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Abstract

Effectively assessing Al systems, particularly those
operating in specialized domains or producing dy-
namic outputs, requires translating nuanced human
expertise into scalable, quantitative measures. Tra-
ditional metrics often fall short in capturing quali-
tative requirements that domain experts intuitively
grasp. This paper presents a novel framework that
systematically transforms qualitative expert feed-
back into quantitative metrics for assessing the out-
put quality of Al systems. Our methodology lever-
ages Large Language Models (LLMs), first to help
articulate and formalize these metrics from expert
input, and subsequently as “judges” to apply them
in an automated fashion. As validation, we present
initial results from calibration against expert rat-
ings, demonstrating that automated assessments
align with human judgment and can evolve with
changing requirements. Learning content creation
serves as our illustrative specialized domain. Its re-
liance on learning design frameworks, coupled with
the need for nuanced expert evaluation of pedagogi-
cal quality, makes it an ideal test case for our frame-
work. Results confirm that our LLM-generated,
expert-calibrated metrics achieve promising align-
ment with expert evaluations, enabling robust, scal-
able, and adaptable assessment.

1 Introduction

A fundamental challenge in deploying sophisticated Al sys-
tems, especially in specialized domains, is bridging the gap
between expert conceptualizations of quality and measurable,
automated evaluation. Domain experts often possess an intu-
itive, rich understanding of what constitutes a “good” sys-
tem output or behavior, yet this understanding can be dif-
ficult to articulate in precise, quantitative terms suitable for
scalable Al assessment and iterative improvement. Exist-
ing methodologies for qualitative analysis, such as the man-
ual creation of validated “codebooks” and “coding schemes,”
demand significant expert effort and adherence to strict pro-
cesses [Kawulich, 2017; Skjott Linneberg and Korsgaard,
2019], even when partially automated [Sankaranarayanan

et al., 2025; Simon et al., 2025]. Furthermore, apply-
ing these schemes, even post-validation, remains an expert-
driven, non-scalable task, particularly problematic for rapidly
evolving Al systems or those producing dynamic outputs.

This paper introduces a systematic methodology to ad-
dress this challenge by transforming qualitative, often ill-
defined, quality requirements into quantitative metrics that
maintain strong fidelity to expert judgment. Our core con-
tribution is a framework leveraging Large Language Models
(LLMs) in two key stages: first, assisting in the generation
and formalization of assessment rubrics from patterns in ex-
pert feedback; and second, acting as “judges” to apply these
rubrics for automated evaluation, a concept that has gained
traction in various evaluation scenarios [Zheng et al., 2023;
Kocmi and Federmann, 2023].

To ensure genuine alignment and address divergence risks,
we present a rigorous expert calibration protocol where hu-
man experts validate and refine the LLM-driven assessment.
This iterative loop allows metrics and their application to
adapt, reflecting evolving expert understanding or system re-
quirements, akin to principles in learning from human prefer-
ences [Christiano et al., 2017].

We validate our approach in a generative Al system cre-
ating workplace learning content. In this domain, essential
qualities like “content alignment with learning objectives”
or “scenario authenticity,” while grounded in learning de-
sign frameworks such as Backwards Design [McTighe and
Thomas, 2003], ADDIE [Branch and Varank, 2009], and
SAM [Allen, 2012], are ultimately nuanced and context-
dependent. Our framework systematically quantifies these at-
tributes using expert feedback on generated content, bypass-
ing time-intensive qualitative coding. This enables scalable
assessment and offers a pathway for system improvement
analogous to reinforcement learning from human feedback
(RLHF) [Ouyang er al., 2022] when there is much less data
to draw from.

Overall, this work contributes to the broader need for as-
sessment paradigms that are not only efficient but rooted in
user (expert) values, vital as Al systems become more inte-
grated into complex, human-centric tasks.

1.1 Contributions

contributions  are: a  Qualitative-to-
Transformation Framework that sys-

Our primary
Quantitative



tematically leverages expert feedback to convert ill-defined
quality concepts into measurable metrics; an LLM-Powered
Metric Generation and Application approach where
LLMs help define evaluation criteria from qualitative input
and automate their application as an “LLM-as-a-Judge”; a
rigorous Expert Calibration Protocol for Alignment to
calibrate LLM-generated assessments against domain expert
judgment, ensuring sustained alignment and enabling metric
evolution; and an Empirical Validation in Learning Design
demonstrating the framework’s effectiveness in quantifying
pedagogical quality for a generative Al, showing measurable
improvements in human-Al assessment agreement.

2 Problem Formulation

2.1 The Qualitative-Quantitative Gap

Specialized domains feature quality standards that experts
recognize but struggle to formalize. This gap arises from
several factors: experts often rely on implicit knowledge de-
veloped through experience; quality judgments are frequently
context-dependent, varying with subtle factors; subjective cri-
teria can lead to multiple valid interpretations of quality; and
there’s an inherent articulation difficulty in converting tacit
knowledge into explicit, measurable rules.

2.2 Requirements for Quantification

To be effective, the quantification of qualitative metrics must
satisfy several requirements. Metrics must maintain fidelity,
capturing the essence of expert judgment. They need consis-
tency, producing reliable results across similar contexts. Scal-
ability is crucial, ensuring automated evaluation is computa-
tionally feasible. Scores must have interpretability for do-
main experts. Critically, metrics require adaptability, evolv-
ing as expert understanding and requirements change.

2.3 The Learning Design Challenge

Learning design exemplifies this qualitative-quantitative
challenge with concepts such as pedagogical soundness
(alignment with learning science), learner engagement, au-
thenticity (relevance to real-world contexts), clarity of com-
munication, and appropriate progressive complexity or scaf-
folding. While readily recognized by learning design experts,
these concepts resist direct, straightforward measurement.

3 Methodology

Our framework transforms qualitative requirements into
quantitative metrics through four key phases.

Phase 1: Qualitative Requirement Elicitation This initial
phase focuses on understanding and capturing expert no-
tions of quality. It involves structured expert interviews
to identify salient quality dimensions, a systematic feed-
back analysis of historical expert evaluations on similar
content or systems, and a prioritization step where iden-
tified quality dimensions are ranked by their importance
and perceived measurability.

Phase 2: Metric Generation and Formalization With
LLM assistance, qualitative insights from Phase 1
are translated into formal metrics. Each metric is

generated individually in four steps, where each step
corresponds to one LLM call. These steps include
creating an operational definition for each abstract
concept to describe observable behaviors, developing
a detailed scoring rubrics with graduated scales for
quality assessment, collecting exemplars of content that
represent different quality levels to anchor the rubrics,
and establishing validation criteria to define standards
for subsequent metric effectiveness. When generating
each metric, the LLM receives relevant expert feedback
and available background information about the Al
system as context. Example generated metrics are
provided in the Appendix.

Phase 3: Automated Implementation The formalized met-
rics are then implemented for automated assessment, us-
ing an LLM-as-a-Judge architecture where a language
model applies the scoring rubrics. This phase involves
careful prompt engineering to craft instructions that en-
able the LLM to replicate expert reasoning, implement-
ing consistency mechanisms (discussed later) to ensure
reliable evaluation across samples, and efficiency opti-
mization to balance assessment accuracy with computa-
tional cost.

Phase 4: Expert Calibration and Refinement This
human-in-the-loop phase ensures the automated
assessments align with expert judgment. It involves
parallel evaluation, where both automated systems
and human experts score a common set of samples.
An alignment analysis statistically assesses human-Al
agreement. Bias identification detects systematic
differences in evaluation patterns, and an iferative
refinement process adjusts metric definitions, rubrics, or
LLM prompts based on calibration results to improve
alignment.

3.1 LLM-assisted Metric Specification

Feedback Theme Extraction

The input in Phase 1 is a collection of expert feedback on Al-
generated content. This feedback can be provided at various
granularities: overall content, selected sections, sentences,
or even phrases. Experts are typically solicited to provide
the reason for their feedback, a critique, substantiation for
the critique, and, if applicable, a suggested rewrite. While
comprehensive feedback is beneficial, the system can work
with varying levels of detail, though richer, targeted feedback
tends to reduce the iterations needed for convergence. The
output from Phase 2 is a structured taxonomy of quality di-
mensions or themes that emerge from the feedback.

Metric Specification Generation

For each theme identified from expert feedback, the system,
with LLM assistance, generates a full metric specification.
This typically includes a concise Metric Name, a clear Defini-
tion of what the metric measures, detailed Evaluation Guide-
lines for assessment, a graduated Scoring Rubric with specific
criteria for each level, and Example Anchors using sample
content to illustrate different score levels.



Automated Application of Generated Metrics for
Evaluation: LL.M-as-a-Judge Architecture

The automated evaluation leverages an LLM (Claude Sonnet
4 in this case) to apply the defined metrics and rubrics. A
structured prompt guides the LLM. The conceptual Python
code below is aggressively formatted with very short lines
and reduced font size to fit a narrow two-column display:

def eval_content (
content_to_eval,
metric_definition_text,
rubric_details_text

# Build prompt for narrow display
# All strings are kept very short
prompt_lines = [

"EVALUATE THIS CONTENT:",

f"METRIC: {metric_definition_text}",
f"RUBRIC: {rubric_details_text}",
f"INPUT: {content_to_eval}",

"SCORE (1-5) AND PROVIDE",

"A DETAILED JUSTIFICATION."
]

prompt = "\n".join (prompt_lines)

Conceptual LLM interaction (pseudo):
response = llm_service.call (prompt)
score, analysis_text = parse(response)
return score, analysis_text

H o =

# Example placeholder return:
return 0, "Output not generated"

(Actual LLM call and response parsing are omitted for
brevity in this example.)

Consistency Mechanisms

To ensure reliability in the LLM’s evaluations, several con-
sistency mechanisms are employed. These include averaging
scores from multiple evaluation runs, using temperature con-
trol (e.g., lower temperature settings) to reduce randomness
in LLM outputs, adhering to strict prompt standardization for
consistent instruction formatting, and incorporating calibra-
tion anchors (reference examples) within evaluation prompts
to guide the LLM.

Dynamic Metric Evolution

The framework is designed for metrics to adapt over time.
This evolution is facilitated through Feedback Integration,
where new expert input continually refines existing metrics;
Performance Monitoring, which tracks metric effectiveness
in predicting expert satisfaction or specific outcomes; Con-
cept Drift Detection to identify shifts in expert preferences or
understanding of quality; and Automatic Rebalancing, which
can adjust metric weights or components based on observed
usage patterns or changing importance. Together, this consti-
tutes the last phase: Phase 4 of the methodology.

3.2 Expert Calibration Protocol

In Phase 4, the expert calibration protocol ensures ongoing
alignment between automated scores and human expert judg-
ment.

Algorithm 1 Calibration Feedback Loop Algorithm.

1: while alignment < predefined_threshold do

2:  Identify discrepancy patterns between LLM and expert

scores.

3:  Analyze expert reasoning for these disagreements.
Refine metric definitions, rubrics, or exemplars.
Update automated evaluation prompts for LLM-as-a-
Judge.

Re-evaluate a calibration sample set.
Measure new alignment scores.
end while

oo

A

Calibration Study Design

The design of calibration studies incorporates several ele-
ments to ensure rigor: Sample Selection involves stratified
sampling of content across various quality levels and types
to ensure diverse coverage. A user-friendly Evaluation Inter-
face (prototype created in Python Dash) is provided for expert
assessment. Blind Evaluation is employed, where experts
are unaware of automated scores during their assessment to
prevent bias. The involvement of Multiple Raters allows for
inter-rater reliability analysis among expert evaluators, help-
ing to establish a human expert baseline.

Alignment Measurement

Human-Al agreement is quantified using various statisti-
cal measures. These include Pearson Correlation to as-
sess the linear relationship between human and automated
scores, Spearman Rank Correlation for monotonic relation-
ship preservation, Cohen’s Kappa to measure agreement
while accounting for chance, and Mean Absolute Error to de-
termine the average magnitude of score differences.

Calibration Feedback Loop

The calibration process is iterative, following a loop aimed
at improving alignment until a satisfactory threshold is met,
as depicted in Algorithm 1. Note that this threshold must be
computed taking the variance of expert scores into account;
low variance among experts necessitates stronger alignment
than does high variance.

4 Case Study: Learning Design

Our approach is demonstrated through a generative Al sys-
tem designed to create workplace learning content at Ama-
zon. This domain was chosen due to the inherent subjectivity
and complexity of evaluating pedagogical quality.

4.1 Domain-Specific Quality Dimensions

Through expert interviews with learning designers and anal-
ysis of their feedback on Al-generated content, our system
identified key qualitative dimensions. Pedagogical dimen-
sions included Learning Outcome Alignment (content sup-
porting stated objectives), Cognitive Load Management (ap-
propriate information density), Knowledge Transfer (facili-
tating application to new contexts), and Scaffolding Quality
(progressive skill building). Content quality dimensions in-
cluded Scenario Authenticity (realistic workplace situations),



Action Specificity (concrete, implementable guidance), Self-
Containment (complete explanations without external depen-
dencies), and Engagement Factors (elements that maintain
learner interest). These dimensions formed the basis for met-
ric development.

4.2 Quantification Process

For each identified qualitative dimension, we developed a de-
tailed quantitative metric by supplying the aforementioned in-
puts to the Claude Sonnet 4 model with conservative sam-
pling parameters (temperature = 0.1, top-k = 250) to en-
sure consistent outputs while maintaining sufficient flexibility
to capture nuanced expert feedback patterns. This involved
defining the metric, creating evaluation guidelines, and estab-
lishing a scoring rubric with illustrative examples. Below are
summarized examples for two such metrics.

Learning Outcome Alignment Example

The qualitative concept for this metric is that “Content should
clearly support the learning objectives.” The metric evaluates
how effectively learning content aligns stated learning objec-
tives with the actual cognitive processes required by the con-
tent and assessments, often using a framework like Bloom’s
Taxonomy. It ensures that if higher-order thinking is claimed,
the content indeed provides opportunities for such engage-
ment. The full metric description, guidelines, and scoring
rubric are provided in Appendix A.

Scenario Authenticity Quantification Example

The qualitative concept here is that “Scenarios should feel re-
alistic and relevant.” This metric assesses how well learning
scenarios reflect genuine workplace situations while appro-
priately balancing realism with pedagogical needs, such as
by anonymizing confidential elements while maintaining au-
thentic processes. The full metric description, guidelines, and
scoring rubric are provided in Appendix B.

5 Evaluation and Results

This section presents the setup and findings from our ini-
tial expert calibration process, designed to validate the align-
ment of the LLM-generated metrics with human expert as-
sessments.

5.1 Calibration Setup and Initial Findings

For the initial calibration study, we used a set of 13 distinct
content samples, representing different topics and expected
quality levels within the learning design domain. These sam-
ples were evaluated by a panel of learning design experts, re-
sulting in 60 unique expert ratings across the samples for key
metrics. The same samples were also evaluated using our
LILM-as-a-Judge system with the initially generated metrics.

Quantitative analysis of alignment between expert scores
and LLM scores yielded the following initial results: Pearson
Correlation was 0.3089 (p = 0.0163), and Spearman Rank
Correlation was 0.3731 (p = 0.0033). The Intraclass Cor-
relation Coefficient (ICC) indicated a high degree of consis-
tency for certain metrics when looking at patterns, with one
variant reaching 0.9376. The Mean Absolute Error (MAE)
was 0.3972 on a normalized scale, and the Root Mean Square
Error (RMSE) was 0.4864.

5.2 Qualitative Observations

The main qualitative takeaway from this initial calibration
phase was that, directionally, the experts and the LLM agreed
on the quality of content. However, a tendency was observed
for the LLM to provide slightly higher scores on average
compared to the human experts. These initial findings, both
quantitative and qualitative, serve as the baseline for the itera-
tive refinement process described in Section 3.2 (Calibration
Feedback Loop), guiding adjustments to metric definitions,
rubrics, and LLM prompts to improve alignment. Further it-
erations of this loop are expected to enhance these correlation
figures and reduce error margins, as suggested by improve-
ments typically seen in such calibration processes [Ouyang et
al., 2022].

6 Discussion

6.1 Implications of Expert-Driven, LLM-Powered
Assessment

Bridging Subjective Expertise and Objective
Measurement

Our framework, centered on transforming expert feedback
into LLM-generated and calibrated metrics, demonstrates
that qualitative domain expertise can be systematically quan-
tified. This offers a path to scalable application of expert
knowledge by codifying tacit expertise for consistent, auto-
mated assessment. It also leads to transparent and evolv-
able criteria, making implicit quality standards explicit and
allowing them to adapt through ongoing expert calibration.
Furthermore, it enables data-driven system improvement, al-
lowing for the refinement of Al systems based on metrics
grounded in human expertise.

A Collaborative Model for Human-AI Assessment

The calibration process fosters a collaborative dynamic where
human insight guides Al judgment; experts define and re-
fine “quality,” which LLMs then apply at scale. This builds
trust in automated evaluation through transparent alignment
metrics and iterative refinement. The assessment system it-
self can learn and improve via expert interaction, making it
suitable for evaluating evolving Al systems. This human-Al
collaboration mirrors principles from interpretable machine
learning, where understanding model behavior is key [Doshi-
Velez and Kim, 2017].

6.2 Methodological Contributions

The primary methodological contributions are the LLM-
assisted metric generation from expert feedback and the rig-
orous calibration for sustained alignment. Using LLMs to
help draft metric specifications from qualitative feedback ac-
celerates a traditionally labor-intensive process and aids in
capturing nuances. The systematic expert calibration protocol
provides a robust mechanism to ensure the LLM-as-a-Judge’s
evaluations remain faithful to human expert judgment over
time, crucial for maintaining assessment validity as systems
or expert understanding evolves.



6.3 Challenges and Limitations

Several challenges and limitations are inherent in this ap-
proach. First, regarding the boundaries of quantification, not
all qualitative nuances, especially those requiring deep sit-
uational knowledge not easily captured in rubrics, may be
fully measurable. Second, there’s a risk of bias amplifica-
tion, where biases present in initial expert feedback could be
encoded into the metrics if not carefully managed during elic-
itation and subsequent calibration phases. This is mainly mit-
igated by broadening the group of experts we gather feedback
from as a part of the initial input. Third, the LLM reliability as
Jjudges is contingent on prompt quality, rubric clarity, and the
evolving capabilities of the LLMs themselves, necessitating
ongoing monitoring and potential re-calibration. A related is-
sue is one of entirely novel Al outputs not foreseen during
initial metric design.

We discuss some ways to address these challenges in the
next section.

7 Future Work

To address model drift and related issues with the reliability
of LLMs as judges, we expect to use multiple LLMs and a
voting/concordance procedure for updates to the metrics and
their definitions. This reduces the likelihood of idiosyncrasies
with a single model leading to large changes in the metrics
and their definitions.

While we face a small data issue, we expect to kick-
off model fine-tuning runs when sufficient feedback items
have been collected. Our use-case is closest to instruction-
following and prior work shows improved fine-tuning perfor-
mance with approximately 1000 carefully crafted examples
[Zhou et al., 2023; Dong et al., 2023].

Likewise, a granular evaluation of the framework, assess-
ing the LLM’s ability to extract qualitative requirements, the
quality of metric conversion, and the fidelity of rubric appli-
cation will reveal areas for further development that offer the
highest impact. Tracing quantitative gains across multiple it-
erations will further strengthen the analysis and guide future
enhancements to the framework. Specifically with respect to
the metrics, we aim to explore methods for LLMs to auto-
matically identify areas where current metrics are insufficient
or expert disagreement is high, thereby prompting targeted
calibration or soliciting additional expert feedback.

To streamline expert calibration, developing active learning
techniques to select the most informative samples for expert
review could reduce expert workload further. Additionally,
exploring few-shot or zero-shot calibration methods, where
LLMs can better generalize from minimal expert input once
robust initial metrics are established, is a promising direction.
From the user-alignment standpoint, the key is to demonstrate
consistent scoring by the LLM-as-a-judge and little drift in
several iterations before we can gain the trust of experts to let
the system independently work end-to-end without the hu-
man experts in the loop. Once that is unlocked, however, we
can run automated prompt engineering cycles to update the
content generation prompt to score highly on the metrics. As-
suming the metrics suite is comprehensive, the content should
not overfit to the metric and their definitions.

Finally, systematically applying and evaluating this frame-
work (expert feedback — LLM-generated metrics — LLM-
judge — expert calibration) across diverse domains beyond
learning design, such as healthcare (clinical decision quality),
legal (document compliance), and creative industries (artistic
assessment), will be crucial for establishing its generalizabil-

1ty.

8 Conclusion

This paper presented a comprehensive framework for trans-
forming qualitative expert insights into quantitative, scalable
metrics for Al system assessment. Our core methodology
emphasizes the synergistic use of domain expert feedback to
guide LLM-assisted generation of evaluation criteria, the ap-
plication of these criteria by LLMs acting as judges, and a
continuous expert calibration loop to ensure enduring align-
ment. The initial application of this framework to a learn-
ing design use case, achieving promising directional correla-
tion with expert judgment, validates our approach and sets the
stage for further refinement.

The ability to systematically translate human expertise into
reliable, automated assessment mechanisms that can adapt
over time is increasingly important. Our work provides a
practical pathway to achieve this, offering a robust method for
user-aligned assessment relevant for complex Al systems, in-
cluding those that are adaptive or LLM-based. This approach
contributes to building more trustworthy Al systems by ensur-
ing their evaluation is grounded in the nuanced understanding
of human experts.
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A Detailed Metric: Learning Outcome
Alignment

Qualitative Concept: “Content should clearly support the
learning objectives.”

Description: This metric evaluates how effectively learning
content maintains alignment between stated learning ob-
jectives and the actual cognitive processes required by
the content and assessments, using Bloom’s Taxonomy
as the foundational framework. The metric specifically
focuses on whether the cognitive level specified in learn-
ing objectives (e.g., “analyze,” “evaluate,” “create”) is

matched by the cognitive demands of both instructional

content and assessment items. At its core, this metric
examines cognitive process alignment across three key
components:

1. The stated learning objective’s cognitive level (e.g.,
“analyze trade-offs between options”)

2. The cognitive processes required by instructional
content and activities



Evaluation Guidelines:

3. The cognitive level at which assessments test learn-
ing

For example, if a learning objective states learners will
“analyze trade-offs,” but the content only presents de-
scriptions and the assessment only tests recall, this rep-
resents misalignment. The metric identifies such gaps
between intended and actual cognitive processing lev-
els. This metric is particularly crucial for adaptive learn-
ing systems where content generation must maintain
consistent cognitive alignment across variations. It en-
sures that when an Al generates content claiming to de-
velop higher-order thinking skills (analysis, evaluation,
creation), it actually provides opportunities for learners
to engage in those cognitive processes rather than de-
faulting to lower-level activities (remembering, under-
standing). This alignment is essential for learning ef-
fectiveness. The metric focuses solely on cognitive pro-
cess alignment and does not attempt to evaluate knowl-
edge dimensions, content progression, or general in-
structional quality, as these are covered by other met-
rics. Its specific purpose is to ensure that what learners
are asked to do mentally matches what the learning ob-
jectives claim they will learn to do.

Quantified Metric Definition: Degree to which content el-

ements directly address stated learning outcomes by
aligning required cognitive processes with those speci-
fied in the objectives, based on Bloom’s Taxonomy.

Scoring Scale (Example): 1-5 point scale.

e 5: All content directly supports objectives with
clear, demonstrable cognitive alignment at the
specified Bloom’s level across objectives, content,
and assessments.

* 4: Most content supports objectives with strong
cognitive alignment; minor elements may be
slightly off-level but do not detract significantly.

* 3: Content generally supports objectives, but there
are noticeable inconsistencies in cognitive align-
ment in some areas; some activities or assessments
may operate at a lower level than specified.

e 2: Content partially supports objectives, with sig-
nificant sections showing cognitive misalignment;
higher-order objectives are often addressed with
lower-order content/assessment.

e 1: Content fails to address stated objectives in
terms of cognitive alignment; fundamental mis-
match between claimed cognitive level and actual
demands.

1. Each learning objective must
explicitly state a Bloom’s Taxonomy cognitive pro-
cess level.

2. Instructional content must require learners to en-
gage in cognitive processes at the same level speci-
fied in the learning objective.

3. Assessment items must test learners at the cognitive
process level stated in the learning objective.

10.

Scoring Rubric:

. If a learning objective specifies higher-order think-

ing (analyze, evaluate, create), the content must
provide explicit opportunities for learners to prac-
tice these complex cognitive processes.

. Learning activities must match the cognitive level

of the learning objective through appropriate task
design.

. Examples and scenarios must engage learners at the

stated cognitive process level.

. Content variations and adaptations must maintain

consistent cognitive process alignment with the
original learning objective.

. When multiple cognitive processes are present in a

learning objective, the content must address each
process level explicitly.

. Feedback and remediation must operate at the same

cognitive process level as the learning objective.

The cognitive process level should remain consis-
tent across all components (objectives, content, ac-
tivities, assessments) unless there is an explicit in-
structional reason for variation.

* Comprehensive Alignment (Corre-
sponds to original score 3): Content demonstrates
comprehensive cognitive alignment across all com-
ponents. Learning objectives specify clear Bloom’s
levels, instructional content requires matching cog-
nitive processes, and assessments test at the stated
levels. All activities and examples engage learn-
ers at the intended cognitive level, with consistent
alignment maintained across variations.

General Alignment (Corresponds to original score
2): Content shows general cognitive alignment
with occasional minor mismatches. Most compo-
nents operate at the stated Bloom’s level, but some
activities or assessments may default to slightly
lower cognitive processes than specified in objec-
tives. Core alignment is maintained but with room
for improvement.

Significant Misalignment (Corresponds to original
score 1): Content exhibits significant cognitive
misalignment in multiple areas. While learning ob-
jectives may specify higher-order thinking, many
content elements and assessments operate at lower
cognitive levels. Some alignment exists but fails to
consistently engage learners at intended cognitive
levels.

Fundamental Misalignment (Corresponds to origi-
nal score 0): Content shows fundamental cognitive
misalignment throughout. Learning objectives lack
clear Bloom’s levels, content operates at basic re-
call regardless of stated objectives, and assessments
fail to test at appropriate cognitive levels. No con-
sistent alignment between intended and actual cog-
nitive processes.



Evaluation Guidelines:

B Detailed Metric: Scenario Authenticity 5. Evaluate whether technical and process details
Qualitative Concept: “Scenarios should feel realistic and align W_lth_ current practices, with appropriate
relevant.”’ anonymization.
Description: This metric evaluates how well learning sce- 6. ;flrllafgi/oslfserﬁrlg)nczall:gggzgﬂ;c;tl égerlilslil;le t;gzll?se;z
narios reflect genuine work situations (e.g., within a spe- . Pprop ’ g
. . C . . constraints.
cific company like Amazon, as per the original detailed ) )
context) while appropriately balancing realism with ped- 7. Ensure scenario resolutions demonstrate authen-
agogical needs. This metric focuses specifically on te approaches while maintaining pedagogical scaf-
the authenticity of workplace scenarios used in learning folding.
content, recognizing that scenarios may use anonymized 8. Check that cross-team dependencies and partner-
or fictionalized elements (like project names) while ships reflect actual working relationships and col-
maintaining authentic company processes, roles, and or- laboration mechanisms.
ganizational dynamics. The metric evaluates scenarios 9. Assess whether scenario progression across sec-
across a progression of complexity — from simplified in- tions builds understanding while maintaining con-
troductory scenarios that may use “magic wand” solu- sistent context.
tions to teach basic concepts, to more nuanced scenar- . . .
10. Verify customer impacts and business outcomes re-

ios that reflect the full complexity of the working en-
vironment. This progression should match the learn-
ing objectives and the learner’s developing understand-
ing. A key aspect is the appropriate use of the orga-
nizational context. While scenarios may use fictional
characters or project names, they must accurately rep-
resent how work gets done — including the use of spe-
cific mechanisms or practices (e.g., "working backwards
documents” in an Amazon context). The metric specifi-
cally evaluates whether scenarios demonstrate authentic
problem-solving approaches, even when teaching about
poor practices or common mistakes as learning mo-
ments. This metric is distinct from factual grounded-
ness, source coverage, or writing style. Instead, sce-
nario authenticity focuses specifically on how well the
learning scenarios serve as authentic vehicles for teach-
ing specific ways of working, while maintaining appro-
priate pedagogical scaffolding.

Quantified Metric (example, weights can be adjusted):

Workplace Realism (40% weight): Accuracy of
organizational context, roles, interactions, and
cultural elements.

* Process & Technical Precision (30% weight): Cor-
rectness of domain-specific processes, tools, and
technical details, appropriately anonymized.

* Situational Plausibility & Pedagogical Appropri-
ateness (30% weight): Likelihood of scenario oc-
currence and its suitability for the learning objec-
tives and learner progression.

1. Verify scenarios use appropri-
ate organizational mechanisms, documents, and
practices, allowing for fictionalized elements to
protect confidentiality.

2. Assess whether the scenario’s complexity level
matches learning objectives and learner progres-
sion.

3. Confirm scenarios demonstrate authentic problem-

Scoring Rubric:

flect actual scale and scope, protecting confidential
information.

e High Authenticity (Corresponds to
original score 3): Scenario demonstrates authentic
organizational practices while appropriately scaf-
folding learning progression. Uses accurate mech-
anisms and organizational dynamics with appropri-
ate fictionalization. Complexity increases logically
across sections while maintaining consistent con-
text. Cross-team interactions and problem-solving
approaches reflect genuine practices at the right
level for learning objectives.

Good Authenticity (Corresponds to original score
2): Scenario uses appropriate organizational termi-
nology and practices with proper fictionalization,
but shows minor issues in progression or organiza-
tional dynamics. May oversimplify some depen-
dencies or compress timelines unrealistically for
later-stage learning. Core context remains accurate
but some nuances are imprecise.

* Basic Authenticity (Corresponds to original score

1): Scenario maintains basic organizational termi-
nology and context but lacks appropriate progres-
sion of complexity. May use overly simplified so-
lutions in advanced sections. Organizational dy-
namics may be oversimplified beyond pedagogical
necessity. Cross-team interactions may not reflect
actual mechanisms.

e Lacks Authenticity (Corresponds to original score

0): Scenario fails to use appropriate organizational
practices or shows fundamental misunderstanding
of ways of working. May expose sensitive informa-
tion or fail to properly fictionalize details. Learning
progression is absent or inappropriate. Dynamics
and problem-solving are unrealistic.
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