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Graph-Based Semi-Supervised Learning for Natural Language
Understanding
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Abstract

Semi-supervised learning is an efficient
method to augment training data automati-
cally from unlabeled data. Development of
many natural language understanding (NLU)
applications has a challenge where unlabeled
data is relatively abundant while labeled data
is rather limited.

In this work, we propose transductive graph-
based semi-supervised learning models as well
as their inductive variants for NLU. We evalu-
ate the approach’s applicability using publicly
available NLU data and models. In order to
find similar utterances and construct a graph,
we use a paraphrase detection model. Results
show that applying the inductive graph-based
semi-supervised learning can improve the er-
ror rate of the NLU model by 5%.

1 Introduction

Natural language understanding (NLU) technol-
ogy is an important component for a dialog sys-
tem and is commonly used in voice assistants (e.g.,
Amazon Alexa, Google Home, Siri). An NLU
system takes recognized speech input and pro-
duces intent, domain, and slots for the utterance to
support the user request (Tur and De Mori, 2011).
For example, for a user request “turn off the lights
in living room,” the NLU system might generate
domain Device, intent Light-Control, and slot val-
ues of “off” for OffTrigger and “living room” for
Location.

It is crucial for an NLU system to be able to add
further support and improve performance in an in-
cremental manner. An efficient method for this is
semi-supervised learning (SSL), especially when
only small amount of labeled data is available.
In contrast with supervised learning algorithms,
SSL algorithms can improve their performance by
leveraging information in unlabeled data. Some
recent results (Laine and Aila, 2017; Miyato et al.,

2019; Tarvainen and Valpola, 2017) have shown
that semi-supervised learning could reach perfor-
mance of purely supervised learning in certain sce-
narios.

Currently, most NLU models rely on the utter-
ance text and its annotation to learn domain, in-
tent, and slots of the utterance. However, this does
not scale to unlabeled data. In this work, we aim to
find and represent the relationship between labeled
and unlabeled data in a non-Euclidean space, a
graph, for SSL. We show that graph-based SSL
is a high-performant method which improves an
NLU model by leveraging unlabeled data.

In order to represent the labeled and unlabeled
data in a graph, we used a paraphrase detection
model. Nodes and edges in the graph represent
utterances and paraphrase relations respectively.
Given the constructed graph, a transductive graph
model was applied for node classification, which
in our case is intent classification (IC) for each
utterance. We used an NLU Slot Gated Model
(SGM) (Goo et al., 2018) to obtain slot labels. Ex-
periments on the SNIPS data set show that we can
achieve 5% error reduction on the slot error rate.

The rest of the paper is structured as follows:
Section 2 reviews work related to our approach.
Section 3 describes the graph-based SSL methods
we propose in this paper followed by a descrip-
tion of the paraphrase measures used to construct a
graph. Section 5 describes the experimental setup.
We share results and analysis in Section 6. Section
7 shows conclusions.

2 Related Work

Over the past few years, many deep learning ap-
proaches have been extended to NLU tasks—e.g.,
intent classification and slot filling (Liu and Lane,
2016). Manual annotation is costly. Thus, recent
work has turned to SSL in order to achieve similar
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performance with much less manually annotated
data compared to purely supervised learning.

Aliannejadi et al. (2017) applies graph-based
supervised learning of Conditional Random Fields
(CRF) for Spoken Language Understanding
(SLU) on unaligned data.

Lan et al. (2018) proposes an adversarial multi-
task learning method by merging a bidirectional
language model (BLM) and a slot tagging model
(STM). As a secondary objective, the BLM is used
to learn generalized and unsupervised knowledge
with abundant unlabeled data and improve the per-
formance of STM on unseen data samples.

Cho et al. (2019) generates paraphrases and
uses them to enhance the training set in a semi-
supervised learning setting for NLU. The aug-
mented data is used jointly for domain classifica-
tion, intent classification and slot filling.

The recent rise of neural networks has brought
significant advances in a large number of machine
learning tasks. While deep learning techniques
have achieved huge success, their performance on
non-Euclidean data is not as good as on Euclidean
data. The complexity of graph structures is a sig-
nificant challenge to most of existing deep learn-
ing algorithms and this complexity has drawn the
attention of community to extend deep learning al-
gorithms to graph data which in turn inspired var-
ious methods for Graph Neural Networks (GNN)
(Kipf and Welling, 2017; Velickovic et al., 2018;
Yang et al., 2018; Zhang et al., 2018a; Tran, 2018;
Xinyi and Chen, 2019).

GNNs can be applied in a supervised, semi-
supervised, or purely unsupervised manner for dif-
ferent tasks. For instance, graph convolutional
networks (GCN) (Kipf and Welling, 2017) could
be used in a semi-supervised way for node-level
classification (Kipf and Welling, 2017), in a su-
pervised way for graph-level classification (Zhang
et al., 2018b; Ying et al., 2018; Pan et al., 2016,
2017), and in an unsupervised way for graph em-
bedding (Hamilton et al., 2017; Kipf and Welling,
2016; Pan et al., 2018; Yang et al., 2018).

To the best of our knowledge, our work is the
first approach to apply a text-based graph struc-
ture for SSL for NLU. We evaluate our method on
a publicly available data set in order to show its
applicability.

3 Graph Methods

We propose two transductive graph models for
semi-supervised learning NLU tasks, Text Graph
Convolutional Network (TGCN) and Text Graph
Beam Search (TeGrabS), as well as their induc-
tive versions, Pseudo labeling with TGCN (PL-
TGCN) and Pseudo labeling with TeGrabS (PL-
TeGrabS).

3.1 Transductive Models
In a semi-supervised learning setting,
we have the following data sets, D =
{Xtrain,Xunlabeled,Xtest}. In inductive sce-
narios, labels of Xtest and Xunlabeled are unknown
to model, and the model sees Xunlabeled during
training but Xtest is unseen. In transductive
scenarios, the model sees Xtest and Xunlabeled at
training time.

In our task, transductive models learn para-
phrase patterns among utterances from a given
graph, then they are applied as auxiliary models
in the NLU model pseudo-labeling pipeline. By
doing this, we make the determination of input ut-
terances labels become a parametric function of
the features and thus obtain inductive variants of
transductive models.

3.1.1 TeGrabS
Similar to beam search, TeGrabS is a heuristic
method. For a starting node n, the algorithm keeps
track of k separate transitions; for each transition
at each time step, random sample a node from the
current node’s neighbors as the next node. The
sampling process can be regarded as a Markov
chain: the transition is represented by hop from
one node to another with the weight of the edge
between two nodes is the transition probabilities.

p(n′|n) =Wn,n′ (1)

where n′ is a candidate for next node, Wn,n′ is
weight of edge between n and n′. Probability of a
whole transition is modelled as equation below:

p(n0, n1, · · · , nm) =

m−1∏
i=0

Wi,i+1 (2)

If a transition does not have available next node
candidates (i.e., the current node does not have any
neighbors), this transition will be stopped and the
beam width is reduced by 1. The beam search
will be terminated when all transitions either meet
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Figure 1: TGCN model architecture.

Auxiliary
model

Unlablled	data

Lablled	data
Unlablled	data

predictions

NLU	model

training	set
X2

X4

X1

X3

Figure 2: Inductive semi-supervised learning pipeline.

the maximum number of hops limit or are stopped
due to the current node not having any neighbors.
Pseudocode of TeGrabS is shown as Algorithm 1
in the appendix.

3.1.2 TGCN
GCN has been commonly applied on graph data
in recent years (Kipf and Welling, 2017; Hamilton
et al., 2017; Zhang et al., 2018b; Ying et al., 2018;
Pan et al., 2016, 2017; Kipf and Welling, 2016;
Pan et al., 2018; Yang et al., 2018). However, to
the best of our knowledge, few researchers have
attempted to use it for text graphs.

Here we propose our GCN-based transduc-
tive text-graph semi-supervised learning mdoel,
TGCN. The model architecture is shown in Fig-
ure 1. The input is a text graph including nodes
{X1, X2, · · · , Xi} and edges where each node
represents a unique utterance. We use an embed-
ding layer followed by LSTM cells as a feature
extractor; Xij , Eij and Hij are token, word em-
bedding, and LSTM hidden state for j-th word in
i-th utterance, respectively.

Ei =
1

n

∑
w∈Xi

Ew (3)

where n is the length of utteranceXi. We compute
the average sum of each token’s hidden state in
utterance as the node feature.

Hi =
1

n

n∑
j=0

Hij (4)

Inspired by the original GCN architecture de-
sign (Kipf and Welling, 2017), the features are fed
into a two-layer graph convolution network. The
first graph convolution layer is followed by ReLU
units,

F (l+1) = σ(D̃−
1
2 ÃD̃−

1
2F (l)W (l)) (5)

where Ã = A + IN is the adjacency matrix of
the undirected graph with self-connections added,
IN is the identity matrix, D̃ii =

∑
j Ãij and W (l)

is a layer-specific trainable weight matrix. σ(·)
is an activation function, which is ReLU in our
case. F (l) is the matrix of activations in l-th layer,
F (0) = H .

And the output of second graph convolution
layer is passed through a softmax layer to get dis-
tribution over all classes per node.

Y = Softmax(F (2)) (6)

3.2 Inductive Models
Usage of transductive models is limited to cer-
tain test cases that have been seen by model dur-
ing training. For an NLU system to support user
queries, it is crucial to be able to generalize to un-
seen data. Thus, we use our proposed transduc-
tive models as an auxiliary model in an inductive
semi-supervised learning pipeline, which is shown
as Figure 2.

The input of pipeline is the combination of a
few labeled utterances Xtrain and a large amount
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of unlabeled data Xunlabeled as mentioned in pre-
vious section. We apply paraphrase detection
model on both Xtrain and Xunlabeled to find pair-
wise paraphrase relations between utterances. De-
tails of the paraphrase detection model is given in
Section 4.

For each utterance, we first find all its para-
phrases as adjacency lists. We then build graph
based on the adjacency lists. Transductive mod-
els (TeGrabS, TGCN, etc.) are applied as auxil-
iary model as shown in the graph, to predict labels
for unlabeled data Xunlabeled from both labeled
data and graph structure. Finally, predictions of
Xunlabeled are fed into NLU model training set to
re-train the NLU model and test on the unseen test
set.

Based on the transductive TeGrabS and
TGCN, here we propose their inductive variants,
named Pseudo-Labeling with Text-Graph Beam
Search (PL-TeGrabS) and Pseudo-Labeling
with TextGCN (PL-TGCN) where TeGrabS and
TGCN are used as auxiliary models in the afore-
mentioned inductive semi-supervised learning
pipeline, respectively.

4 Paraphrase Detection for Graph
Construction

In this work, we leveraged paraphrase learning to
find potential paraphrases in the data set and con-
struct a graph. In real-world applications, this
could be obtained from analyzing usage pattern,
such as repetition or rephrase of user requests. In
this work, we apply the paraphrase classification
model on the NLU utterances to retrieve the para-
phrase pairs within the data. We then construct the
graph where paraphrases are connected.

In this section, we explain how the paraphrase
model is trained as well as the construction of the
graph.

4.1 Paraphrase Embedding Learning

In order to obtain embedding for paraphrases, we
used a word averaging model. In this approach,
once a word embedding matrix is learned, we av-
erage them over a sequence:

g(x) =
1

n

n∑
i

W xi
w (7)

where Ww is a word embedding matrix. Parame-
ters are learned by minimizing an objective func-

tion with a margin, as described in Wieting et al.
(2016a).

For embedding learning, we used the PPDB-S
data set (Pavlick et al., 2015), which comprises 1.5
million paraphrase pairs.

4.2 Paraphrase Classification
Using the embeddings, we trained a model that
outputs a score as an indicative for the pair to be
paraphrases of each other. In the model, we used
the embedding approach described in Section 4.1
and obtain an embedding e for each utterance. For
a pair of utterances u1 and u2, we combine their
embeddings in the following way:

h = [eu1 , eu2 , |eu1 − eu2 |, eu1 × eu2 ] (8)

where we concatenate each utterance’s embed-
ding, element-wise difference and product be-
tween the two.

We then used a fully-connected network to out-
put the probability for two utterances being para-
phrases. We used two 100-dimension hidden lay-
ers with ReLU activation (Nair and Hinton, 2010)
for the task. Further details of the embedding
learning and classification model can be found in
anonymous.

To train the paraphrase classification model, we
used a back-translated paraphrase corpus (Wiet-
ing and Gimpel, 2017). For positive examples, we
randomly selected 1.4M paraphrase pairs from the
corpus. For negative examples, we randomly pair
up utterances within the corpus so that the utter-
ances in the pair are not paraphrases of each other.
In the end, we obtained 2.8M pairs of data, with
balanced positive and negative labels.

Using the method above leads to an F-score of
98.39 on a test set with balanced 20K pairs. Note
that the performance of classification model is ex-
pected to regress when applied on the target task
data, due to the domain mismatch between the
sizable, publicly available paraphrase corpus (Wi-
eting and Gimpel, 2017) and the NLU task data
(Coucke et al., 2018).

In this work, we consider paraphrase pairs
whose score returned by the model is higher than
a threshold θ = 0.99. Detailed statistics on the
constructed graph can be found in Section 6.

5 Experimental Setup

In this section, we discuss the experimental setup
used in this work. First, we describe the data sets
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Intent Utterances with slot labels
searchFlight find me a flight from [origin](Paris) to [destination](New York)
searchFlight I need a flight leaving [date](this weekend) to [destination](Berlin)
searchFlight show me flights to go to [destination](new york) leaving [date](this evening)

Table 1: Examples of the SNIPS Dataset.

No. Utterances
Train 1,310
SSL candidate (unlablled) 11,774
Dev 700
Test 700

Table 2: SNIPS data statistics.

used for training and evaluating the suggested SSL
approach. We also describe the NLU model used
in this work, followed by description on the com-
parative systems.

5.1 Data
To evaluate the proposed model, experiments were
performed on SNIPS dataset (Coucke et al., 2018),
which is collected from the SNIPS personal voice
assistant. This data comes with a pre-cut train,
dev, and test sets, which contain 13,084, 700 and
700 utterances respectively. There are 72 slot la-
bels and 7 intent types for the training set. Ex-
ample utterances from the SNIPS data is shown in
Table 1.

Designing a real-world application often faces
with a challenge where there is an abundant
amount of unlabeled data, but only a limited
amount of labeled data. In order to simulate this
scenario, we split the training data portion further,
so that only 10% of the labeled training data is
used for model training. The rest 90% of the la-
beled training data would be considered as candi-
dates for SSL. Thus, we did not rely on the anno-
tated labels in the SSL portion of the training data,
but consider this as an unlabeled data and try to
learn them from SSL process. Overall data statis-
tics is given in Table 2.

5.2 NLU System Description
The NLU model we used is a Slot-Gated attention-
based bidirectional long short-term memory
Model (SGM) (Goo et al., 2018). In our setting,
the full-attention setup was used, which achieves
the best performance in the paper. We used the
default hyper-parameters from the code base.

5.3 Comparative systems
In order to explore the effectiveness of the SSL ap-
proaches we discuss in this work, we rely on two
comparative systems. First system (“Baseline”)
is trained only on training data in Table 2, with-
out applying SSL. In the second system Pseudo
Labelling Baseline (“PL-Baseline”), we applied
SSL, more specifically, pseudo labelling, but with-
out leveraging the graph structure. For this sys-
tem, we first trained the Baseline then infer labels
for unlabeled data Xunlabeled with Baseline. Af-
ter giving Xunlabeled pseudo labels, we put it into
NLU model training set, along with Xtrain, to re-
train NLU model.

5.4 Evaluation
We report IC accuracy, F1 score, slot F1 and Slot
Error Rate (SER) as metrics to measure the perfor-
mance of the models.

SER is a metric used to combine intent classifi-
cation accuracy and the slot classification accuracy
in a single score. It is defined as:

SER =
S + I +D

S +D + C

where S is number of substitution errors for intents
or slots, I is the number of insertion errors for in-
tents or slots, D is the number of deletion errors
for intents or slots, and C is the number of correct
slots and intents.

6 Results

In this section, we first discuss the constructed
graph using paraphrase measures. We then report
the inductive SSL performance with graph meth-
ods as auxiliary models.

6.1 Constructed Graph
The paraphrase graph is built based on the train
and SSL candidate set as we discussed in previ-
ous sections. Figure 3 is a part of the constructed
graph, from which we can observe paraphrase pat-
terns among connected components. We have also
confirmed that neighbors in this excerpt share the
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What	is	the	weather	forecast	

tomorrow	in	french

What	s	the	weather	forecast	

for	seychelles

What	s	the	temperature	

today	in	griffin

What	s	the	weather	like	in	serbia

What	s	the	humidity	right	

now	in	aguila

Figure 3: Excerpt of constructed graph using SNIPS data. Graph is constructed to represent utterance similarity
using a paraphrase measure.

Model IC Acc. IC F1 Slot F1 SER

Baseline* 92.57 92.52 59.30 67.43
PL-Baseline 92.86 92.03 59.61 68.71
PL-TGCN 93.14 92.48 63.95 63.86
PL-TeGrabS 73.43 72.95 58.02 73.71

Table 3: Transductive results on SNIPS data. *Baseline for Snips dataset is Slot Gated Modeling (Goo et al., 2018).

same intent (GetWeather) as well as similar
slots.

The whole graph contains 12,895 nodes (which
indicates that there are duplicates in SNIPS
dataset), 52,876 edges when we set the paraphrase
threshold θ = 0.99.

6.2 Inductive Results

We evaluated baselines and our proposed models
on the SNIPS dataset. Intent classification and slot
filling experiment results are shown in Table 3.

We can observe that PL-TGCN outperformed
other models on intent classification accuracy.
However, this model is slightly defeated by base-
line on intent classification F1-score. Our anal-
ysis revealed that PL-TGCN tends to predict
more utterances into AddToPlaylist instead
of PlayMusic, compared to baseline. Since
AddToPlaylist is the biggest intent class in
test set (124/700), more predictions in this class
will certainly raise accuracy, but will do little harm
to F1-score, given that we are reporting F1-score
averaged from all classes. However, though Base-
line did good job in not assigning more false pos-
itives to AddToPlaylist, it is more likely to
assign utterances in AddToPlaylist to other
classes, which is actually not good. Therefore,
we can conclude that PL-TGCN achieved best per-

formance on intent classification in general. It
boosted the performance of slot filling through slot
gate in SGM, leading to a great reduction on SER.

7 Conclusion

In this work, we proposed transductive graph-
based semi-supervised learning models as well as
their inductive variants for NLU. In order to find
similar utterances and construct a graph, we use
a paraphrase detection model. To the best of our
knowledge, our work is the first approach to ap-
ply text based graph structure for an SSL of NLU.
We evaluate our method’s applicability on publicly
available data and model. Results show that ap-
plying the inductive graph-based semi-supervised
learning can reduce the error rate of the NLU
model by 5%.
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Algorithm 1 Graph Beam Search
Require: Relation graph G
Require: Labelled nodes Nlabelled

Require: Unlabelled nodes Nunlabelled

Require: Beam width k
1: for node n in Nunlabelled do
2: pt(ni, nj)←WeightEdgei,j

3: beams← ∅
4: bestBeams← ∅
5: pb(∅, 0)← 1
6: for t = 1 · · ·T do
7: if beams 6= ∅ then

8: bestBeams← argmaxk(beams,
log(pb(beam, t− 1))

lengthbeam
)

9: beams← ∅
10: for beam in bestBeams do
11: successors← labelled neighbors of currentNode
12: if successors = ∅ then
13: continue
14: for suc in argmaxk(successors, pt(currentNode, suc)) do
15: beam← beam ∪ successor
16: pb(beam, t)← pb(beam, t− 1) + pt(currentNode, suc)
17: if outDegree(suc) = 0 then
18: k ← k − 1

19: if all(lengthbeam = 0) or k = 0 then
20: break
21: bestBeam← argmax(bestBeams,

log(pb(beam, T ))
lengthbeam

)

22: domain← max{· · · }{n.domain for n in bestBeam}
23: intents← {n.intent for n in bestBeam}
24: for each intent in intents do
25: if intent does not belong to domain then intents \ intent
26: intent← max{· · · }intents


