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Abstract

Video restoration (VR) aims to recover high-quality videos
from degraded ones. Although recent zero-shot VR methods
using pre-trained diffusion models (DMs) show good promise,
they suffer from approximation errors during reverse diffusion
and insufficient temporal consistency. Moreover, dealing with
3D video data, VR is inherently computationally intensive. In
this paper, we advocate viewing the reverse process in DMs as
a function and present a novel Maximum a Posterior (MAP)
framework that directly parameterizes video frames in the
seed space of DMs, eliminating approximation errors. We also
introduce strategies to promote bilevel temporal consistency:
semantic consistency by leveraging clustering structures in the
seed space, and pixel-level consistency by progressive warping
with optical flow refinements. Extensive experiments on mul-
tiple virtual reality tasks demonstrate superior visual quality
and temporal consistency achieved by our method compared
to the state-of-the-art. Our project webpage with sample code
is at: https://sun-umn.github.io/Temporal-Consistent- Video-
Restoration/.

1 Introduction

Video restoration (VR) aims to recover high-quality (HQ)
videos X from given low-quality (LQ) observations Y =~
A(X), where A represents a spatial and/or temporal degra-
dation. Typical VR tasks include super-resolution (Zhou et al.
2024; Chan et al. 2022; Wang et al. 2024-12-01; Liang et al.
2024), inpainting (Zhou et al. 2023; Lugmayr et al. 2022;
Xu et al. 2019), and deblurring (Zhong et al. 2020; Nah
et al. 2019). Modern VR methods rely on deep learning and
fall into two main categories. (1) The supervised learning
approach trains deep neural networks (DNNs) on LQ-HQ
paired data, i.e., {(Y;, X;)}X,, to learn direct mappings
from Y to X. Although conceptually simple, these methods
require large-scale, high-quality paired datasets and signifi-
cant computational resources (e.g. 32 A100-80G GPUs for
super-resolution (Zhou et al. 2024)). Moreover, they need
to train new DNNs for different VR tasks, with limited task
adaptability; (2) The zero-shot paradigm enabled by pre-
trained deep generative models, especially diffusion models
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(DMs) (Ho, Jain, and Abbeel 2020; Song, Meng, and Ermon
2020-10-02). Due to the lack of mature video DMs, recent re-
search (Yeh et al. 2024-10-04; Cao et al. 2024; Kwon and Ye
2024-10-04,b) has adopted pre-trained image DMs for VR,
achieving remarkable results without task-specific retraining.

Most zero-shot DM-based VR methods (Kwon and Ye
2024-10-04; Cao et al. 2024; Kwon and Ye 2024b; Yeh et al.
2024-10-04) interleave reverse diffusion steps with iterative
gradient updates or projections to approach the feasible set
{X | Y = A(X)}. However, these methods usually face
three fundamental challenges. First, they suffer from un-
avoidable approximation errors (Challenge 1) when ap-
proximating an intractable likelihood (Chung et al. 2022-09-
29), regardless of whether they employ gradient updates or
projections. These errors accumulate throughout the reverse
diffusion process, potentially degrading the reconstruction
quality. Second, these zero-shot methods often struggle for
satisfactory temporal consistency (Challenge 2) due to the
difficulty in extracting accurate motion information from
LQ measurements and the absence of explicit motion priors
in the image DMs they leverage. Third, compared to im-
age restoration, VR entails significantly more computation
and memory footprints (Challenge 3), creating substan-
tial efficiency barriers that must be addressed for practical
applications.

In this paper, we focus on solving VR problems using
pre-trained image DMs, while addressing the three funda-
mental challenges faced by state-of-the-art (SOTA) methods.
We specifically choose latent diffusion models (LDMs) as
our backbone DMs due to their superior generation quality,
computational efficiency, and widespread adoption. (Tack-
ling Challenge 1) Our method builds upon the classical Max-
imum a Posterior (MAP) framework (Ulyanov, Vedaldi, and
Lempitsky 2018; Pan et al. 2022-11; Zhuang et al. 2024-02-
01; Li et al. 2023a,b; Wang et al. 2024):

min (Y, A(X))+x QX) . (1)
X — ——

data consistency regularization

We take a novel perspective that views the entire reverse
diffusion process as a function R which, when composed
with the pre-trained decoder D in LDMs, maps from the
seed space directly to the image manifold M. This allows
us to naturally reparameterize the video frame-by-frame as
X =[DoR(z1),...,DoR(zn)]; plugging this into Eq. (1)
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Figure 1: Visualization results by our method: (a) Super-resolution x4; (b) Inpainting with 50% random pixel masking; (c)
Temporal deconvolution using uniform PSF with kernel width k£ = 7; and (d) Temporal deconvolution with motion deblurring.

leads to a unified optimization formulation with respect
to the seeds Z = [z, ..., zy]. This reparametrization ap-
proach effectively leverages the powerful LDM priors for VR
while avoiding the approximation errors inherent in SOTA
methods. To address Challenge 2, we design a hierarchi-
cal framework to promote bilevel temporal consistency. For
semantic-level temporal consistency, we first explore the
seed space and observe an intriguing clustering phenomenon:
input seeds of frames from different videos are scattered,
while those of frames within the same video are clustered.
Motivated by this, we construct a noise prior by hypothe-
sizing that consecutive frames share a common seed with
only minor frame-specific variations. To enhance pixel-level
temporal consistency, we implement a progressive warping
mechanism that combines image warping with incremental
optical flow (OF) refinements. Our ablation study in Table 7
underscores the effectiveness of both components in enhanc-
ing bilevel temporal consistency. To deal with Challenge 3,
we introduce an efficient diffusion sampling strategy using
the DDIM sampler. Notably, our ablation study (Section 3.3)
reveals that 4 reverse steps in R are sufficient to achieve
the SOTA performance. Moreover, by leveraging the mul-
tivariate mean value theorem, we significantly reduce the
computational complexity of the proposed method. To fur-
ther boost efficiency, we make the trainable residuals for each
frame more lightweight through low-rank approximations.

Our contributions can be summarized as follows:

* We propose a MAP-based framework for VR that har-
nesses pre-trained image DMs by reparameterizing frames
via the entire reverse diffusion process, eliminating the
approximation errors that have plagued SOTA methods.

* We devise a compelling hierarchical approach for bilevel
temporal consistency that unites semantic-level coherence
(through our key discovery of clustering patterns in the
seed space) with pixel-level precision (via dynamic pro-
gressive warping with optical flow refinements).

* We design our method with exceptional computational
efficiency through three innovations: an optimized DDIM
sampling strategy that requires only 4 steps, an approx-
imate reformulation using the multivariate mean value
theorem, and memory-efficient trainable residuals with
low-rank approximations.

* Our comprehensive experiments on challenging VR tasks
demonstrate that our method leads to substantial perfor-
mance improvements over SOTA methods, providing ex-
ceptional visual quality and temporal consistency.

2 Background and related work

Diffusion models (DMs) Recently, DMs have dominated
generative models, capable of producing high-quality ob-
jects. The early denoising diffusion probabilistic model
(DDPM) (Ho, Jain, and Abbeel 2020) involves two processes:



a forward diffusion process that transforms any clean data
sample Tg ~ Pya into pure noise zr ~ N (0, I) by sequen-
tial noise injection, governed by the stochastic differential
equation (SDE): dx = —f3;/2 - xdt + /B;dw, where j3;
represents the noise schedule, and w denotes the standard
Wiener process; a reverse diffusion process that performs se-
quential denoising, turning any seed noise into a useful data
sample—hence responsible for data generation, and follows:

dx = —B [x/2 + Vg logpy(x)] dt + /Bdw,  (2)

where w is the time-reversed Brownian motion, and the term
Vz log p:(x), known as the score function, represents the
gradient of the log-likelihood. To train an DM, this score func-
tion is approximated using a DNN, sf;) (z), trained via score
matching techniques (Hyvérinen 2005; Song and Ermon
2019). In practice, the diffusion process is discretized in 7'
time steps, using a predefined variance schedule 531, . .., Sr.
Defining oy = 1 — 3¢ with o — 0 and &y = szl o, the
forward steps are written as: ©; = /1 — Bixi_1 + Bz,
where z ~ N(0,I). The reverse steps run as ;1 =

1/\/oq - (a:t - ﬂteét)(:ct)/\/l — dt) + /B z; this iterative
sampling process usually requires a large number of steps to
achieve high-quality generation, leading to slow inference. To
address this slowness, the denoising diffusion implicit model
(DDIM) (Song, Meng, and Ermon 2020-10-02) introduces a
non-Markovian relaxation of the forward process, allowing
each step x; to depend not only on x;_; but also directly on
xo. This relaxation enables sampling with fewer steps while
maintaining generation quality. The reverse step in DDIM is

Ti—1 =/ a1ZTo(Te) +
where Zo(x;) = (@ —+/1 — @tsg)(a:t))/\/dt estimates the

clean image x( from x;.

Despite DDIM’s speedup, training diffusion models in
high-resolution pixel spaces remains computationally expen-
sive. Latent diffusion models (LDMs) (Rombach et al. 2022)
overcome this by performing both training and inference
in low-dimensional latent spaces, wrapped into pre-trained
encoder-decoder models. The LDM framework has become
dominant in SOTA visual generative models (Rombach et al.
2022; Podell et al. 2023-10-13; Peebles and Xie 2023).

1- O7t—1€g)($t)7 3)

DMs for video restoration Approaches to VR using DMs
can be categorized into two main classes: supervised (Daras
et al. 2024; Zhou et al. 2024) and zero-shot (Kwon and Ye
2024-10-04,b; Cao et al. 2024; Yeh et al. 2024-10-04). Su-
pervised methods train DM-based models on paired data
or correlated noise, which is outside our focus. Zero-shot
methods largely inherit ideas from zero-shot image restora-
tion with pre-trained DMs and most of them focus on di-
rectly modeling the conditional distribution p;(x|y) and
substitute the unconditional score function V4, log p:(x) in
Eq. (2) with the conditional score function V4 log p;(x|y) =
Vg logpi(x) + Vg log p(y|x), ie.,

de = —f [x/2 + (Valogpi(x) + Vg log py(ylx))] dt
+VBidw. (4

Here, while V, logp:(x) can be approximated using the

pre-trained score function sg) (), the term V log p:(y|x)
remains intractable because y does not depend directly on
x(t). To circumvent this, one line of research directly ap-
proximates p;(y|z(t)) (Chung et al. 2022-09-29; Fei et al.
2023), while the other interleaves diffusion reverse steps
from Eq. (3) with projections (or gradient updates) (Chung,
Lee, and Ye 2023-10-13) to guide the process toward the
feasible set {x|y ~ A(x)}. Unfortunately, both strategies
introduce unavoidable approximation errors (Challenge
1) that can accumulate during the reverse diffusion process
(RDP), ultimately limiting their practical performance. For
VR, (Cao et al. 2024) follows the generative diffusion prior
(GDP) framework (Fei et al. 2023) using gradient steps, while
(Kwon and Ye 2024-10-04,b) implement the decomposed dif-
fusion sampling (DDS) (Chung, Lee, and Ye 2023-10-13)
approach with several conjugate gradient (CG) update steps.
However, CG requires the degradation operator A to be
known, symmetric and positive-definite (Shewchuk 1994),
restricting its applicability for VR.

VR also needs good temporal consistencies. Existing zero-
shot methods use batch-consistent sampling strategies (Kwon
and Ye 2024-10-04,b) and leverage optical flow (OF) guid-
ance. However, accurate OF estimation from LQ videos is
inherently challenging. Different approaches attempt to over-
come this limitation: (Yeh et al. 2024-10-04) directly ob-
tains OF from LQ videos and proposes a hierarchical latent
warping technique, while (Cao et al. 2024) acquires OFs
during intermediate stages of the RDP—when results may
still contain noise—and applies these OFs for warping in the
image space. In summary, the SOTA methods achieve only
semantic-level alignment (Kwon and Ye 2024-10-04,b; Yeh
et al. 2024-10-04) or attempt pixel-level alignment with sub-
optimal OFs (Cao et al. 2024), leaving temporal consistency
in VR a critical standing challenge (Challenge 2).

3 Our method

In this paper, we employ pre-trained image LDMs as priors
to solve video restoration (VR) problems due to their superior
generation quality, computational efficiency, and widespread
adoption. In Section 3.1, we propose a novel LDM-based
formulation that overcomes the limitations of SOTA methods,
addressing challenge 1. In Section 3.2, we introduce two
effective components for bilevel temporal consistency, tack-
ling challenge 2. Finally, in Section 3.3, we present several
essential techniques to ensure computational and memory
efficiency, targeting challenge 3.

3.1 Our basic formulation

To mitigate approximation errors in existing interleaving
methods, we introduce a novel and principled formulation for
solving VR problems following the classical maximum a pos-
teriori (MAP) principle. Our goal is to recover a high-quality
video X that not only satisfies the measurement constraint
Y ~ A(X), but also resides near the realistic video manifold
M:minxenm (Y, A(X)). Inspired by (Wang et al. 2024),
we propose viewing the entire RDP as a function R, which,
when composed with the pre-trained decoder D in LDMs,



maps the seed space to the video space. This fresh perspective
enables us to reparameterize the video as X = D o R(Z),
which can then be plugged into the MAP framework Eq. (1),
leading to a unified formulation:

Z* € ming (Y, A(DoR(Z))), )

where Z = [z1,...,2n], and D and R are applied frame-
wise. The final reconstruction can be obtained as X* =
D o R(Z*). Note that the RDP consists of multiple iterative
steps. Mathematically, a single reverse step can be expressed
as a function g that depends on sé“, Le., g_u, representing
the i-th reverse step that maps the latent varjable Zit1 to z;.
The full RDP can then be written as

R = gego) o geg) O©---0 geéT—Q) o ge(eT—l). (6)

3.2 Promoting bilevel temporal consistency

Although Eq. (5) can address VR tasks leveraging pre-trained
image LDMs, the reconstructed videos still may not have
good temporal consistency (see “Base” in Table 7). This is not
surprising, as it tries to recover individual frames separately
and fails to capture inter-frame dependencies—a critical issue
to be addressed by all methods relying on image DMs (Cao
et al. 2024; Kwon and Ye 2024-10-04,b; Yeh et al. 2024-10-
04). In this section, we address this critical issue (Tackling
Challenge 2) by introducing two distinct components that
target temporal consistency at two different levels.

Figure 2: T-SNE (Maaten and Hinton 2008) visualization
of seeds extracted for video frames. Green dots are i.i.d.
Gaussian noise. Seeds for the same video form clusters, while
those for different videos are scattered.

Noise prior for semantic-level consistency

An intriguing clustering phenomenon To strengthen tem-
poral consistency, we begin by exploring potential structures
in the seed space. We obtain seeds Z for randomly sam-
pled frames from videos by solving the regression problem:
ming ¢(X,D o R(Z)). From Fig. 2, we observe an inter-
esting pattern: seeds for frames of different videos are widely
scattered without apparent correlation, whereas seeds for
frames of the same video tend to cluster together—a pat-
tern we can potentially leverage to improve temporal consis-
tency across frames.

To this end, we hypothesize that consecutive frames
share a common seed but have minor frame-specific de-
viations. Accordingly, we decompose the seed matrix as
Z = ZsharedlT + R, where zgp,qreq represents the shared
seed, R = [ry,...,7yN]| captures frame-specific residuals,
and 1 is an all-one vector. Moreover, we need to ensure that
the residuals are small by constraining ||7;||2 < o for a small
constant ¢ > 0. Our new formulation built on Eq. (5) is

ming,, ., R (Y, ADoR(2shareal” + R))),

7
st. |rila<o, Vie{l,...n}, O

where D and R are applied framewise. To solve this con-
strained optimization problem, we choose the Projected Gra-
dient Descent (PGD) method. Our algorithm alternates be-
tween gradient descent and projection:

(Zshareda R) — (zshareda R) - nv(zshared,R)&

: (8)
ri < g jo<o(ri), Vie{l,...,N}.

Here, I1,,,<o denotes the projection operator that maps 7;
to the closest point within the ¢5 norm ball of radius o.

Progressive warping for pixel-level consistency As
shown in Table 7, incorporating the noise prior improves
both data fidelity and temporal consistency. However, fine-
grained consistency across frames remains weak. To enhance
it, we introduce a progressive warping loss:

N—1

Lo =3 (M Ol MOW (@1, fis)).

fr—ny1 = stopgrad (RAFT (), ), )

where WV denotes backward warping (Sun et al. 2018), M
is the estimated non-occlusion mask obtained via forward-
backward consistency checks (Meister, Hur, and Roth 2018-
04-27), and f),_,, ., represents the optical flow (OF) from
frame n to n 4 1 and is treated as constant during backpropa-
gation. The frame reconstructed at the time step n is denoted
as x,. We compute the OF using the pre-trained estimator
RAFT (Teed and Deng 2020). This warping loss explicitly
penalizes pixel-level changes between motion-compensated
consecutive frames, thereby enhancing temporal consistency
at the pixel level.

In practice, we introduce the warping 10ss Ly, only after
the estimated frames @, . .., 'y attain sufficient quality, as
early iterations often yield noisy results. The evolution of
performance over iterations is illustrated in Fig. 3; it shows an
evident performance boost in both data fidelity and temporal
consistency after incorporating the proposed warping loss.
To reduce computation, we update the OFs every P iterations
instead of each. We term our approach progressive warp-
ing because the estimated OFs themselves are progressively
refined during iterations. However, these estimated OFs can
exhibit slight fluctuations, which can hinder stable training.
To address this, we apply an exponential moving average
(EMA) to smooth out the OFs:

O =B+ A=Y, 10)

where f,(ltlm 1 18 the stabilized flow at iteration ¢, f,’fzn 41

is the newly estimated flow, and 5 € [0,1) is the weighted
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Figure 3: Evolution of key metrics during the iterative VR
process: PSNR, OF difference (measured against ground
truth), and warping error (WE). All metrics improve in early
iterations. After OF difference stabilizes (vertical dotted line),
progressive warping is activated, further enhancing PSNR
and reducing WE, demonstrating our framework’s effective-
ness for temporal consistency.

averaging coefficient. This smoothing mechanism not only
stabilizes the training process, but also enhances the temporal
consistency of the OFs.

3.3 Boosting computational and memory efficiency

Efficient diffusion sampling DDPMs typically require
dozens or hundreds of sampling steps, inducing significant
computational and memory burdens for our approach in
Eq. (7). To address this challenge, we implement the DDIM
sampler for the reverse process R, which enables us to skip
intermediate steps while preserving generation quality. Sur-
prisingly, we find that 4 reverse steps are sufficient for our
method to outperform the SOTA, as shown in Section 3.3.
Adding more steps does not provide substantial benefits and
can even slightly degrade the results, possibly due to numeri-
cal issues from vanishing gradients. Hence, we take 4 as the
default number of reverse steps. We also implement gradient
checkpointing techniques to further reduce memory costs.

Steps PSNRT SSIM{ LPIPS| WE(10-2)
SOTA (Kwon and Ye 2024b)  26.03  0.717  0.339 1411
T 27T T T T 2787 ~ 0785 ~ 0324 " T 0742
4 2795 0790  0.321 0.725
10 2770 0777 0.347 0.746

Table 1: Ablation study on performance vs. the number of
reverse steps in diffusion process R, performed on the DAVIS
dataset for video super-resolution x4.

Efficient reformulation via mean value theorem (MVT)
There is a potential computational bottleneck in Eq. (7):
When performing backpropagation with respect to R, the
term R(Zspareal” + R) requires N separate forward passes
through R, expensive both in computation and in memory
when N is large. To address this, we assume that R : R —
R is continuously differentiable, with the operator norm (i.e.,

the largest singular value) of the Jacobian uniformly bounded
by L. Then, for all 4, ||R(zsha7'ed + T‘i) - R(zshared)n <
L||r;||, < Lo by the multivariate mean-value theorem (Cole-
man 2012). So we consider

min _ (Y, A(D(R(2sharea) + R))),

Zshared)

st ||rille < Lo, Vie{l,...,N}. (11)

Since R is now outside the RDP R, backpropagation through
R is only needed for zgj4req, reducing both memory and
computation by a factor of N. To further reduce the cost due
to backpropagation, we repeat the above idea by decomposing
the pre-trained decoder D as D = D; o D, and putting the
learnable residuals as input to Dy, leading to

min _ (Y, A(D1(Dz o R(2shared) + R))),

Zshared, IR

st ||lrilla < L'o, Vie{l,...,N}.| (12)

Here, L’ depends on both L and also the maximum operator
norm of the Jacobian of D5, and accounts for the maximum
amplification of perturbations through D5 o R, ensuring rigor-
ous bounds and applicability of our formulation to long video
sequences. In practice, we place the trainable R directly on

the last layer of D. We set L'c as C'y/dimension(r;) for all
1, where C' is a tunable hyperparameter.

Lightweight low-rank residual parameterization For
VR, the trainable residuals 71, .. ., 7 are high-dimensional
tensors. In our implementation with Stable Diffusion, for
example, the last layer of D has dimension (1,128,512, 512)
for each residual. This leads to substantial memory and
computation burdens. We address this by enforcing low-
rank structures on the residuals. Specifically, we decompose
each residual along its spatial dimensions as: r,, = A,, B,,,
where An c R1x128x512xk and B,, € R1Xx128xkx512 with
k < 512. This reduces the total parameter count for R from
O(N - 128 - 512 - 512) to O(N - 128 - 512 - 2k), resulting
in significant computational savings. To make the low-rank
parameterization compatible with the PGD algorithm to solve
Eq. (12), we need to ensure || A, B,| < L'c for all i. For
this, we take the heuristic projection

(A;YJB’:L) < (An, Byn) /| AnBs||/ Lo, (13)

after each gradient step on (A,,, B,,). This produces a fea-
sible 7,,, as || AL B || = ||An B/ (|AnByl|/L'o) = L'o.
With extra analytical and computational efforts, it is possible
to develop a rigorous orthogonal projector here. But, we stick
to this simple one, as it is easy to implement and effective.

4 Experiments

Experimental setup We conduct comprehensive exper-
iments on five VR tasks that involve various spatial and
temporal degradations, following the protocols in (Kwon
and Ye 2024-10-04,b; Cao et al. 2024). The first three tasks
involve spatial degradation only: (1) 4x super-resolution,
where low-resolution capture is simulated by applying 4 x
average pooling to high-resolution videos; (2) inpainting
with random masking at a missing rate of » = 0.5; and (3)



Algorithm 1: Our video restoration framework

Input: Epochs F, transition Er, diffusion steps 7', Y, A
1: Initialize 2%, ., ~ N(0, I) and residuals r{, - - - 7,
2: fore=0to £ —1do
fori =T —1to0do
5 el (20)
] Z;
1

28— —— (285 — V1 — ;8
0 Va; \7i R

4
5
6: z{_; < DDIM reverse with £§, 3
7.
8
9

b

end for
## Current reconstruction for n—th frame
: .’I}; = Dl (DQ © R(zghared) + 7"2)
10: if e >= Er then
11: f/(ffnﬂ < stopgrad (RAFT(x/,, ], ,,))

n

12: £ s = BE S + (L= BV

13: Calculate Ly, via Eq. (9)

14: else

15: Lyarp =0

16: end if

17: Update zi,falred,rfﬂ, e 77'16\[“ via Eq. (12) with
Lwarp

18: Project each ¢+ onto £5 norm ball

19: end for

Output: Recovered video [x],...
Dl (D2 ° R( Shared) + ’I"E)

/ / —
, ], where x], =

motion deblurring, where blurry videos are simulated by
applying a 33 x 33 motion blur kernel of strength 0.5 to clean
videos. In addition, we examine (4) temporal deconvolution,
where degraded videos are generated by applying a uniform
point-spread-function (PSF) convolution of width 7 along
the temporal dimension, simulating the common artifact that
multiple frames blend together in time-varying video captur-
ing. The last task (5) temporal deconvolution with spatial
deblurring combines (4) temporal deconvolution and (3)
spatial motion deblurring, representing complex scenarios.

Competing methods While our work focuses on zero-shot
methods for VR using pre-trained image DMs, we benchmark
our proposed method against both zero-shot and supervised
methods. To ensure fair comparison, we select methods with
publicly available implementations and evaluate them us-
ing their default settings wherever possible. For zero-shot
methods, we compare against SVI (Kwon and Ye 2024-
10-04), VISION-XL (with SDXL) (Kwon and Ye 2024b),
VISION-base (with SD-base) (Kwon and Ye 2024b), and
DiffIR2VR (for super-resolution only) (Yeh et al. 2024-10-
04). For supervised methods, our benchmarks include the
following: SD x4 (Rombach et al. 2022), VRT (Liang et al.
2024), RealBasicVSR (Chan et al. 2022), StableSR (Wang
et al. 2024-12-01), and Upscale-A-Video (UAV) (Zhou et al.
2024) for super-resolution; SD Inpainting (Rombach et al.
2022) and ProPainter (Zhou et al. 2023) for inpainting; and
VRT (Liang et al. 2024), DeBlurGANv2 (Kupyn et al. 2019),
Stripformer (Tsai et al. 2022), and ID-Blau (Wu et al. 2024)
for motion deblurring and/or temporal deconvolution. In all
tables included in Section 4.1, supervised and zero-shot

methods are above and below the dotted line, respectively.
We leave implementation details in (Wang et al. 2025).

4.1 Results

DAVIS REDS
Methods
PSNRT SSIM{ LPIPS| WE(10-2)] PSNRf SSIMt LPIPS| WE(10~2)|
SD x4 (Rombach et al. 2022) 24.33 0.615 0.358 1.523 23.57 0.619 0.371 1.769
VRT (Liang et al. 2024) 2597 0780 0295 1.063 2454 0756 0305 1.266
RealBasicVSR (Chan et al. 2022) 2634 0.734 0.294 0.962 26.31 0.759 0.260 1.019
StableSR (Wang et al. 2024-12-01) 2256 0.590  0.339 1.977 2127 0578 0342 2535
_UAV @Zhouetal. 204 2365 058 0397 1632302 0593 042 1920

DiffIR2VR (Yeh et al. 2024-10-04) 25.01 0.637 0.337 1.321 24.14 0633 0.328 1.592
SVI (Kwon and Ye 2024-10-04) 2319 0562 0457 1.796 2193 0534 0496 2322
VISION-XL (Kwon and Ye 2024b) 26.95 0.749 0.349 0.981 2571 0.725 0.377 1.215
VISION-base (Kwon and Ye 2024b) ~ 26.17  0.712  0.338 1.137 2495 0687 0376 1.406
Ours 28.21 0.799 0.315 0.698 2740 0.792 0.339 0.824
Ours vs. Best compe. +126  +0.019  +0.021 0.264 +1.09  +0.033  +0.079 0.195

Table 2: (Spatial task) Quantitative comparisons for video
super-resolution x4 (Bold: best, under: second best, green:
performance increase, red: performance decrease)

DAVIS REDS
Methods
PSNRT SSIMT LPIPS|, WE(102), PSNR SSIM{ LPIPS| WE(09)|
SD Inpainting (Rombach etal. 2022) 1698 0258  0.679 6.776 1577 0238 0677 9.253
ProPainter (Zhou et al. 2023) 28.60 0.823 0.281 0.655 28.05 0.827 0.273 0.733
” SVI(Rwon and Ye 2024-10-04)” ~ ~ ™ 2580~ 0.699 T 0318 T T 0034777 2461 T 0679~ 032377 71389

VISION-XL (Kwon and Ye 2024b) 2993 0862  0.186 0612 2866 0840 0207 0745
VISION-base (Kwon and Ye 2024b) 26.54 0.732 0.286 1.033 25.30 0.711 0.293 1.268
Ours 3427 0947 0124 0273 3319 0942 0125 0347
Ours vs. Best compe. +4.34 +0.085 0.062 0.339 +4.53 +0.102 0.082 0.386

Table 3: (Spatial task) Quantitative comparisons for video
inpainting with random masking 50% pixels (Bold: best,
under: second best, green: performance increase, red: perfor-
mance decrease)

DAVIS REDS
Methods
PSNRT SSIM{ LPIPS, WE(0~%)| PSNRT SSIM{ LPIPS, WE(10-9)|
VRT (Liang et al. 2024) 2298 0576 0459 235 2256 0593 0465 2392
DeBlurGANv2 (Kupyn et al. 2019) 24.32 0.649 0.371 1.734 24.11 0.677 0.368 1.722
Stripformer (Tsai et al. 2022) 2407 0612 0381 2218 2472 0699 0343 1.797
ID-Blau (Wu et al. 2024) 23.07 0.589 0.397 2.623 23.84 0.654 0.359 2.198
" SVI(Rwon and Ye 2024-10-04) ~ ~ ~ 12.57 ~ 0259 ~ 0,672 ~ " 736566 ~ 13.61 ~ 0287 ~ 0.656 19592

VISION-XL (Kwon and Ye 2024b)  19.08 0454  0.539 8.421 1727 0410 0.567 9.157
VISION-base (Kwon and Ye 2024b) 1281 0290  0.699 26359 1398 0320 0.684 21882
Ours 3170 0889 0211 0.443 3033 0873 0250 0.543
Ours vs. Best compe. +7.38 +0.240 0.160 1.291 +5.61 +0.174 0.093 1.179

Table 4: (Spatial task) Quantitative comparisons for video
motion debluring (Bold: best, under: second best, green:
performance increase, red: performance decrease)

M . DAVIS REDS
ethods
PSNR SSIM{ LPIPS| WE(10-2)] PSNR{ SSIM{ LPIPS| WE(10-2)]

VRT (Liang et al. 2024) 21.07 0.594 0.418 3.383 19.80 0.552 0.455 4.519
DeBlurGANV2 (Kupyn et al. 2019) 20.89 0.586 0.414 3.514 19.58 0.544 0.446 4.734
Stripformer (Tsai et al. 2022) 20.75 0.565 0411 3.638 19.49 0.524 0.453 4.893
ID-Blau (Wu et al. 2024) 18.42 0.491 0.476 6.128 17.73 0.467 0.515 6.968

" SVI(Kwon and Ye 2024-10-04) ~ ~ 7 27.63° ~ 07766 ~ 0.151 ~ ~ T 0901~ 2614 T 0740 ~ 0.062 T TII9T
VISION-XL (Kwon and Ye 2024b) 31.79 0.908 0.125 0.501 30.21 0.889 0.136 0.607
VISION-base (Kwon and Ye 2024b) ~ 27.66 0.767 0.151 0.897 26.17 0.741 0.162 1115

2.965  0.948 0.104 0.317 33307 0952 0.099 0.362

Ours vs. Best compe. +1.17  +0.040 0.021 0.184 +3.09  +0.063 0.037 0.245

Table 5: (Temporal task) Quantitative comparisons for video
temporal deconvolution (Bold: best, under: second best,
green: performance increase, red: performance decrease)

As shown in Tables 2 to 6, our proposed method con-
sistently outperforms existing ones across all VR tasks for
almost all metrics on both the DAVIS and REDS datasets.
We achieve consistent PSNR gains, ranging from 1-1.3dB in
super-resolution, to the remarkable 6-8dB in combined degra-
dation tasks, confirming our method’s effectiveness across
levels of degradation complexity. Most notably, our method



DAVIS REDS
SSIM{ LPIPS| WE(10"%)l PSNRT SSIM{ LPIPS| WE(10 2)]

Methods

VRT (Liang et al. 2024) 0.48 0.593 4.044 18.71 0.445 0.638 5325
DeBlurGANV2 (Kupyn et al. 2019) 0.496 0.556 3.921 18.89 0.460 0.600 5.219
Stripformer (Tsai et al. 2022) 0.503 0.548 3.879 18.88 0.458 0.588 5224
ID-Blau (Wu et al. 2024) 19.7¢ 0.489 0.554 4.060 18.73 0.450 0.593 5418
SVI(Kwon and Ye 2024-10-04) 0.260 0.705 27955 12.27 0.255 0.711 28.575
VISION-XL (Kwon and Ye 2024b) 0.346 0.627 15.220 16.70 0.393 0.637 12.675
VISION-base (Kwon and Ye 2024b)  12.17 0.262 0.727 30.325 11.92 0.269 0.732 30.436
Ours 26.97 0.778 0.343 0.852 26.61 0.763 0.381 0.982

Ours vs. Best compe. +6.9 +0.275  -0.205 -3.02 2 0303 -0.20 -4.23

Table 6: (Spatio-temporal task) Quantitative comparisons
for video temporal deconvolution with spatial deblurring
(Bold: best, under: second best, green: performance increase,
red: performance decrease)

delivers substantial improvements in temporal consistency,
with Warping Error (WE) reductions ranging from 0.18-0.26
in simpler tasks and dramatic 3—4.2 in combined temporal
deconvolution with spatial deblurring. Similar performance
trends are also observed in the SPMCS and UDM10 datasets,
with detailed results provided in (Wang et al. 2025).

In particular, here, the test distribution may differ from
the original training distribution for both supervised and
zero-shot methods, potentially explaining the noticeable per-
formance degradation compared to their originally reported
results. Although we include supervised methods just for ref-
erence given their very different setting compared to the zero-
shot approach we focus on, their relatively poor performance
highlights their limited generalizability when confronted with
real-world distribution shifts. For zero-shot competitors, our
method consistently outperforms them by large margins in
both spatial metrics and, most significantly, temporal consis-
tency. These results validate the effectiveness of our proposed
formulation in Eq. (12) and our hierarchical framework for
bilevel temporal consistency described in Section 3.2.

A particularly interesting observation is that CG-based
methods (Kwon and Ye 2024-10-04.,b) perform uniformly
poorly on motion deblur-related tasks, as is evident in Ta-
bles 4 and 6. This observation is consistent with our theoreti-
cal analysis in Section 2, which highlighted that CG requires
the degradation operator A be known, symmetric and pos-
itive definite (Shewchuk 1994). When CG deals with VR
tasks that violate these mathematical requirements—such as
motion deblurring—numerical issues arise, leading to poor
performance. This limitation comprises a critical weakness in
the SOTA CG-based methods, whereas our method is versa-
tile and remains effective for different degradation scenarios.

4.2 Ablation studies

Effects of noise prior and progressive warping Table 7
presents the quantitative results of our ablation studies on the
DAVIS dataset for video super-resolution. The integration of
noise prior significantly improves the baseline model perfor-
mance in terms of both PSNR and SSIM, while substantially
reducing WE, signifying enhanced semantic-level temporal
consistency. Progressive warping yields even stronger results
with marked improvements in all metrics compared to the
baseline, particularly in WE, indicating superior pixel-level
temporal consistency. Notably, combining both components
produces the optimal configuration, with our complete model
outperforming an SOTA method (Kwon and Ye 2024b) in

all metrics. These results confirm that the noise prior and
progressive warping mechanisms complement each other in
promoting bilevel temporal consistency.

Effect of controllable residuals We also study how the
learning rate for residuals (LR, ) and the radius of residual
balls (ie, controlling the magnitude of residuals) affect the
performance. Intuitively, the residuals should not be too large
to allow substantial deviation from the image manifold, and
not be too small to limit their powers in modeling reasonable
framewise deviation from the shared frame. This intuition is
confirmed by our data in Table 8: a restrictive radius (0.1) pre-
vents adequate motion learning, whereas a moderate radius
(1.0) allows effective discrepancy modeling; similarly, learn-
ing rate calibration is critical—a high rate (0.01) causes resid-
ual learning to dominate and downplays the influence from
the DM prior, while an insufficient rate (0.0001) limits frame-
wise adaptation. The optimal configuration (LR,.=0.001, ra-
dius=1.0) achieves the best performance by balancing these
competing factors.

Method PSNRT SSIMT LPIPS| WE(102)}
SOTA (Kwon and Ye 2024b)  26.03 0.717 0.339 1.411
7 " Base 2470 © 0612 0366 1398
Base with noise prior 26.09 0.703 0.410 1.057
Base with warping 27.14 0.736 0.301 0.943
Base with both 27.95 0.790 0.321 0.725

Table 7: Ablation study on essential components for bilevel
temporal consistency, performed on DAVIS dataset for video
super-resolution x4. (Bold: best, under: second best)

LR, Radius PSNR{ SSIM{ LPIPS| WE(10~2)]

0.1 24.36 0.654 0.436 1.557

0.01 1.0 27.19 0.741 0.402 0.804
10.0 27.16 0.739 0.405 0.806

0.1 25.74 0.719 0.374 1.161

0.001 1.0 27.95 0.790 0.321 0.725
10.0 27.91 0.789 0.324 0.737

0.1 25.11 0.677 0.389 1.298

0.0001 1.0 26.17 0.709 0.366 1.096
10.0 26.17 0.710 0.369 1.089

Table 8: Ablation study on the trainable residuals, performed
on DAVIS dataset for video super-resolution x4.

5 Discussion

In this paper, we focus on solving video restoration (VR)
problems using pre-trained image DMs. We systematically
address three key challenges: approximation errors through a
novel MAP framework that reparameterizes frames directly
in the seed space of LDMs; temporal inconsistency via a hier-
archical bilevel consistency strategy; and high computational
and memory demands through reformulation and low-rank
decomposition. Comprehensive experiments show that our
method significantly improves over state-of-the-art methods
across various VR tasks without task-specific training, in
terms of both frame quality and temporal consistency. As for
limitations, our work remains primarily empirical, and we
leave a solid theoretical understanding for future research.
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