j defined by the graph structure (V, E) and J is determined so that inequality (3) is satisfied. This kind of Hamiltonian is now controllable in realistic experiments and attracts much attention both in experimental [60–64] and theoretical aspects [65–69].

Similar to the case of short-range interacting systems, we prove the decay of the conditional mutual information for long-range interacting systems for $\alpha > 0$.

Theorem 5. Let A, B, and C be arbitrary subsystems in $V (A,B,C \subset V)$. Then, under the assumptions of $\beta < \beta_c/11$ and $d_{A,C} \geq 2\alpha$, the Gibbs state ρ satisfies the approximate Markov property as follows:

$$I_\rho(A : C | B) \leq \beta \min(|A|, |C|) C_\beta \frac{d_{A,C}}{d_{A,C}},$$

where $C_\beta := \frac{11e^{1/\epsilon} \beta_0}{1 - 11\beta/\beta_c}$ and β_c was defined in (7).

By selecting $B = \emptyset$, we can also derive the power-law decay of the mutual information between two separated subsystems. To the best of our knowledge, the clustering theorem for the Gibbs state with long-range interaction is limited for classical cases [70–75] and special quantum cases [76, 77]. Our result provides the first general proof of the clustering theorem at finite temperatures in long-range interacting quantum systems. Moreover, we can discuss the saturation rate of the area law, similar to the case of short-range interacting systems. In the setup of Eq. (12), the mutual information $I_\rho(A : B_1 \cdots B_l)$ approaches $I_\rho(A : B)$ with an error of $l^{-\alpha}$.

The vanishing of the conditional mutual information implies the absence of the topological order above a temperature threshold. The stability of the topological order at finite temperatures has been extensively investigated in short-range interacting systems [1–4, 78–83]. Even though it is natural to expect that the topological order vanishes at sufficiently high temperatures, there is no general proof that topological entanglement entropy vanishes above a threshold temperature. In long-range interacting systems, the problem
is even more nontrivial, and there are few reports on the stability of the topological order [84]. To discuss the condition of \(\alpha \) for the vanishing of \(I_\rho(A : C|B) \) in the thermodynamic limit, let us consider the case with \(\min(|A|,|C|) = l^D \) and \(d_{A,C} = l_s \), where \(l_s \) is the length of the total system. Then, inequality (19) implies \(I_\rho(A : C|B) \leq l_s^{-\alpha} \), and hence, \(\alpha > D \) is the sufficient condition for \(I_\rho(A : C|B) \rightarrow 0 \) in the thermodynamic limit (i.e., \(l_s \rightarrow \infty \)).

Future perspective.—We mention several open problems. The most important problem is the Markov property in low-temperature regimes, where our present analytical technique (i.e., the generalized cluster expansion [49]) breaks down. It is no longer desirable that the Markov property holds for the arbitrary selections of the subregions \(A, B, \) and \(C \) because the topological order can exist at finite temperatures in four-dimensional systems [1]. Even if we restrict ourselves to the case of \(ABC = V \), the problem is still challenging because only few mathematical techniques can access the conditional mutual information at arbitrary temperatures, except for one-dimensional systems [35]. Also, throughout the work, we consider the von Neumann entropy to characterize conditional mutual information. It is interesting to generalize the present results to the Rényi-type conditional mutual information [85]. In this case, we must consider the Rényi entropy, \(S_\nu \), for reduced density matrix \(\rho^A \), where \(S_\nu(\rho^A) := \frac{1}{1-\nu} \log \text{tr}(\rho^\nu) \) with \(0 \leq \nu < \infty \). We expect that there exists a critical \(\nu_c \approx \beta_c/\beta \), below which the exponential decay of the Rényi mutual information can be proved [86].

Note added.—On the classical simulations of quantum Gibbs states, we are aware of a related result obtained from a similar approach [87].

ACKNOWLEDGMENTS

We thank Keiji Saito for valuable discussions on this work. The work of T. K. was supported by the RIKEN Center for AIP and JSPS KAKENHI Grant No. 18K13475. KK acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NSF Grant PHY-1733907). FB is supported by the NSF.

[23] Huzihiro Araki, “Gibbs states of a one dimensional quantum lattice,” Communications in Mathematical
Appendix A: Proof of Theorem 1

1. Preliminaries

We here recall the setup. We consider a quantum spin system with \(n \) spins, where each of the spin sits on a vertex of the graph \(G = (V,E) \) with \(V \) the total spin set (\(|V| = n\)). For a partial set \(L \) of spins, we denote the cardinality, that is, the number of vertices contained in \(L \), by \(|L|\) (e.g. \(L = \{i_1, i_2, \ldots, i_{|L|}\} \)). We also denote the complementary subset of \(L \) by \(L^c := V \setminus L \). We denote the local Hilbert space by \(H^v (v \in V) \) with \(\dim(H^v) = d \).
and the entire Hilbert space is given by \(\mathcal{H} := \bigotimes_{v \in V} \mathcal{H}^v \) with \(\dim(\mathcal{H}) = d^n \). We also define the local Hilbert space of the subset \(L \subset V \) as \(\mathcal{H}^L \) and denote the dimension by \(d_L \), namely \(d_L := d^{|L|} \). We define \(\mathcal{B}(\mathcal{H}) \) as the space of bounded linear operators on \(\mathcal{H} \).

When we consider a reduced operator on a subsystem \(L \), we denote it as

\[
O^L = \text{tr}_{L^c}(O) \otimes \hat{1}_{L^c} \in \mathcal{B}(\mathcal{H}) \tag{A1}
\]

by using the superscript index, where \(\hat{1} \) is the identity operator and \(\text{tr}_{L^c} \) is the partial trace operation with respect to the Hilbert space \(\mathcal{H}^{L^c} \).

We also define the following set:

\[
E^{(w)} := \{ X \subset V | \text{diam}(X) = x, \ |X| \leq k \} \tag{A2}
\]

with

\[
\text{diam}(X) := \max_{v_1,v_2 \in X} d_{v_1,v_2}, \tag{A3}
\]

where we defined \(d_{A,B} \) as the shortest path length via \(E \) which connects \(A \) and \(B \) \((A \subset V, B \subset V)\).

In the setup of Theorem 1, we consider the Hamiltonian as \(H = \sum_{X \in E_r} h_X, \) with \(\sum_{X \ni x} \|h_X\| \leq 1 \) for \(\forall v \in V \) \(\tag{A4} \)

with

\[
E_r := E^{(1)} \sqcup E^{(2)} \sqcup \cdots \sqcup E^{(r)} \ (r \in \mathbb{N}). \tag{A5}
\]

Here, the Hamiltonian \((A4) \) describes an arbitrary \(k \)-body interacting systems with finite interaction length \(r \).

Throughout the manuscript, we denote the natural logarithm by \(\log(\cdot) \) for the simplicity, namely \(\log(\cdot) = \log_\gamma(\cdot) \).

\(\textbf{a. Cluster notation} \)

We then define several basic terminologies. On the graph \((V,E)\), we call a multisets of subsystems \(w = \{X_1, X_2, \ldots , X_{|w|}\} \) \((X_j \in E_r \text{ for } j = 1,2,\ldots,|w|) \) as “cluster”, where \(|w| \) is the cardinality of \(w \). Note that each of the elements \(\{X_j\}_{j=1}^{\|w\|} \) satisfies \(\text{diam}(X_j) \leq r \) from the definition \(\text{(A5)} \). We denote \(C_{r,m} \) by the set of \(w \) with \(|w| = m \) and let \(V_w \leq V \) and \(E_w \leq E_r \) be the set of different vertices (or spins) and subsystems which are contained in \(w \), respectively. Also, we define connected clusters as follows:

\(\text{Definition 1. (Connected cluster)} \) For a cluster \(w \in C_{r,|w|} \), we say that \(w \) is a connected cluster if there are no decompositions of \(w = w_1 \sqcup w_2 \) such that \(V_{w_1} \cap V_{w_2} = \emptyset \). We denote by \(C_{r,m} \) the set of the connected clusters with \(|w| = m \).

\(\text{Definition 2. (Connected cluster to a region, FIG. 4)} \) Similarly, we say that \(w \in C_{r,|w|} \) is a connected cluster to a subsystem \(L \) if there are no decompositions of \(w = w_1 \sqcup w_2 \) such that \((L \cup V_{w_1}) \cap V_{w_2} = \emptyset \). We denote by \(C_{r,m} \) the set of the connected clusters to \(L \) with \(|w| = m \).

\(\text{Definition 3. (Connected cluster with a link between two regions, FIG. 5)} \) Finally, for a connected cluster \(w \in C_{r,|w|} \), we say that \(w \) has links between \(A \) and \(B \) if there exist a path from \(A \) to \(B \) in \(E_w \). We denote by \(C_{r,m} \) the set of the connected clusters with \(|w| = m \) which have a link \(A \) and \(B \).

\(\textbf{b. Basic lemmas for logarithmic operators} \)

Before going to the proof, we prove the following basic lemmas:

\(\text{Lemma 6. Let } O \in \mathcal{B}(\mathcal{H}) \text{ be an arbitrary non-negative operator written as} \)

\[
O = \Gamma_{L_1} \otimes \Gamma_{L_2} \otimes \cdots \otimes \Gamma_{L_m}, \tag{A6}
\]

where \(\{\Gamma_{L_j}\}_{j=1}^{L} \in \mathcal{B}(\mathcal{H}) \) are supported on the subsystems \(\{L_j\}_{j=1}^{m} \), respectively and we assume \(L_1 \sqcup L_2 \sqcup \cdots \sqcup L_m = V \). Then, for arbitrary subsystems \(A, B, C \subset V \), we have

\[
\log O^{AB} + \log O^{BC} - \log O^{ABC} - \log O^B = \sum_{j=1}^{m} (\log \Gamma_{L_j}^{AB} + \log \Gamma_{L_j}^{BC} - \log \Gamma_{L_j}^{ABC} - \log \Gamma_{L_j}^B). \tag{A7}
\]

Note that \(\{O^{AB}, O^{BC}, O^{ABC}, O^B\} \) are reduced operators as defined in Eq. \(\text{(A1)} \).
For an arbitrary non-negative operator \(O \in B(\mathcal{H}) \) which is given by the form of
\[
O = O_L \otimes \hat{1}_C
\]
with \(L \cap C = \emptyset \), we have
\[
\log \, O^{AB} + \log \, O^{BC} - \log \, O^{ABC} - \log \, O = 0.
\]

Proof of Lemma 7. From the definition, we obtain
\[
O^{ABC} = O^{AB} \otimes \hat{1}_C.
\]
Thus, we obtain \(\log O^{BC} = \log (O^B \otimes \hat{1}_C) \) and \(\log O^{ABC} = \log O^A \), and hence we immediately obtain Eq. (A13). This completes the proof. \(\square \)
2. Generalized cluster Expansion

We first parametrize H by using a parameter set $\vec{a} := \{a_X\}_{X \in E_r}$ as

$$H_{\vec{a}} = \sum_{X \in E_r} a_X h_X,$$ (A15)

where $H = H_1$ with $\vec{a} = \{1,1,\ldots,1\}$. Note that there are $|E_r|$ parameters in total. By using Eq. (A15), we define a parametrized Gibbs state $\rho_{\vec{a}}$ as

$$\rho_{\vec{a}} := \frac{e^{-\beta H_{\vec{a}}}}{Z_{\vec{a}}},$$ (A16)

where $Z_{\vec{a}} := \text{tr}(e^{-\beta H_{\vec{a}}})$.

In the standard cluster expansion, we consider the Taylor expansion of $e^{-\beta H_{\vec{a}}}$ with respect to the parameters \vec{a}. It works well in analyzing a correlation function or tensor network representation, while it is not appropriate to analyze the entropy or effective Hamiltonian of a reduced density matrix. To overcome it, we generalize the standard cluster expansion. We parametrize a target function of interest by $f_{\vec{a}}$ and directly expand it with respect to \vec{a}, where $f_{\vec{a}}$ can be chosen not only as a scholar function but also as an operator function. Here, we choose the conditional mutual information as the function $f_{\vec{a}}$. By using $\rho_{\vec{a}}$, we parameterize the conditional mutual information by $I_{\vec{a}}(A \mid C | B)$ in the following form:

$$I_{\vec{a}}(A : C | B) = -\text{tr} \left[\rho \left(\log \rho_{\vec{a}}^{AB} + \log \rho_{\vec{a}}^{BC} - \log \rho_{\vec{a}}^{A} - \log \rho_{\vec{a}}^{B} \right) \right]$$

$$= -\text{tr} \left[\rho \left(\log \rho_{\vec{a}}^{AB} + \log \rho_{\vec{a}}^{BC} - \log \rho_{\vec{a}}^{A} - \log \rho_{\vec{a}}^{B} \right) \right],$$ (A17)

where $\rho = \rho_{\vec{a}}$ and we define $\tilde{\rho}_{\vec{a}}$ as

$$\tilde{\rho}_{\vec{a}} := e^{-\beta H_{\vec{a}}}$$ (A18)

with

$$\tilde{\rho}_{\vec{a}}^L = (e^{-\beta H_{\vec{a}}})^L = \text{tr}_L \left(e^{-\beta H_{\vec{a}}} \right) \otimes \mathbb{1}_{L^C}. $$ (A19)

Note that we use the definition (A1) for $\tilde{\rho}_{\vec{a}}^L$ ($L \subset V$).

In the following, we define

$$\tilde{H}_{\vec{a}}(A : C | B) := \log \tilde{\rho}_{\vec{a}}^{AB} + \log \tilde{\rho}_{\vec{a}}^{BC} - \log \tilde{\rho}_{\vec{a}}^{A} - \log \tilde{\rho}_{\vec{a}}^{B},$$ (A20)

which gives

$$I_{\vec{a}}(A : C | B) = \text{tr} \left[\rho \tilde{H}_{\vec{a}}(A : C | B) \right] \leq \|\tilde{H}_{\vec{a}}(A : C | B)\|.$$ (A21)

Then, the Taylor expansion with respect to \vec{a} to the operator $\tilde{H}_{\vec{a}}(A : C | B)$ reads

$$\tilde{H}_{\vec{a}}(A : C | B) = \sum_{m=0}^{\infty} \frac{1}{m!} \left(\left(\sum_{X \in E_r} \frac{\partial}{\partial a_X} \right)^m \tilde{H}_{\vec{a}}(A : C | B) \right)_{\vec{a}=0},$$ (A22)

where $\vec{a} = \{0,0,\ldots,0\}$. By using the cluster notation, we obtain

$$\sum_{X_1, X_2, \ldots, X_m \in E_r} = \sum_{w \in C_{r,m}} n_w,$$ (A23)

which yields

$$\tilde{H}_{\vec{a}}(A : C | B) = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{X_1, X_2, \ldots, X_m \in E_r} \prod_{j=1}^{m} \frac{\partial}{\partial a_{X_j}} \tilde{H}_{\vec{a}}(A : C | B)_{\vec{a}=0} = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in C_{r,m}} n_w D_w \tilde{H}_{\vec{a}}(A : C | B)_{\vec{a}=0}$$ (A24)

where $w = \{X_1, X_2, \ldots, X_m\}$ and n_w is the multiplicity that w appears in the summation, and we defined

$$D_w := \prod_{j=1}^{m} \frac{\partial}{\partial a_{X_j}} \quad \text{with} \quad w = \{X_1, X_2, \ldots, X_m\}.$$ (A25)

We notice that the partial derivatives $\frac{\partial}{\partial a_X}$ and $\frac{\partial}{\partial a_X'}$ commute with each other because $\log(\tilde{\rho}_{\vec{a}}^L)$ is a C^∞-smooth function with respect to \vec{a} as long as the system size n is finite. The C^∞-smoothness of $\log(\tilde{\rho}_{\vec{a}}^L)$ is proved as follows:
For a finite system size n, the C^∞-smoothness of $e^{-\beta H_\omega}$ is ensured, and hence $\tilde{\rho}_\omega^L$ is also C^∞-smooth from the definition (A19). Also, we can set

$$\|e^{-\tau 1_{\tilde{\rho}_\omega^L}}\| \leq 1.$$
(A26)

by choosing a finite energy $\tau < \infty$ appropriately. Notice that $e^{-\tau 1_{\tilde{\rho}_\omega^L}}$ is Hermitian and $e^{-\tau 1_{\tilde{\rho}_\omega^L}} \geq 0$. This implies the absolute convergence of the following expansion:

$$\log(\tilde{\rho}_\omega^L) = \tau \tilde{1} + \log(e^{-\tau 1_{\tilde{\rho}_\omega^L}}) = \tau \tilde{1} + \log(\tilde{1} + e^{-\tau 1_{\tilde{\rho}_\omega^L}}) = \tau \tilde{1} + \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} (e^{-\tau 1_{\tilde{\rho}_\omega^L}} - \tilde{1})^m.$$
(A27)

Thus, the C^∞-smoothness of $\tilde{\rho}_\omega^L$ implies of C^∞-smoothness of $\log(\tilde{\rho}_\omega^L)$.

Note that the case of $m = 0$ (i.e., $|w| = 0$) does not contribute to the expansion because of $\tilde{H}_\omega(A : C|B) = 0$. In order to calculate the summation of $\sum_{w \in C_r,m}$, we utilize the following proposition:

Proposition 8. The cluster expansion (A24) reduces to the summation of connected clusters which have links between A and C:

$$\tilde{H}_\omega(A : C|B) = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in \mathcal{G}_{r,m}^{A,C}} n_w D_w \hat{H}_\omega(A : C|B) \Big|_{\tilde{a}_w = 0},$$
(A28)

where the definition of $\mathcal{G}_{r,m}^{A,C}$ has been given in Def. 3.

From this proposition, we only need to estimate the contribution of clusters in $\mathcal{G}_{r,m}^{A,C}$ to upper-bound the conditional mutual information $I_\omega(A : C|B) = \text{tr}[\rho \tilde{H}_\omega(A : C|B)]$.

Proof of Proposition 8

We first introduce the notation \tilde{a}_w as a parameter vector such that the elements $\{a_X\}_{X \notin w}$ are vanishing, that is,

$$(\tilde{a}_w)_X = 0 \quad \text{for} \quad X \notin w,$$
(A29)

where we denote an element of a_X in \tilde{a} by $(\tilde{a})_X$. We then obtain

$$D_w \hat{H}_\omega(A : C|B) \bigg|_{\tilde{a}_w = 0} = D_w \hat{H}_{\tilde{a}_w}(A : C|B) \bigg|_{\tilde{a}_w = 0}.$$
(A30)

In the following, we aim to prove

$$D_w \hat{H}_{\tilde{a}_w}(A : C|B) \bigg|_{\tilde{a}_w = 0} = 0 \quad \text{for} \quad w \notin \mathcal{G}_{r,[|w|]}^{A,C}.$$
(A31)

We notice that if $w \notin \mathcal{G}_{r,[|w|]}^{A,C}$ the cluster w satisfies either one of the following two properties (see Figs. 5 (b) and (c)):

$$L_w \cap A = \emptyset \quad \text{or} \quad L_w \cap C = \emptyset$$
(A32)

and

$$w \notin \mathcal{G}_{r,[|w|]}.$$
(A33)

In the first case (A32), we can immediately obtain $\hat{H}_{\tilde{a}_w}(A : C|B) = 0$ by choosing $O = e^{-\beta H_\omega u}$ in the lemma 7. In the second case (A33), there exists a decomposition of $w = w_1 \cup w_2$ ($|w_1|, |w_2| > 0$) such that $V_{w_1} \cap V_{w_2} = \emptyset$. Hence, we have $e^{-\beta H_\omega w} = e^{-\beta H_{w_1}} \otimes e^{-\beta H_{w_2}}$, and from Lemma 6 we obtain

$$\hat{H}_{\tilde{a}_w}(A : C|B) = \hat{H}_{\tilde{a}_{w_1}}(A : C|B) + \hat{H}_{\tilde{a}_{w_2}}(A : C|B).$$
(A34)

Because of $D_{w_1} \hat{H}_{\tilde{a}_{w_1}}(A : C|B) = D_{w_1} \hat{H}_{\tilde{a}_{w_2}}(A : C|B) = 0$, we have $D_w \hat{H}_{\tilde{a}_w}(A : C|B) = 0$. This completes the proof of Proposition 8. \square
3. Estimation of the expanded terms

In order to estimate the summation (A28) with respect to $\sum_{w \in \mathcal{G}_{L_1}^{L_2}}$, we consider a derivative of

$$D_w \log \hat{\rho}_w^L \bigg|_{\tilde{a}=0} = D_w \log \hat{\rho}_w^L \bigg|_{\tilde{a}=0}$$

(A35)

for an arbitrary subsystem $L \subset V$. We choose the subsets AB, BC, ABC and B as L afterward. We here give an explicit form of the derivative $D_w \log \hat{\rho}_w^L$ in the following proposition 9.

Proposition 9. Let us take $m-1$ copies of the partial Hilbert space $\mathcal{H}_{L_1}^{L_2}$ and distinguish them by $[\mathcal{H}_{L_1}^{L_2}]_{j=1}^{m}$. Then, we define the extended Hilbert space as $\mathcal{H}_{L_1}^{L_2} := \mathcal{H}_{L_1}^{L_2} \otimes \mathcal{H}_{L_2}^{L_2} \otimes \cdots \otimes \mathcal{H}_{L_m}^{L_m}$.

Then, for an arbitrary operator $O \in \mathcal{H}$, we extend the domain of definition and denote $O_{L_1} \in \mathcal{B}(\mathcal{H}_{L_1}^{L_2} \otimes \mathcal{H}_{L_1}^{L_2})$ by the operator which acts only on the space $\mathcal{H}_{L_1}^{L_2} \otimes \mathcal{H}_{L_1}^{L_2}$. Now, for an arbitrary cluster $w = \{X_1, X_2, \ldots, X_m\}$, we have

$$D_w \log \hat{\rho}_w^L \bigg|_{\tilde{a}=0} = \frac{(-\beta)^m}{m! \beta^m} \beta_1 \cdots \beta_m \sum_{\sigma, \sigma_1, \sigma_2} \beta_{\sigma_1} \beta_{\sigma_2} \prod_{i=1}^{m} \left(\frac{\hat{h}_{X_i}^{(0)} \hat{h}_{X_i}^{(1)} \cdots \hat{h}_{X_i}^{(m-1)}}{\beta_1 \cdots \beta_{\sigma_1} \beta_{\sigma_2}} \right),$$

(A36)

where $\beta_1 \cdots \beta_{\sigma_1} \beta_{\sigma_2}$ denotes the partial trace with respect to the Hilbert space $\mathcal{H}_{L_1}^{L_2}$ and we define

$$\hat{O}^{(0)} := O_{\tilde{a}_1}, \quad \hat{O}^{(s)} := O_{\tilde{a}_1} + O_{\tilde{a}_2} + \cdots + O_{\tilde{a}_s} - sO_{\tilde{a}_{s+1}}$$

(A37)

for $s = 1, 2, \ldots, m$. Note that P_m is the symmetrization operator as

$$P_m \hat{h}_{X_1}^{(0)} \hat{h}_{X_2}^{(1)} \cdots \hat{h}_{X_m}^{(m-1)} = \sum_{\sigma} \hat{h}_{X_{\sigma_1}}^{(0)} \hat{h}_{X_{\sigma_2}}^{(1)} \cdots \hat{h}_{X_{\sigma_m}}^{(m-1)},$$

(A38)

where \sum_{σ} denotes the summation of $m!$ terms which come from all the permutations.

a. Proof of Proposition 9

For the proof, we consider the Taylor expansion with respect to β:

$$\log \hat{\rho}_w^L = \sum_{m=0}^{\infty} \frac{\beta^m}{m!} \frac{\partial^m}{\partial \beta^m} \log \hat{\rho}_w^L \bigg|_{\beta=0}.$$

(A40)

Next, because of

$$\frac{\partial^m}{\partial \beta^m} \log(d_{L_1}) = 0 \quad \text{for} \quad m \geq 1,$$

(A41)

we have

$$\frac{\partial^m}{\partial \beta^m} \log \hat{\rho}_w^L \bigg|_{\beta=0} = \frac{\partial^m}{\partial \beta^m} \log \left(\text{tr}_{L_1} (e^{-\beta H_{L}/d_{L_1}}) \right) \bigg|_{\beta=0}$$

(A42)

for $m \geq 1$.

We aim to prove the following lemma which gives the explicit form of the derivatives with respect to β:

Lemma 10. The derivatives of $\log \hat{\rho}_w^L$ with respect to β can be written as

$$\frac{\partial^m}{\partial \beta^m} \log \left(\text{tr}_{L_1} (e^{-\beta H_{L}/d_{L_1}}) \right) \bigg|_{\beta=0} = \frac{(-1)^m}{m! \beta^m} \beta_1 \cdots \beta_m \sum_{\sigma, \sigma_1, \sigma_2} \beta_{\sigma_1} \beta_{\sigma_2} \prod_{i=1}^{m} \left(\frac{\hat{h}_{X_i}^{(0)} \hat{h}_{X_i}^{(1)} \cdots \hat{h}_{X_i}^{(m-1)}}{\beta_1 \cdots \beta_{\sigma_1} \beta_{\sigma_2}} \right),$$

(A43)

where the definitions of $\hat{O}^{(s)}$ ($s = 0, 1, 2, \ldots, m-1$) and $\mathcal{H}_{L_1}^{L_2}$ have been given in Eqs. (A38) and Eq. (A36), respectively. We give the proof of the lemma afterward.

By assuming the above lemma, we can prove Eq. (A37) as follows. In considering $D_w \log \hat{\rho}_w^L \bigg|_{\tilde{a}=0}$ with $|w| = m$, only the mth order terms of β in the expansion (A40) contribute to the derivative. Hence, we have

$$D_w \log \hat{\rho}_w^L \bigg|_{\tilde{a}=0} = \frac{\beta^m}{m!} D_w \left(\frac{\partial^m}{\partial \beta^m} \log \left(\text{tr}_{L_1} (e^{-\beta H_{L}/d_{L_1}}) \right) \right) \bigg|_{\beta=0}.$$

(A44)
By combining Eqs. (A35), (A43) and (A44), we have
\[
D_w \log \hat{p}_a^\beta |_{\hat{a}_a=0} = \frac{(-\beta)^m}{m!} \frac{1}{d_{L^c}^m} \mathcal{P}_m \mathcal{L}^{L_c}_{m} \left(\hat{H}_{\hat{a}}^{(0)} \hat{H}_{\hat{a}}^{(1)} \ldots \hat{H}_{\hat{a}}^{(m-1)} \right)
\]
\[
= \frac{(-\beta)^m}{m!} \frac{1}{d_{L^c}^m} \mathcal{P}_m \mathcal{L}^{L_c}_{m} \left(\tilde{i}_{X_1}, \ldots, \tilde{i}_{X_m} \right).
\]
We therefore obtain Eq. (A37) in Proposition 9. This completes the proof. □

Proof of Lemma 10 In order to prove Eq. (A43), we first expand \(\log \left[\frac{\text{tr}_{L^c} \left(e^{-\beta H_{L^c}/d_{L^c}} \right) }{d_{L^c}} \right] \) as follows:
\[
\log \left[\frac{\text{tr}_{L^c} \left(e^{-\beta H_{L^c}/d_{L^c}} \right) }{d_{L^c}} \right] = \log \left[\hat{1} + \sum_{m=1}^{\infty} \frac{(-\beta)^m}{m!} \text{tr}_{L^c} \left(H_{L^c}^m \right) \right] = \sum_{q=1}^{\infty} \frac{(-1)^{q-1}}{q} \left(\sum_{m=1}^{\infty} \frac{(-\beta)^m}{m!} \text{tr}_{L^c} \left(H_{L^c}^m \right) \right)^q,
\]
where in the first equation we use the fact that 0th term of the expansion gives \(\text{tr}_{L^c} \left(\hat{1}/d_{L^c} \right) = \hat{1} \). We then pick up the terms of \(\beta^m \). Because of
\[
\left(\sum_{m=1}^{\infty} \frac{(-\beta)^m}{m!} \frac{\text{tr}_{L^c} \left(H_{L^c}^m \right) }{d_{L^c}} \right)^q = \sum_{m=q}^{\infty} (-\beta)^{m_1+m_2+\ldots+m_q} \frac{\text{tr}_{L^c} \left(H_{L^c}^{m_1} \right) \text{tr}_{L^c} \left(H_{L^c}^{m_2} \right) \ldots \text{tr}_{L^c} \left(H_{L^c}^{m_q} \right) }{m_1!m_2!\ldots m_q! d_{L^c}^{m_1+m_2+\ldots+m_q}},
\]
the \(m \)-th order term in Eq. (A46) is given by
\[
\beta^m \sum_{q=1}^{\infty} \frac{(-1)^{q-1}}{q} \sum_{m_1+m_2+\ldots+m_q=m, m_1 \geq 1, m_2 \geq 1, \ldots, m_q \geq 1} \frac{(-\beta)^m \text{tr}_{L^c} \left(H_{L^c}^{m_1} \right) \text{tr}_{L^c} \left(H_{L^c}^{m_2} \right) \ldots \text{tr}_{L^c} \left(H_{L^c}^{m_q} \right) }{m_1!m_2!\ldots m_q! d_{L^c}^{m_1+m_2+\ldots+m_q}}.
\]

We thus obtain
\[
\frac{\partial}{\partial \beta^m} \log \left[\frac{\text{tr}_{L^c} \left(e^{-\beta H_{L^c}/d_{L^c}} \right) }{d_{L^c}} \right] \bigg|_{\beta=0} = \sum_{q=1}^{m} \frac{(-1)^{q-1}}{q} \sum_{m_1+m_2+\ldots+m_q=m, m_1 \geq 1, m_2 \geq 1, \ldots, m_q \geq 1} \frac{m!(-1)^m \mathcal{P}_q \text{tr}_{L^c} \left(H_{L^c}^{m_1} \right) \text{tr}_{L^c} \left(H_{L^c}^{m_2} \right) \ldots \text{tr}_{L^c} \left(H_{L^c}^{m_q} \right) }{m_1!m_2!\ldots m_q! q d_{L^c}^q},
\]
where \(\mathcal{P}_q \) is the symmetrization operator with respect to \(\{m_1, m_2, \ldots, m_q\} \). In the same manner, we can formally expand
\[
\left(\frac{(-1)^m}{d_{L^c}^m} \text{tr}_{L^c}_{m} \left(\hat{H}_{\hat{a}}^{(0)} \hat{H}_{\hat{a}}^{(1)} \ldots \hat{H}_{\hat{a}}^{(m-1)} \right) \right)
\]
\[
= \sum_{q=1}^{m} \sum_{m_1+m_2+\ldots+m_q=m, m_1 \geq 1, m_2 \geq 1, \ldots, m_q \geq 1} \mathcal{C}_q^{(j)} \text{tr}_{L^c} \left(H_{L^c}^{m_1} \right) \text{tr}_{L^c} \left(H_{L^c}^{m_2} \right) \ldots \text{tr}_{L^c} \left(H_{L^c}^{m_q} \right).
\]

For the proof of Lemma 10, we need to check whether each of the coefficients of \(\mathcal{P}_q \text{tr}_{L^c} \left(H_{L^c}^{m_1} \right) \text{tr}_{L^c} \left(H_{L^c}^{m_2} \right) \ldots \text{tr}_{L^c} \left(H_{L^c}^{m_q} \right) \) for all the pairs of \(\{m_1, m_2, \ldots, m_q\} \) is equal between Eqs. (A49) and (A50). Instead of directly writing down the explicit form of \(\mathcal{C}_q^{(j)} \), we will take the following step. First, we prove
\[
\frac{\partial^m}{\partial \beta^m} \log \left[\frac{\text{tr}_{L^c} \left(e^{-\beta H_{L^c}/d_{L^c}} \right) }{d_{L^c}} \right] \bigg|_{\beta=0} = \frac{(-1)^m}{d_{L^c}^m} \text{tr}_{L^c}_{m} \left(\hat{H}_{\hat{a}}^{(0)} \hat{H}_{\hat{a}}^{(1)} \ldots \hat{H}_{\hat{a}}^{(m-1)} \right)
\]
in the case of \(L^c = V \). The proof of Eq. (A51) implies that the coefficients of \(\mathcal{P}_q \text{tr}_{L^c} \left(H_{L^c}^{m_1} \right) \text{tr}_{L^c} \left(H_{L^c}^{m_2} \right) \ldots \text{tr}_{L^c} \left(H_{L^c}^{m_q} \right) \) are equal between Eqs. (A49) and (A50) for \(L^c = V \). Then, because the coefficients \(\mathcal{C}_q^{(j)} \) do not depend on the form of \(L^c \), the proof in the case of \(L^c = V \) also results in the proof in the other cases (i.e., \(L^c \neq V \)). Therefore, in the following, we aim to give the proof of Eq. (A51) for \(L^c = V \).

For \(L^c = V \), we have
\[
\frac{\partial}{\partial \beta} \log \left[\frac{\text{tr}_V \left(e^{-\beta H_{V}} \right) }{d_{V}} \right] = -\text{tr} \left(H_{\hat{a}} \hat{p}_{\hat{a}} \right),
\]
Because the operator where we use prove \(tr \) where
\[
\frac{\partial^m}{\partial \rho^m} \log \left[tr_V (e^{-\beta H_L}) \right] = -tr_V \left(H_L^2 \frac{\partial^{m-1}}{\partial \rho^{m-1}} \rho \right),
\]
(A53)

By using Lemma 2 in Ref. [10], we have
\[
\frac{\partial^{m-1}}{\partial \rho^{m-1}} tr (H_L \rho) \bigg|_{\rho = 0} = \frac{(-1)^{m-1}}{d_V} \frac{\partial^m}{\partial \rho^m} \left(\tilde{H}_S^{(0)} H_2^{(1)} \cdots H_2^{(m-1)} \right),
\]
where in the inequality (B.3) in [10], we choose as \(m_1 = 0, m_2 = m - 1 \) and \(\omega_X = H_L \). We thus obtain the equation (A51). This completes the proof of Lemma 10. □

We then aim to obtain an upper bound of \(\left\| \frac{1}{d_L^s} tr_L (\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)}) \right\| \). For the purpose, we utilize the following proposition.

Proposition 11. Let \(\{O_s\}_{s=0}^m \) be operators supported on a subset \(w := \{X_s\}_{s=0}^m \), respectively. When they satisfy \(tr_{L^s} (O_s) = 0 \) for \(s = 0, 1, 2, \ldots, m \), we obtain
\[
\frac{1}{d_L^s} \left\| tr_{L^s} \left(O^{(0)}_0 O^{(1)}_1 \cdots O^{(m-1)}_{m-1} \right) \right\| \leq \| O_0 \| \prod_{s=1}^m 2 N_{X_s \cap w_L} \| O_s \|,
\]
(A55)
where we define \(O_s \) as in Eq. (A38). \(N_{X_s \cap w} \) is a number of subsets in \(w \) that have overlap with \(X_s \) (Fig. 6):
\[
N_{X_s \cap w} = \# \{ X \in w | X \neq X_s, X \cap X_s \neq \emptyset \}.
\]
(A56)

The proof is the same as that of Proposition 3 in Ref. [10], which proves Ineq. (A55) for \(L^s = V \).

In order to apply Proposition (11) to \(tr_{L^s} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right) \), the condition \(tr_L (h_X) = 0 \) is necessary, whereas it is not generally satisfied. Thus, instead of considering \(h_X \), we consider \(\check{h}_X \) which is defined as follows:
\[
\check{h}_X := h_X - \frac{h_L^s}{d_L^s} \quad \text{for} \quad X \in E_r,
\]
(A57)
where \(\check{h}_X \) satisfies \(tr_L (\check{h}_X) = tr_L (h_X) - h_L^s tr_L (1) / d_L^s = h_L^s - h_L^s = 0 \) from the definition (A1). By using the notation of \(\check{h}_X \), we obtain
\[
tr_{L^s} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right) = tr_{L^s} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right) + \frac{h_L^{(1)}}{d_L^s} \otimes tr_{L^s} \left(\tilde{h}_X^{(1)} \tilde{h}_X^{(2)} \cdots \tilde{h}_X^{(m-1)} \right),
\]
(A58)
where we use \(\tilde{h}_X^{(s)} = \tilde{h}_X^{(s)} \) for \(s \geq 1 \) which comes from the definition (A38), and apply Eq. (A57) to \(\tilde{h}_X^{(0)} \). We then prove \(tr_{L^s} \left(\tilde{h}_X^{(1)} \tilde{h}_X^{(2)} \cdots \tilde{h}_X^{(m-1)} \right) = 0 \). By using the definition (A38) for \(\tilde{h}_X^{(1)} \), we have
\[
tr_{L^s} \left(\tilde{h}_X^{(1)} \tilde{h}_X^{(2)} \cdots \tilde{h}_X^{(m-1)} \right) = tr_{L^s} \left(\tilde{h}_X^{(2)} \tilde{h}_X^{(3)} \cdots \tilde{h}_X^{(m-1)} \right).
\]
(A59)
Because the operator \(\tilde{h}_X^{(s)} (s \geq 2) \) is invariant under the swapping between the Hilbert spaces \(H_1^{(s)} \) and \(H_2^{(s)} \) (i.e., \(H_1 \leftrightarrow H_2 \)), we have
\[
tr_{L^s} \left(\tilde{h}_X^{(1)} \tilde{h}_X^{(2)} \cdots \tilde{h}_X^{(m-1)} \right) = tr_{L^s} \left(\tilde{h}_X^{(2)} \tilde{h}_X^{(3)} \cdots \tilde{h}_X^{(m-1)} \right).
\]
(A60)
Therefore, the term (A59) vanishes and Eq. (A58) reduces to
\[
\text{tr}_{L_{\ell}^m} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right) = \text{tr}_{L_{\ell}^m} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right).
\] (A61)

By using Proposition 11, we obtain an upper bound of \(\text{tr}_{L_{\ell}^m} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right)\) as follows:
\[
\frac{1}{d_{L_{\ell}^m}} \left\| \text{tr}_{L_{\ell}^m} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right) \right\| = \frac{1}{d_{L_{\ell}^m}} \left\| \text{tr}_{L_{\ell}^m} \left(\tilde{h}_X^{(0)} \tilde{h}_X^{(1)} \cdots \tilde{h}_X^{(m-1)} \right) \right\|
\leq \|b_X\| \prod_{s=2}^{m} 2N_{X_s|w}\|b_{X_s}\| \leq \frac{1}{2} \prod_{s=1}^{m} 4N_{X_s|w}\|b_{X_s}\|,
\] (A62)

where we use \(\|b_X\| \leq 2\|h_X\|\) which comes from the definition (A57). By combining the inequality (A62) with Eq. (A37), we obtain an upper bound of
\[
\|D_w \log \tilde{\rho}_{\tilde{a}} \|_{\tilde{a}=0} \leq \frac{1}{2} \sum_{s=1}^{m} 4\|N_{X_s|w}\|\|b_{X_s}\|.
\] (A63)

By applying the inequality (A63) to the cases \(L = AB, L = BC, L = ABC\) and \(L = B\), we obtain the following inequality:
\[
\|D_w \tilde{H}_A(A : C|B)\|_{\tilde{a}=0} \leq 2\|4\|m \prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|,
\] (A64)

where \(\tilde{H}_A(A : C|B)\) has been defined in Eq. (A20). Then, the final task is to upper-bound the summation with respect to \(\sum_{w \in G_{r,m}^{A,C}}\) in Eq. (A28):
\[
\left\| \tilde{H}_1(A : C|B) \right\| \leq \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in G_{r,m}^{A,C}} n_w \|D_w \tilde{H}_A(A : C|B)\|_{\tilde{a}=0}\]
\leq \sum_{m=1}^{\infty} \frac{2(4\|m\prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|}{m!} \sum_{w \in G_{r,m}^{A,C}} n_w \prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|,
\] (A65)

where we use the proposition 8 in the first inequality.

For the estimation of the summation, we first focus on the fact that any cluster in \(w \in G_{r,m}^{A,C}\) must have overlaps with the surface regions of \(A\) and \(C\), say \(\partial A_r\) and \(\partial C_r\) (\(r \in \mathbb{N}\)):
\[
\partial A_r := \{v \in A|d_{v,A} \leq r\}, \quad \partial C_r := \{v \in C|d_{v,C} \leq r\}.
\] (A66)

Second, because \(d_{A,C}\) is the minimum path length on the graph \((V, E)\) to connect the subsystems \(A\) and \(C\), the condition \(w \in G_{r,m}^{A,C}\) implies \(|w| \geq d_{A,C}/r\) as the necessary condition. From these two facts, we will replace the summation \(\sum_{w \in G_{r,m}^{A,C}}\) with \(\sum_{v \in \partial A_r, m \geq d_{A,C}/r} \sum_{w \in G_{r,m}^{C}}\) by taking all the clusters with the sizes \(|w| \geq d_{A,C}/r\) which have overlap with \(A\) into account:
\[
\sum_{m=1}^{\infty} \frac{2(4\|m\prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|}{m!} \sum_{w \in G_{r,m}^{A,C}} n_w \prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|
\leq \sum_{v \in \partial A_r, m \geq d_{A,C}/r} \sum_{w \in G_{r,m}^{C}} \frac{2(4\|m\prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|}{m!} \prod_{s=1}^{m} N_{X_s|w}\|b_{X_s}\|,
\] (A67)

where the same inequality holds for the replacement of \(\sum_{w \in \partial A_r}\) by \(\sum_{v \in \partial C_r}\).

In order to estimate the summation of \(\sum_{w \in G_{r,m}^{C}}\), we utilize the following proposition which has been given in Ref. [10]:

Proposition 12 (Proposition 4 in Ref. [10]). Let \(\{a_X\}_{X \in E_\infty}\) be arbitrary operators such that
\[
\sum_{X|X \ni v} \|a_X\| \leq g \quad \text{for} \quad \forall v \in V,
\] (A68)

where \(E_\infty\) is defined by Eq. (A5) and it gives the set of all the subsystems \(X \subset V\) with \(|X| \leq k\). Then, for an arbitrary subset \(L\), we obtain
\[
\sum_{w \in G_{r,m}^{C}} n_w \prod_{s=1}^{m} N_{X_s|w|L}\|a_{X_s}\| \leq \frac{1}{2} L^{|L|/k}(2e^3gk)^m,
\] (A69)

where \(w_L\) is defined as \(w_L := \{L, X_1, X_2, \ldots, X_{|w|}\\}\) for \(w = \{X_1, X_2, \ldots, X_{|w|}\\}.\)
By applying Proposition 12 to the inequality (A67), we have
\[
\sum_{w \in \mathcal{G}_{r,m}^L} \frac{n_w}{m!} \prod_{s=1}^m N_{X_s | w} \| h_{X_s} \| \leq \frac{1}{2} e^{1/k} (2 \epsilon^3 k)^m, \tag{A70}
\]
where we use \(N_{X_s | w} \leq N_{X_s | w} \) in (A69) and the condition (A4) gives \(g = 1 \). Therefore, the inequality (A67) reduces to
\[
\sum_{m=0}^\infty \frac{1}{m!} \sum_{w \in \mathcal{G}_{r,m}^L} n_w \| \mathcal{D}_w H \mathcal{E}(A : C | B) \|_{\mathcal{A}=0} \leq \sum_{v \in \partial A_r} \sum_{m \geq d_{A,C}/r} e^{1/k} (8 \epsilon^3 k \beta)^m
\]
\[
\leq e^{1} |\partial A_r| \frac{(8 \epsilon^3 k \beta)^{d_{A,C}/r}}{1 - 8 \epsilon^3 k \beta}, \tag{A71}
\]
where we use \(k \geq 1 \). We notice that the same inequality holds for the replacement of \(|\partial A_r| \) by \(|\partial C_r| \). By combining the inequalities (A21), (A65) and (A71), we prove Theorem 1. \(\square \)

Appendix B: Quasi-Locality of effective Hamiltonian on a subsystem: Proof of Theorem 3

We here consider the effective Hamiltonian on a subsystem \(L \), which we define as
\[
\tilde{H}_L := -\beta^{-1} \log \tilde{\rho}^L, \tag{B1}
\]
where \(\tilde{\rho}^L \) is defined in Eq. (A19). We prove the following theorem which refines the Theorem 3:

Theorem 13. The effective Hamiltonian \(\tilde{H}_L \) is given by a quasi-local operator
\[
\tilde{H}_L = H_L + \sum_{m=1}^{\infty} \sum_{w \in \mathcal{G}_{r,m}^L} n_w h_{L_w} - \frac{i}{\beta} \log Z_{L^c}, \tag{B2}
\]
with
\[
H_L := \sum_{X \subseteq L} h_{X}, \quad Z_{L^c} := \frac{1}{d_L} \text{tr}(e^{-\beta H_{L^c}} \otimes \mathbb{1}_L), \tag{B3}
\]
for \(L \subseteq V \), where each of \(\{ h_{L_w} \}_{w \in \mathcal{G}_{r,m}^L} \) is supported on the subsystem \(L_w := L \cap V_w \) (see Def. (B18)) and \(\mathcal{G}_{r,m}^L \) is defined as a cluster subset defined in Def. 3. The effective interaction terms \(\{ h_{L_w} \}_{w \in \mathcal{G}_{r,m}^L} \) is exponentially localized around the boundary:
\[
\sum_{m > m_0} \sum_{w \in \mathcal{G}_{r,m}^L} n_w \| h_{L_w} \| \leq \frac{e}{4 \beta} (\beta/\beta_c)^{m_0+1} |\partial L_r| \tag{B4}
\]
for an arbitrary \(m_0 \).

From Eq. (B2), the effective interaction term \(\Phi_L \) is given by
\[
\Phi_L = \sum_{m=1}^{\infty} \sum_{w \in \mathcal{G}_{r,m}^L} n_w h_{L_w} - \frac{i}{\beta} \log Z_{L^c}. \tag{B5}
\]
Because of \(\text{diam}(V_w) \leq m r \), the subsystem \(L \cap V_w \) (\(w \in \mathcal{G}_{r,m}^L \)) is separated from the boundary \(\partial L \) at most by a distance \(m r \), namely \(L \cap V_w \subseteq \partial L_{m r} \), where \(\partial L_l \) has been defined in Eq. (9) as follows:
\[
\partial L_l := \{ v \in L | d_v, L^c \leq l \}. \tag{B6}
\]
Hence, by defining \(\Phi_{\partial L_l} \) as
\[
\Phi_{\partial L_l} = \sum_{m \leq l/r} \sum_{w \in \mathcal{G}_{r,m}^L} n_w h_{L_w} - \frac{i}{\beta} \log Z_{L^c}, \tag{B7}
\]
we have
\[
\| \Phi_L - \Phi_{\partial L_l} \| \leq \frac{e}{4 \beta} (\beta/\beta_c)^{l/r} |\partial L_r|. \tag{B8}
\]
This gives the proof of Theorem 3.
1. Proof of Theorem 13

In order to apply the generalized cluster expansion, we first parametrize \tilde{H}_L as

$$\tilde{H}_{L,\tilde{a}} := -\beta^{-1} \log \tilde{\rho}_{\tilde{a}}^L.$$ \hfill (B9)

As in Eq. (A24), the generalized cluster expansion for $\tilde{H}_{L,\tilde{a}}$ reads

$$\tilde{H}_{L,\tilde{a}} = H_L - \frac{1}{\beta} \log Z_{L,c} + \frac{1}{\beta} \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in C, m} n_w D_w \tilde{H}_{L,\tilde{a}} \bigg|_{\tilde{a}=0}.$$ \hfill (B10)

We can now prove the following proposition:

Proposition 14. The summation with respect to the clusters $\sum_{w \in C, m}$ reduces to the following form:

$$\tilde{H}_{L,\tilde{a}} = H_L - \frac{1}{\beta} \log Z_{L,c} + \frac{1}{\beta} \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in V, m} n_w D_w \tilde{H}_{L,\tilde{a}} \bigg|_{\tilde{a}=0},$$ \hfill (B11)

where $H_L := \sum_{X \subseteq L} h_X$ and $Z_{L,c} := d_L^{-1} \text{tr}(e^{-\beta H_{L,c}})$.

a. Proof of Proposition 14

For the proof, we first prove

$$D_w \log(\tilde{\rho}_{\tilde{a}}^L) = 0 \quad \text{for} \quad w \notin G_{r,|w|}.$$ \hfill (B12)

The proof is given as follows. Due to the existence of decomposition $w = w_1 \cup w_2$ such that $V_{w_1} \cap V_{w_2} = \emptyset$, we have $e^{-\beta H_{w_1}} \otimes e^{-\beta H_{w_2}}$ and hence,

$$\log(\tilde{\rho}_{\tilde{a}}^L) = \log(\tilde{\rho}_{\tilde{a}_1}^L) + \log(\tilde{\rho}_{\tilde{a}_2}^L) - \log d_{L,c}.$$ \hfill (B13)

Because $D_{w_2} \log(\tilde{\rho}_{\tilde{a}_2}^L) = D_{w_1} \log(\tilde{\rho}_{\tilde{a}_1}^L) = 0$, we obtain Eq. (B12).

We then consider the cases of $V_w \subseteq L$ and $V_w \subseteq L^c$ in Eq. (B10). In the case of $V_w \subseteq L$, the definition (A19) gives

$$\log(\tilde{\rho}_{L,\tilde{a}_w}) = -\beta \tilde{H}_{\tilde{a}_w} + \log d_{L,c}.$$ \hfill (B14)

Therefore, we have $D_w \log(\tilde{\rho}_{\tilde{a}_w}^L)$ vanishes for $m \geq 2$, and

$$-\frac{1}{\beta} \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in G_{r,|w|}, V_w \subseteq L} n_w D_w \tilde{H}_{L,\tilde{a}} \bigg|_{\tilde{a}=0} = \sum_{X \subseteq L} h_X = H_L.$$ \hfill (B15)

On the other hand, in the case of $V_w \subseteq L^c$, $\log(\tilde{\rho}_{\tilde{a}_w}^L)$ becomes a constant operator (i.e., $\log(\tilde{\rho}_{\tilde{a}_w}^L) \propto \hat{1}$). Hence, we obtain

$$-\frac{1}{\beta} \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{w \in G_{r,|w|}, V_w \subseteq L^c} n_w D_w \tilde{H}_{L,\tilde{a}} \bigg|_{\tilde{a}=0} = -\frac{1}{\beta} \log \text{tr}(e^{-\beta H_{L,c}}) = -\frac{1}{\beta} \log Z_{L,c} \hat{1}.$$ \hfill (B16)

Thus, the summation (B10) reduces to

$$\tilde{H}_{L,\tilde{a}} = H_L - \frac{1}{\beta} \log Z_{L,c} - \frac{1}{\beta} \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in V, m} n_w D_w \tilde{H}_{L,\tilde{a}} \bigg|_{\tilde{a}=0}.$$ \hfill (B17)

This completes the proof. □
where we use the definition (A19). Note that the operator h_{L_w} is supported on the subsystem $L_w = L \cap V_w$. Then, the effective Hamiltonian $\tilde{H}_{L,\vec{a}}$ is formally written by

$$\tilde{H}_{L,\vec{a}} = H_L - \frac{1}{\beta} \log Z_{L^c} + \sum_{m=1}^{\infty} \sum_{w \in \mathcal{G}_{r,m}^{L_c}} n_w h_{L_w}. \quad (B19)$$

By using the proposition 9 with the inequalities (A62) and (A70), we have

$$\sum_{w \in \mathcal{G}_{r,m}^{L_c}} n_w \|h_{L_w}\| \leq \frac{\beta^{-1}}{m!} \sum_{w \in \mathcal{G}_{r,m}^{L_c}} \frac{n_w}{2} \prod_{s=1}^{m} 4\beta N_{X_s} |w| h_{X_s} \| \leq (4\beta)^{m-1} e^{1/k} (2e^{3k})^m \leq \frac{e}{4\beta} (\beta/\beta_c)^m, \quad (B20)$$

where we use $e^{1/k} \leq e$ due to $k \geq 1$. By using the above inequality, the contribution of mth order terms in the expansion (B11) is bounded from above by

$$\sum_{w \in \mathcal{G}_{r,m}^{L_c}} n_w \|h_{L_w}\| \leq \sum_{v \in \partial L_r} \sum_{w \in \mathcal{G}_{r,m}^{L_c}} n_w \|h_{L_w}\| \leq \frac{e}{4\beta} (\beta/\beta_c)^m |\partial L_r|, \quad (B21)$$

where ∂L_r has been defined in Eq. (B6).

$$\sum_{m=1}^{\infty} \sum_{w \in \mathcal{G}_{r,m}^{L_c}} n_w \|h_{L_w}\| \leq \frac{e|\partial L_r|}{4\beta} \sum_{m=m_0+1}^{\infty} (\beta/\beta_c)^m = \frac{e|\partial L_r| (\beta/\beta_c)^{m_0+1}}{4\beta} \frac{1 - \beta/\beta_c}{1 - \beta/\beta_c}. \quad (B22)$$

This completes the proof of Theorem 13. □

2. Computational cost of cluster summation

We here show the computational cost to estimate the effective Hamiltonian \tilde{H}_L. For this aim, we start from a slightly weaker expression than Eq. (B11) as follows

$$\Phi_L = \tilde{H}_{L,\vec{a}} - H_L = \frac{1}{\beta} \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{w \in \mathcal{G}_{r,m}^{L_c}, V_w \subseteq L^c} n_w D_w \tilde{H}_{L,\vec{a}} \bigg|_{\vec{a}=\vec{0}} - \frac{1}{\beta} \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in \mathcal{G}_{r,m}^{L_c}} n_w D_w \tilde{H}_{L,\vec{a}} \bigg|_{\vec{a}=\vec{0}}, \quad (B23)$$

where we use the second and third terms in the first equation of (B17). Our task is to estimate the computational cost of $n_w D_w \tilde{H}_{L,\vec{a}} \big|_{\vec{a}=\vec{0}}$ and the number of clusters in $\{w \in \mathcal{G}_{r,m}, V_w \subseteq L^c\}$ and $w \in \mathcal{G}_{r,m}^{L_c}$.

First, we consider $n_w D_w \tilde{H}_{L,\vec{a}} \big|_{\vec{a}=\vec{0}}$. As defined in Eq. (A24), n_w is immediately calculated, and hence we need to estimate the computational cost to calculate the multiderivative

$$D_w \tilde{H}_{L,\vec{a}} \bigg|_{\vec{a}=\vec{0}} = \prod_{j=1}^{m} \frac{\partial}{\partial a_{X_j}} \tilde{H}_{L,\vec{a}} \bigg|_{\vec{a}=\vec{0}} \quad (B24)$$

with $w = \{X_s\}_{s=1}^{m}$ by using numerical differentiation. The operator $\tilde{H}_{L,\vec{a}}$ is given by

$$\tilde{H}_{L,\vec{a}} = -\beta^{-1} \log Z_{L^c} = -\beta^{-1} \text{tr}_{L^c} \left(e^{-\beta H_{\vec{a}}^w} \right) \otimes 1_{L^c}, \quad (B25)$$

where we use the definition (A19). Note that $H_{\vec{a}}^w_{\vec{a}}$ is supported on $V_w \subseteq V$. Hence, the computational cost to calculate $\tilde{H}_{L,\vec{a}}$ is at most of $O(\mathcal{O}(\text{tr}(V_w)))$. In order to perform the differentiation, we need to calculate $2^{|w|}$ values of $H_{L,\vec{a}}$ for $a_{X_s} = \pm \Delta (\Delta \rightarrow +0)$ for $s = 1, 2, \ldots, |w|$. Thus, for the numerical differentiation we need the computational cost of $2^{|w|} \cdot O(\text{tr}(V_w)) = O(\mathcal{O}(mk))$ with $|w| = m$, where we use $|V_w| \leq |w|k$.

We then need to sum up the contributions from all the clusters in $\{w \in \mathcal{G}_{r,m}, V_w \subseteq L^c\}$ and $w \in \mathcal{G}_{r,m}^{L_c}$. For the purpose, we first prove the following theorem on the number of clusters:
Proposition 15. The total number of different clusters in $G_{r,m}^{L^c}$ is bounded as follows:

$$\# \left\{ w \in C_{r,m} | w \in G_{r,m}, V_w \subseteq L^c \text{ or } w \in G_{r,m}^{L^c} \right\} \leq |L^c| (3 \cdot 2^k d_G^k)^m. \quad (B26)$$

This roughly gives the total number by $|L^c| d_G^{O(rkm)}$.

In total, the computation of the m-th order in the expansion (B23) is performed with the runtime bounded from above by

$$d^{O(mk)} \cdot |L^c| d_G^{O(rkm)} \leq n(d \cdot d_G^r)^{mk}. \quad (B27)$$

Also, the convergence of the expansion (B23) is estimated as in (B21) and (B22)

$$\sum_{w \in G_{r,m}, V_w \subseteq L^c} \| n_w D_w H_{L,\vec{a}} \|_{\vec{a}=0} - \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{w \in G_{r,m}^{L^c}} \| n_w D_w H_{L,\vec{a}} \|_{\vec{a}=0} \leq \sum_{w \in L^c} \sum_{w \in G_{r,m}^{L^c}} n_w \| h_{L_w} \| \leq \frac{e}{4\beta} (\beta/\beta_c)^m |L^c| \leq \frac{e}{4\beta} (\beta/\beta_c)^m n, \quad (B28)$$

which yields

$$\sum_{m=m_0}^{\infty} \sum_{w \in G_{r,m}, V_w \subseteq L^c} \| n_w D_w H_{L,\vec{a}} \|_{\vec{a}=0} - \sum_{m=m_0}^{\infty} \sum_{w \in G_{r,m}^{L^c}} \| n_w D_w H_{L,\vec{a}} \|_{\vec{a}=0} \leq \frac{e n}{4\beta} (\beta/\beta_c)^m + 1 \frac{1}{1-\beta/\beta_c}. \quad (B29)$$

Therefore, we need to choose $m = O(\log(1/\epsilon))$ to calculate Φ_L up to an error $n \epsilon$ as long as $\beta < \beta_c$. Hence, the computational cost is estimated as

$$n(d \cdot d_G^r)^{kO(\log(1/\epsilon))} = n(1/\epsilon)^{O(k \log(dd_G^r))}. \quad (B30)$$

This completes the derivation of the computational cost (16) for computing Φ_L. □

a. Proof of Proposition 15

We here prove Proposition 15 which gives an upper bound of the number of cluster connecting to a subset L^c. For the purpose, we estimate the number of clusters in $G_{r,m}^{L^c}$, which gives an upper bound of

$$\# \left\{ w \in C_{r,m} | w \in G_{r,m}, V_w \subseteq L^c \text{ or } w \in G_{r,m}^{L^c} \right\} \leq \sum_{w \in L^c} \# \left\{ w | w \in G_{r,m}^w \right\}. \quad (B31)$$

First, we count the number of clusters $w = \{X_s\}_{s=1}^q$ which satisfy $X_s \cap Y \neq \emptyset$ for $\forall X_s (s = 1, 2, \ldots, q)$, where Y is an arbitrary subset in V. The number is bounded from above by

$$\# \{ w \in C_{r,q} | X_s \cap Y \neq \emptyset, s = 1, 2, \ldots, q \} \leq \sum_{\{v_1, v_2, \ldots, v_k\} \subseteq Y} \prod_{s=1}^q \deg(v_s), \quad (B32)$$

where we define $\deg(v)$ as $\deg(v) := \# \{ X \in E_r | X \ni v \}$. By using the graph degree d_G, we can upper-bound $\deg(v)$ by

$$\deg(v) = \# \{ X \in E_r | X \ni v \} \leq \binom{d_G^r}{k} \leq a_G^d k, \quad (B33)$$

where d_G^r is the upper bound of the number of vertices $\{v\}_v \ni v$ such that $d_v, v \leq r$. Also, note that $X \in E_r$ implies $|X| \leq k$ from the definitions (A4) and (A5). The summation with respect to $\{v_1, v_2, \ldots, v_k\}$ is equal to the q_1-multicombination from a set of $|L|$ vertices, which is equal to

$$\sum_{\{v_1, v_2, \ldots, v_k\} \subseteq Y} = \binom{|Y|}{q} = \binom{q + |Y| - 1}{q} \leq 2^{q + |Y| - 1}. \quad (B34)$$

By combining the inequalities (B33) and (B34) with (B32), we obtain

$$\# \{ w \in C_{r,q} | X_s \cap Y \neq \emptyset, s = 1, 2, \ldots, q \} \leq 2^{Y-1}(2d_G^k)^q. \quad (B35)$$
FIG. 7. Decomposition of w in G^κ_m as in Eq. (B36). In the picture, we have $w_0 = \{X_3, X_8\}$, $w_1 = \{X_2, X_4, X_9\}$, $w_2 = \{X_5, X_7\}$, $w_3 = \{X_1, X_{10}\}$, $w_4 = \{X_6, X_{11}\}$.

We then consider the following decomposition of $w \in G^\kappa_m$ (see Fig. 7):

$$w = w_0 \sqcup w_1 \sqcup w_2 \sqcup \cdots \sqcup w_l, \quad 0 \leq l \leq m - 1,$$

(B36)

where $w_j \subset w_L$ satisfy $d(w_j, v) = j$ for $j = 0, 1, 2, \ldots, l$. Here, we define $d(w_j, w_0)$ as the shortest path length in the cluster $w_0 \sqcup w_1 \sqcup \cdots \sqcup w_{j-1}$ which connects from w_j to v. We also define $q_j := |w_j|$ with $q_j \geq 1$. We notice that all the clusters $w \in G^\kappa_m$ can be decomposed into the form of (B36).

For fixed $\{q_0, q_1, \ldots, q_l\}$, the number of clusters $\{w_1, w_2, \ldots, w_l\}$ defined as in Eq. (B36) is bounded by

$$\# \{w \in C_{r,q_0}|X_{0,s} \cap v \neq \emptyset, \ s = 1, 2, \ldots, q_0\} \prod_{j=1}^{l} \max_{w_j-1 \in C_{r,q_j-1}} (\# \{w \in C_{r,q_j}|X_{s_j} \cap V_{w_j-1} \neq \emptyset, \ s_j = 1, 2, \ldots, q_j\})$$

$$\leq (2d_G^k)^{q_0} \prod_{j=1}^{l} [2^{kq_j - 1} (2d_G^k)q_j] \leq 2^{-l} (2^{k+1} d_G^m)^m,$$

(B37)

where we denote $w_j = \{X_{s_j}\}_{s_j=1}^{q_j}$; note that $\sum_{j=0}^{l} q_j = m$. Then, by taking the summation with respect to $\{q_0, q_1, \ldots, q_l\}$ and l, we finally obtain the upper bound of $\# \{w|w \in G^\kappa_m\}$ as follows:

$$\# \{w|w \in G^\kappa_m\} \leq \sum_{l=0}^{m-1} \sum_{\substack{q_0 + q_1 + \cdots + q_l = m \\ q_0 \geq 1, q_1 \geq 1, \ldots, q_l \geq 1}} 2^{-l} (2^{k+1} d_G^m)^m$$

$$= \sum_{l=0}^{m-1} \binom{l + 1}{m - l - 1} 2^{-l} (2^{k+1} d_G^m)^m$$

$$= \sum_{l=0}^{m-1} \binom{m - 1}{l} 2^{-l} (2^{k+1} d_G^m)^m \leq \left(3 \cdot 2^k d_G^m\right)^m,$$

(B38)

where the summation with respect to $\{q_0, q_1, \ldots, q_l\}$ ($q_0 \geq 1, q_1 \geq 1, \ldots, q_l \geq 1$) is equal to the $(m - l - 1)$-multcombination from a set of $l + 1$ elements:

$$\sum_{\substack{q_0 + q_1 + \cdots + q_l = m \\ q_0 \geq 1, q_1 \geq 1, \ldots, q_l \geq 1}} \binom{l + 1}{m - l - 1} = \binom{m - 1}{l}.$$

(B39)

By applying the above upper bound to the inequality (B31), we obtain the main inequality (B26). This completes the proof. □

Appendix C: Proof of Theorem 5

We here show the proof of Theorem 5 which upper bounds the conditional mutual information in long-range interacting systems. We rewrite the Hamiltonian with the power-law decay interaction by using the notations (A2)
and (A5):

\[H = \sum_{X \in E_\infty} h_X = \sum_{l=1}^{\infty} \sum_{X \in E^{(l)}_l} h_X. \]

(C1)

We here define \(\tilde{g}_l \) as

\[\tilde{g}_l := \max_{v \in V} \sum_{X \in E^{(v)}|X \ni v} \| h_X \|. \]

(C2)

Then, the assumption (17) implies

\[\sum_{l \geq R} \sum_{X \in E^{(l)}|X \ni v} \| h_X \| \leq \sum_{l \geq R} \tilde{g}_l \leq R^{-\alpha}. \]

(C3)

We again show the statement that we would like to prove:

Theorem 16. Let \(A, B \) and \(C \) be arbitrary subsystems in \(V \) (\(A, B, C \subset V \)). Then, under the assumption that the inverse temperature satisfies

\[\beta < \beta_c/11 = \frac{1}{88e^{3k}}, \]

(C4)

the Gibbs state \(\rho \) satisfies the approximate Markov property as follows:

\[I_{\rho}(A : C|B) \leq \beta \min(|A|, |C|) \frac{11e^{1/k}/\beta_c d_{A,C}}{1 - 11\beta/\beta_c}, \]

(C5)

where we assume that \(d_{A,C} \geq 2\alpha \).

1. **Details of the proof**

We start from Eq. (A24). By parametrizing the Hamiltonian as

\[H_\beta = \sum_{X \in E_\infty} a_X h_X = \sum_{l=1}^{\infty} \sum_{X \in E^{(l)}} a_X h_X, \]

(C6)

we have

\[\hat{H}_\beta(A : C|B) = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{l_1, l_2, \ldots, l_m = 1}^{\infty} \prod_{j=1}^{m} \frac{\partial}{\partial a_{X_j}} \log(\hat{\rho}_\beta^{l_j}) \bigg|_{\vec{a} = 0} \]

\[= \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{l_1, l_2, \ldots, l_m = 1}^{\infty} \sum_{X_1 \in E^{(l_1)}, X_2 \in E^{(l_2)}, \ldots, X_m \in E^{(l_m)}} \prod_{j=1}^{m} \frac{\partial}{\partial a_{X_j}} \log(\hat{\rho}_\beta^{l_j}) \bigg|_{\vec{a} = 0} \]

\[= \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{l_0 = 0}^{\infty} \sum_{w \in C_m(l_0)} n_w D_w \hat{H}_\beta(A : C|B) \bigg|_{\vec{a} = 0}, \]

(C7)

where we define \(C_m(l_0) \subset C_{\infty,m} \) as

\[C_m(l_0) = \left\{ w = \{X_1, X_2, \ldots, X_m\} \in C_{\infty,m} \mid X_j \in E^{(l_j)}, \quad j = 1, 2, \ldots, m \quad \text{s.t.} \quad \sum_{j=1}^{m} l_j = l_0 \right\}. \]

(C8)

See Eq. (A2) and Sec. A.1a for the definitions of \(C_{\infty,m} \) and \(E^{(l)} \).

Next, from Eq. (C7), we can derive a similar statement to the proposition 8:

\[\hat{H}_\beta(A : C|B) = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{l_0 = 0}^{\infty} \sum_{w \in C_m(l_0)} n_w D_w \hat{H}_\beta(A : C|B) \bigg|_{\vec{a} = 0} \]

\[= \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{l_0 \geq d_{A,C}} \sum_{w \in g^{A,C}_{m}(l_0)} n_w D_w \hat{H}_\beta(A : C|B) \bigg|_{\vec{a} = 0}, \]

(C9)
where we define $G^A_C(l_0) \subset G^A_C$ as

$$G^A_C(l_0) = \left\{ w = \{X_1, X_2, \ldots, X_m\} \in G^A_C \mid X_j \in E^{(l)}, \ j = 1, 2, \ldots, m \quad \text{s.t.} \quad \sum_{j=1}^{m} t_j = l_0 \right\}. \quad (C10)$$

Notice that we have $w \notin G^A_C(l_0)$ if $l_0 < d_{A,C}$ from the above definition.

By following the same discussions in the derivation of Ineq. (A67), we obtain

$$\|\tilde{H}_T(A : C|B)\| \leq \sum_{v \in A} \sum_{m=1}^{\infty} \sum_{l_0 \geq d_{A,C}} \frac{2(4\beta)^m}{m!} \prod_{s=1}^{m} N_{X_1|w}\|h_{X_1}\|,$$

where in this case, the summation of $v \in \partial A_r$ is replaced by $v \in A$ due to $\partial A_\infty = A$ (see Eq. (A66)). Then, by using the inequality (A70), obtain

$$\sum_{w \in G^A_C(l_0)} \frac{n_w}{m!} \prod_{s=1}^{m} N_{X_1|w}\|h_{X_1}\| \leq \frac{e^{1/k(2\rho_3 \kappa)^m}}{2} \sum_{l_1 + l_2 + \ldots + l_m = l_0} \prod_{j=1}^{m} \tilde{g}_{l_j}, \quad (C12)$$

where we defined \tilde{g}_{l_j} in Eq. (C2). By combining the inequalities (C11) and (C12), we obtain

$$\|\tilde{H}_T(A : C|B)\| \leq \sum_{v \in A} \sum_{m=1}^{\infty} \sum_{l_0 \geq d_{A,C}} e^{1/k(8\rho_3 \kappa)^m} m! \prod_{j=1}^{m} \tilde{g}_{l_j}, \quad (C13)$$

We can prove the following inequality (see Sec. C.1a for the proof):

$$\sum_{l_1 + l_2 + \ldots + l_m = l_0} \prod_{j=1}^{m} \tilde{g}_{l_j} \leq 11^m l_{0}^{-\alpha}$$

for arbitrary $l_0 \geq 2\alpha$. By using the above inequality, we obtain

$$\sum_{m=1}^{\infty} \sum_{l_1 + l_2 + \ldots + l_m = l_0 \geq d_{A,C}} e^{1/k(8\rho_3 \kappa)^m} m! \prod_{j=1}^{m} \tilde{g}_{l_j} \leq d_{A,C}^{-\alpha} \sum_{m=1}^{\infty} e^{1/k(11\beta \kappa)^m} \frac{11e^{1/k(2\rho_3 \kappa)^m}}{2} \leq \frac{11e^{1/k(2\rho_3 \kappa)^m}}{2} \leq d_{A,C}^{-\alpha}, \quad (C15)$$

By combining the inequalities (C13) and (C15), we finally obtain

$$\|\tilde{H}_T(A : C|B)\| \leq \beta|A| \frac{11e^{1/k(2\rho_3 \kappa)^m}}{2} d_{A,C}^{-\alpha}. \quad (C16)$$

In the same way, we can derive the inequality such that $|A|$ is replaced by $|C|$ in (C16). By combining the above inequality with (A21), we prove Theorem 5. □

a. Proof of the inequality (C14)

For the proof, we start from the following form:

$$\sum_{l_1 + l_2 + \ldots + l_m = l_0} \prod_{j=1}^{m} \tilde{g}_{l_j} \leq \eta_m l_{0}^{-\alpha}. \quad (C17)$$

We, in the following, construct a recurrence relation to determine η_m. First, Eq. (C3) immediately implies

$$\sum_{l_1 + l_2 + \ldots + l_m = l_0} \prod_{j=1}^{m} \tilde{g}_{l_j} \leq \prod_{j=1}^{m} \sum_{l_j = 1}^{\infty} \tilde{g}_{l_j} \leq 1.$$

Based on the inequalities (C17) and (C18), we consider the case of $m + 1$ as

$$\sum_{l_1 + l_2 + \ldots + l_{m+1} = l_0} \prod_{j=1}^{m+1} \tilde{g}_{l_j} \leq \sum_{l_{m+1} = 1}^{\infty} \tilde{g}_{l_{m+1}} \sum_{l_1 + l_2 + \ldots + l_{m+1} = l_0 - l_{m+1}} \prod_{j=1}^{m} \tilde{g}_{l_j} \leq \eta_m \sum_{l_{m+1} = 1}^{\infty} \tilde{g}_{l_{m+1}} \max \left[(l_0 - l_{m+1})^{-\alpha}, 1 \right] \leq \eta_m \sum_{l_{m+1} = 1}^{\infty} \tilde{g}_{l_{m+1}} \leq \eta_m \sum_{l_1 = 1}^{l_0 - 1} \tilde{g}_{l_1} \leq \eta_m l_{0}^{-\alpha}.$$

\[\eta_m l_{0}^{-\alpha}, \quad (C19) \]
where the last inequality comes from the inequality (C3) with $R = l_0$. In order to upper-bound the first term, we decompose the summation as follows:

$$\sum_{l=1}^{l_0-1} \tilde{g}_l(l_0 - l)^{-\alpha} = \left(\sum_{l \in [1,l_1)} + \sum_{l \in [l_1,l_2)} + \sum_{l \in [l_2,l_3)} + \sum_{l \in [l_3,l_0)} \right) \tilde{g}_l(l_0 - l)^{-\alpha}, \quad (C20)$$

for $\alpha > 2$, where $l_1 = \lfloor l_0/\alpha \rfloor$, $l_2 = \lfloor l_0/2 \rfloor$, $l_3 = \lfloor l_0 - l_0/\alpha \rfloor$. For $\alpha \leq 2$, we decompose as

$$\sum_{l=1}^{l_0-1} \tilde{g}_l(l_0 - l)^{-\alpha} = \left(\sum_{l \in [1,l_1)} + \sum_{l \in [l_1,l_2)} \right) \tilde{g}_l(l_0 - l)^{-\alpha}. \quad (C21)$$

Next, for arbitrary choice of $[x,y)$ $(1 \leq x \leq y \leq l_0 - 1)$, we have

$$\sum_{l \in [x,y)} \tilde{g}_l(l_0 - l)^{-\alpha} \leq (l_0 - y + 1)^{-\alpha} \sum_{l \in [x,y)} \tilde{g}_l \leq (l_0 - y + 1)^{-\alpha} \sum_{l \geq x} \tilde{g}_l \leq (l_0 - y + 1)^{-\alpha} x^{-\alpha}, \quad (C22)$$

which reduces the inequality (C20) to

$$\sum_{l=1}^{l_0-1} \tilde{g}_l(l_0 - l)^{-\alpha} \leq (l_0 - \lfloor l_0/\alpha \rfloor + 1)^{-\alpha} + (l_0 - \lfloor l_0/2 \rfloor + 1)^{-\alpha} \lfloor l_0/\alpha \rfloor^{-\alpha}$$

$$+ 2(l_0 - \lfloor l_0/\alpha \rfloor)^{-\alpha} + 2(l_0/2)^{-\alpha} (l_0/\alpha)^{-\alpha} \leq 2l_0^{-\alpha} \left[\frac{1}{(1 - 1/\alpha)^\alpha} + \left(\frac{2\alpha}{l_0} \right)^\alpha \right] \leq 10l_0^{-\alpha} \quad (C23)$$

for $\alpha > 2$, where we use $1/(1 - 1/\alpha)^\alpha \leq 4$ for $x \geq 2$ and $l_0 \geq 2\alpha$ from the condition of the theorem. For $\alpha \leq 2$, we also obtain

$$\sum_{l=1}^{l_0-1} \tilde{g}_l(l_0 - l)^{-\alpha} \leq 2(l_0/2)^{-\alpha} \leq 8l_0^{-\alpha} \quad (C24)$$

from the decomposition (C21), where we use $2\alpha \leq 4$ for $\alpha \leq 2$.

By applying the inequalities (C23) and (C24) to the inequality (C19), we obtain

$$\sum_{l_1 + l_2 + \cdots + l_{m+1} \geq l_0} \prod_{j=1}^{m+1} \tilde{g}_{l_j} \leq 11\eta_{m} l_0^{-\alpha}, \quad (C25)$$

which gives rise to

$$\eta_{m+1} \leq 11\eta_{m}. \quad (C26)$$

This yields the inequality (C14). This completes the proof. \square