
BLADE: Biased Neighborhood Sampling based Graph Neural
Network for Directed Graphs

Srinivas Virinchi, Anoop Saladi
International Machine Learning, Amazon, Bengaluru, India

{virins,saladias}@amazon.com

ABSTRACT
Directed graphs are ubiquitous and have applications across mul-
tiple domains including citation, website, social, and traffic net-
works. Yet, the majority of research involving graph neural net-
works (GNNs) focus on undirected graphs. In this paper, we deal
with the problem of node recommendation in non-attributed di-
rected graphs. Specifically, given a directed graph and query node
as input, the goal is to recommend top-𝑘 nodes that have a high
likelihood of a link with the query node. Here we propose BLADE,
a novel GNN to model directed graphs. In order to jointly capture
link likelihood and link direction, we employ an asymmetric loss
function and learn dual embeddings for each node, by appropriately
aggregating features from its neighborhood. In order to achieve
optimal performance on both low and high-degree nodes, we em-
ploy a biased neighborhood sampling scheme that generates locally
varying neighborhoods which differ based on a node’s connectivity
structure. Extensive experimentation on several open-source and
proprietary directed graphs show that BLADE outperforms state-
of-the-art baselines by 6-230% in terms of HitRate and MRR for the
node recommendation task and 10.5% in terms of AUC for the link
direction prediction task. We perform ablation studies to accentu-
ate the importance of biased neighborhood sampling employed in
generating higher quality recommendations for both low-degree
and high-degree query nodes. Further, BLADE delivers significant
improvement in revenue and sales as measured through an A/B
experiment.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies→Machine learning.

KEYWORDS
Node Recommendation; Graph Neural Networks; Directed Graphs;
Biased Neighborhood Sampling

ACM Reference Format:
Srinivas Virinchi, Anoop Saladi. 2022. BLADE: Biased Neighborhood Sam-
pling based Graph Neural Network for Directed Graphs. InWSDM’23, Feb
27–March 3, 2023, Singapore. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’23, Feb 27– March 3, 2023, Singapore
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Directed graphs have become an integral part of our lives. For ex-
ample, we extensively rely on Google Maps for navigation. It can be
modelled as a directed graph of locations connected by roads. There
are innumerable such applications where the data can be modelled
as a directed graph. The degree distribution of large-scale graphs is
such that they contain more low-degree nodes compared to high-
degree nodes, popularly referred to as power-law [14]. Majority
of directed graphs are non-attributed i.e., no features for nodes
and edges. Yet, the majority of research in this space focuses on
undirected graphs, and assume that node/edge features are avail-
able. The above-mentioned points clearly motivate us to focus on
modelling non-attributed directed graphs.
Problem. Consequently, in this paper, we address the node recom-
mendation problem [15, 28] in directed graphs. Formally, we are
given as input i) an unweighted and non-attributed1 directed graph
𝐺 (𝑉 , 𝐸) where 𝑉 and 𝐸 are the set of nodes and edges respectively,
ii) a query node 𝑞 ∈ 𝑉 . The goal is to recommend 𝑅𝑞

𝑘
, a set of top-𝑘

nodes that have a high likelihood of a link with 𝑞.
Prior Work and Limitations. Although GNNs [6, 11, 25] are pop-
ular, they cannot be extended to directed graphs as they fail to
capture edge directions. Research in modelling directed graphs can
be broadly categorized into randomwalk basedmodels [9, 15, 28, 29]
and GNNs [17, 22, 23, 27]. Prior work does not optimize for low-
degree nodes, and can potentially result in an unsatisfying perfor-
mance on low-degree nodes [21]. The inherent degree distribution
contributes to this problem: 1) the sparse connectivity structure
of low-degree nodes imply that, suboptimal node representation
of any of its neighbor(s) results in a cascading effect on its node
representation during model training. 2) during neighborhood sam-
pling, every neighbor is treated equally irrespective of its degree,
potentially leading to its low-degree neighbors being sampled with
high probability. [13, 21] address the issue of degree bias to learn
meaningful representations for both low and high-degree nodes.
However, they are not suitable for non-attributed directed graphs,
and existing work in directed graphs has not catered to this sub-
optimal performance on low-degree nodes. Further, prior work in
directed graphs [17, 22, 23, 27], either employ random initialization
or one-hot encoding for nodes in directed graphs. These approaches
can give rise to suboptimal performance.

1.1 Our Contribution
In light of the above discussion, we ask the following questions:
(1) How do we jointly model link likelihood and link direction in
directed graphs? (2) Can we improve the node recommendation

1There are no features or labels for nodes and edges.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WSDM ’23, Feb 27– March 3, 2023, Singapore Srinivas and Anoop, et al.

performance for low-degree nodes in directed graphs? (3) How do
we initialize node embeddings in directed graphs?

Accordingly, we presentBiasedLocallyAdaptiveDirectionAwarE
(BLADE), an efficient GNNmodel for directed graphs, to address the
above questions. We delineate the contributions of BLADE below:

Direction Aware. In order to capture node asymmetry in directed
graphs, we represent each node using dual embeddings. We employ
an asymmetric loss function that appropriately aggregates node fea-
tures from neighborhood to generate dual embeddings, by jointly
preserving link strength and link direction in directed graphs.

Biased Locally Adaptive Neighborhood Sampling.We generate
on-the-fly biased neighborhoods duringmodel training. Specifically,
for every seed node, we exploit the power-law degree distribution
to estimate its neighborhood size i.e., larger neighborhood for low-
degree seed nodes and smaller neighborhood for high-degree seed
nodes. Generating varying size neighborhoods based on each node’s
local structure makes our neighborhood sampling adapt locally.

In contrast to performing uniform sampling, we provide dif-
ferential treatment to each edge during neighborhood sampling.
Given that the graph is unweighted, we estimate edge such that for
any node, the probability of its high-degree neighbors being sam-
pled is much higher when compared to its low-degree neighbors.
This makes the proposed sampling biased. When both these bits
work jointly, we expect an optimal performance on both low and
high-degree nodes.

Graph Attention (GAT) [25] implicitly specifies different weights
to different nodes during node aggregation. However, attention
weights are computed based on a node’s neighborhood features,
and is agnostic of the structural properties of a graph i.e., degree,
local clustering coefficient etc. Consequently, GAT’s reliance on
node features make them unsuitable for non-attributed graphs,
and deems infeasible for large size graphs owing to its very slow
training time.

Evaluation. We perform extensive experimentation on several
real-world and proprietary directed networks to demonstrate the
superiority of BLADE compared to the state-of-the-art baselines.
Ablation study confirms the crucial role of biased neighborhood
sampling in boosting the performance of BLADE for both low and
high-degree query nodes. Further, we show that proposed biased
neighborhood sampling is comparable to conventional sampling
in terms of running time, while yielding significant improvement
in terms of recommendation quality. BLADE derives significant
improvement in product sales and revenue as measured through
an A/B experiment.

1.2 Related Work
In order to address the node recommendation problem [15, 28]
in directed graphs, initial work relied on random walk models to
capture node relationships in directed graphs. VERSE [24] and
HOPE [15] propose learning two embeddings for each node to
preserve higher order proximity, and node asymmetry in directed
graphs. APP [28] captures asymmetry by preserving Rooted PageR-
ank between nodes by relying on randomwalk with restart strategy.

ATP [19] addresses the problem of question answering by embed-
dings nodes of directed graph by preserving node asymmetry. How-
ever, their approach is strictly restricted to directed acyclic graphs
(DAGs), while real-world graphs are not acyclic. NERD [9] learns a
pair of role-specific embeddings for each node using an alternating
random walk strategy to capture edge strength and direction in
directed graphs.

With GNNs being superior compared to random walk models,
the contemporary research has shifted towards designing GNNs for
directed graphs. DGCN [23] extends the spectral-based GCN model
to directed graphs using first and second-order proximity to expand
the receptive field of the convolution operation. APPNP [12] uses a
GCNmodel to approximate personalized PageRank. DiGraphIB [22]
builds upon the ideas of DGCN [23] and constructs a directed Lapla-
cian of a PageRank matrix. It uses an inception module to share
information between receptive fields. Gravity GAE [17] is a Graph
Auto Encoder [10] integrated with the idea of gravity to address link
prediction in directed graphs. DGGAN [29] is based on Generative
Adversarial Network using a discriminator and two generators to
jointly learn the source and target embedding of nodes. MagNet [27]
proposes a GNN for directed graphs based on a complex Hermitian
matrix. The magnitude of entries in the complex matrix encodes
the graph structure, while the directional aspect is captured in the
phase parameter. [26] addressed the same problem in the context
of attributed directed graphs. During model training, prior work
leverages fixed (same) size neighborhoods for every seed node, irre-
spective of its degree. Further, equal importance is assigned to every
edge during neighborhood sampling. [7] proposes an adaptive layer
based sampling scheme to reduce the computation and memory
cost due to the uncontrollable neighborhood expansion across GCN
layers, which is different from the biased adaptive neighborhood
sampling employed by BLADE. [13, 21] address the issue of de-
gree bias to learn meaningful representations for low-degree nodes.
However, it is not suited for directed graphs and expects node/edge
features as input. Graph Attention (GAT) [25] implicitly specifies
different attention scores to each edge, which is computed as a
function of a node’s neighborhood features, and is agnostic of the
structural properties of the graph i.e., degree, neighborhood spar-
sity etc. Consequently, it is unsuitable for non-attributed directed
graphs. In order to bridge the gap from prior work, BLADE employs
dual embeddings to mitigate asymmetry, and biased neighborhood
sampling for improving the performance both on low-degree and
high-degree nodes. We present the benefit of each component via
ablation study.

2 BLADE
Motivation.Consider the directed product graph shown in Figure 1
where nodes correspond to products, and directed edges correspond
to a co-purchase relation. For example, nodes 𝐴 and 𝐵 correspond
to a phone case and phone respectively. Given 𝐵 as input, we would
like to recommend 𝐴, but given 𝐴 as input, it may not be apt to
recommend 𝐵 because customers typically would purchase a phone
case only while owning a phone. Vanilla GNNs cannot be directly
leveraged on a directed graph, as it fails to capture node asymmetry.
Basis the computational graph (Figure 1(a)), observe that vanilla
GNNs fail to differentiate edge (A, B) and (B, A).

BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs WSDM ’23, Feb 27– March 3, 2023, Singapore

Figure 1: Computational graph of node𝐴 using a 2 layer vanilla GNNmodel (a) and BLADEmodel (b). Nodes B and C correspond
to black and blue color phones of iPhone 13. A is a phone case, D is a charger and E is a screen guard. For any node 𝑢, u-s and
u-t correspond to the source and target embedding of u respectively.

In order to model directed graphs, we employ two embeddings
for each node i.e., source (s) and target (t) embedding in BLADE.
Specifically, representing 𝐴 and 𝐵 each using two embeddings,
permits us to differentiate edge (A, B) and (B, A). For any directed
edge (𝑢, 𝑣), the rational of BLADE would be to embed the source
embedding of𝑢 and the target embedding of 𝑣 closely in the embedding
space.

We look at a node’s out-neighbors when generating its source
embedding, and at in-neighbors when generating its target em-
bedding. WLOG, we consider node 𝐴 to illustrate the working of
BLADE. The source embedding of A is aggregated basis the target
embedding of E (out-neighbor of A). Similarly, the target embed-
ding of A would be aggregated basis the source embeddings of B,
C and E (in-neighbors of A). The resulting computational graph
corresponding to the source and target embedding of A generated
by BLADE is shown in Figure 1(b). We can extend this aggregation
step to other nodes, and across multiple hops.

After the source and target embeddings of every node is gen-
erated using BLADE, we map the query node to the source node
embedding space, the potential candidates to the target embed-
ding space, and perform a nearest neighbor lookup to recommend
nodes of interest for a query node. Observe that, when we employ
BLADE on an undirected graph, the computational graph of the
source and target embedding for every node becomes the same.
Initial Node Embeddings. Table 1 shows the notation that we
will follow hereafter. Recall that 𝐺 is unweighted, directed, and the
nodes 𝑉 do not contain any features. In order to initialize the node
features (𝑋), we broadly have two options: 1) random initialization:
the initial node representation is sampled from a probability distri-
bution like uniform distribution [-1,1], normal distribution 𝑁 (0, 1),
Xavier uniform and Xavier normal distribution etc. This form of
initialization is random, and does not characterize any aspect of

the node. 2) random walk based initialization: we generate ran-
dom walks with restart (RWR) starting from each node, inspired by
the power of PageRank [28] in directed graphs. We set the restart
probability to 0.15. We generate the node embeddings based on the
generated walks similar to Node2Vec [4], and expect it to perform
better than random initialization as it captures the underlying con-
nectivity structure of the graph.
DualNodeEmbeddingsGeneration: ForwardPass.Algorithm 1
describes the forward pass to generate the source and target embed-
ding of each node using BLADE assuming that the model is already
trained. It expects an unweighted and non-attributed directed graph
𝐺 and initial node features 𝑋𝑢 ,∀𝑢 ∈ 𝑉 as input.

Table 1: Notation

Notation Description

𝐺 unweighted and non-attributed directed graph
𝑉 set of nodes in 𝐺
𝑉𝑖 ∈ 𝑉 node 𝑖 in 𝐺
𝐸 set of edges in 𝐺
𝑋𝑖 input embedding of node 𝑖
(ℎ𝑠

𝑖
)𝑙 , (ℎ𝑡

𝑖
)𝑙 hidden source and target embedding of node 𝑖 in layer 𝑙

𝜃𝑠
𝑖
, 𝜃𝑡

𝑖
source and target embedding of node 𝑖

𝑞 ∈ 𝑉 query node
𝑅
𝑞

𝑘
top-𝑘 node recommendations for query node 𝑞

𝑑𝑖𝑛
𝑖

in-degree of node 𝑖
𝑑𝑜𝑢𝑡
𝑖

out-degree of node 𝑖
𝑁𝑖 first hop out-neighbors of node 𝑖
𝑁
𝑎𝑑𝑝𝑡

𝑖
adaptive first hop out-neighbors of node 𝑖

Initialize the hidden source and target representation of node
𝑢 at layer 0 with 𝑋𝑢 . At layer 𝑙 , for each node 𝑢, a) aggregate its
source embedding using the target embedding of its out-neighbors
from (𝑙 − 1)𝑡ℎ layer (line 4), b) aggregate its target embedding
using the source embedding of its in-neighbors from (𝑙 − 1)𝑡ℎ

WSDM ’23, Feb 27– March 3, 2023, Singapore Srinivas and Anoop, et al.

Algorithm 1 BLADE’s node embedding generation

Input: graph 𝐺 = (𝑉 , 𝐸); initial node embedding {𝑋𝑢 ,∀𝑢};
Number of GNN layers L; weights𝑊 𝑙 , ∀𝑙
Output: source embedding 𝜃𝑠𝑢 and target embedding 𝜃𝑡𝑢 , ∀𝑢 ∈ 𝑉
1: (h𝑠𝑢)0 ←X𝑢 ; (h𝑡𝑢)0 ←X𝑢 ∀𝑢 ∈ 𝑉
2: for 𝑙=1,...𝐿 do
3: for 𝑢 ∈ 𝑉 do
4: (ℎ𝑠𝑢)𝑙 ← 𝜎

(∑
(𝑢,𝑣) ∈𝐸 (ℎ𝑡𝑣)𝑙−1𝑊 𝑙

)
5: (ℎ𝑡𝑢)𝑙 ← 𝜎

(∑
(𝑣,𝑢) ∈𝐸 (ℎ𝑠𝑣)𝑙−1𝑊 𝑙

)
6: end for
7: (ℎ𝑠𝑢)𝑙 ←(h𝑠𝑢)𝑙 /| | (ℎ𝑠𝑢)𝑙 | |2,∀𝑢 ∈ 𝑉
8: (ℎ𝑡𝑢)𝑙 ←(h𝑡𝑢)𝑙 /| | (ℎ𝑡𝑢)𝑙 | |2,∀𝑢 ∈ 𝑉
9: end for
10: 𝜃𝑠𝑢 ←(h𝑠𝑢)𝐿,∀𝑢 ∈ 𝑉
11: 𝜃𝑡𝑢 ←(h𝑡𝑢)𝐿,∀𝑢 ∈ 𝑉

layer (line 5). 𝑊 𝑙 and 𝜎 correspond to fully connected layer at
step 𝑙 and ReLU activation function respectively. We normalize the
embeddings to a unit norm (lines 7, 8). We repeat this process for
𝐿 steps to generate the final source and target representation of
all nodes {𝜃𝑠𝑢 , 𝜃𝑡𝑢 } ∀𝑢 ∈ 𝑉 (line 10, 11). We leverage the generated
embeddings to recommend nodes.
Node recommendation: Given a query node 𝑞, we use 𝜃𝑠𝑞 , the
source embedding of 𝑞, to perform a nearest neighbor lookup in
the target embedding space of all the nodes to recommend, 𝑅𝑞

𝑘
, a

set of top-𝑘 related nodes. Specifically, for a query node 𝑞 ∈ 𝑉 , we
compute a relevance score with respect to a candidate node 𝑣 ∈ 𝑉 ,
𝑟𝑒𝑙 (𝑞, 𝑣), as shown in Equation 1.

𝑟𝑒𝑙 (𝑞, 𝑣) = (𝜃𝑠𝑞)⊺ (𝜃𝑡𝑣) (1)

Observe that 𝑟𝑒𝑙 (𝑞, 𝑣) ≠ 𝑟𝑒𝑙 (𝑣, 𝑞) which enables to capture the
asymmetry in relationship between two nodes.
Learning parameters: Backward Pass. We discuss how to train
BLADE i.e. learn the weight matrix𝑊 𝑙 for each layer in Algorithm 2.
Conventional mini-batch sampling scheme employed in [6, 11, 25]:
a) samples fixed neighborhood size for each node, b) assigns equal
probability to each neighbor during sampling. However, low-degree
nodes still suffer from suboptimal performance [21], owing to
degree-bias and sparse neighborhood. We present the details of
different components involved in training BLADE:
1. Locally Adaptive (Estimating Neighborhood Size). During biased
sampling, we estimate the neighborhood size of each node based on
its degree. Specifically, we sample smaller neighborhood for high-
degree nodes, and larger neighborhood for low-degree nodes. This
relates to a power-law distribution which is shown in Equation 2.

𝑝 (𝑑) =
(
𝛼 − 1
𝑑𝑚𝑖𝑛

) (
𝑑

𝑑𝑚𝑖𝑛

)−𝛼
, 𝑑 ≥ 𝑑𝑚𝑖𝑛 (2)

𝑑 refers to the in-degree of a node, 𝑑𝑚𝑖𝑛 refers to the minimum in-
degree of all nodes in the graph, and 𝛼 is the power-law coefficient.
Note that given a graph, the power-law coefficient 𝛼 is unknown,
and it can be estimated as follows:

L = 𝑙𝑛
∏
𝑢∈𝑉

(
𝛼 − 1
𝑑𝑚𝑖𝑛

) (
𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)

𝑑𝑚𝑖𝑛

)−𝛼

Algorithm 2 Learning BLADE’s parameters

Input: graph 𝐺 = (𝑉 , 𝐸); node features {𝑋𝑢 ,∀𝑢 ∈ 𝑉 }; Number of
GNN layers L; number of epochs 𝑒; 𝑛𝑛𝑒𝑔 negative links per node
Output: weights𝑊 𝑙 , ∀𝑙 ∈ {1, 2, ..𝐿}
1: d𝑚𝑖𝑛 ←𝑚𝑖𝑛{𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢), ∀𝑢 ∈ 𝑉 }
2: 𝛼 ← 1 + |𝑉 |∑|𝑉 |

𝑖=1 𝑙𝑛
𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖)

𝑑𝑚𝑖𝑛

3: for 𝑢 ∈ 𝑉 do
4: n𝑝𝑜𝑠𝑢 ← 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)−𝛼
5: n𝑝𝑜𝑠𝑢 ←𝑚𝑖𝑛𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒 (𝑛𝑝𝑜𝑠𝑢)
6: end for
7: for (𝑢,𝑣) ∈ 𝐸 do
8: escore𝑢𝑣 ← 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢) ∗ 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣)
9: end for
10: (h𝑠𝑢)0 ←X𝑢 ; (h𝑡𝑢)0 ←X𝑢 ∀𝑢 ∈ 𝑉
11: for epoch=1,...𝑒 do
12: E𝑝𝑜𝑠 ← 𝑃𝑟𝑜𝑏𝑆𝑎𝑚𝑝𝑙𝑒 (𝐸, 𝑒𝑠𝑐𝑜𝑟𝑒, 𝑛𝑝𝑜𝑠)
13: E𝑛𝑒𝑔 ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑔, 𝑛𝑛𝑒𝑔)
14: posloss← −∑(𝑢,𝑣) ∈𝐸𝑝𝑜𝑠 𝑙𝑜𝑔(𝜎 (𝜃𝑠𝑢 .𝜃𝑡𝑣))
15: negloss← −∑(𝑢,𝑣) ∈𝐸𝑛𝑒𝑔 𝑙𝑜𝑔(𝜎 (1 − 𝜃𝑠𝑢 .𝜃𝑡𝑣))
16: asymposloss← − ∑

(𝑢,𝑣) ∈𝐸𝑝𝑜𝑠∧
(𝑣,𝑢)∉𝐸𝑝𝑜𝑠

𝑙𝑜𝑔(𝜎 (𝜃𝑠𝑢 .𝜃𝑡𝑣))

17: asymnegloss← − ∑
(𝑢,𝑣) ∈𝐸𝑝𝑜𝑠∧
(𝑣,𝑢)∉𝐸𝑝𝑜𝑠

𝑙𝑜𝑔(𝜎 (1 − 𝜃𝑠𝑣 .𝜃𝑡𝑢))

18: loss← 𝑝𝑜𝑠𝑙𝑜𝑠𝑠 + 𝑛𝑒𝑔𝑙𝑜𝑠𝑠 + 𝑎𝑠𝑦𝑚𝑝𝑜𝑠𝑙𝑜𝑠𝑠 + 𝑎𝑠𝑦𝑚𝑛𝑒𝑔𝑙𝑜𝑠𝑠

19: Perform BackPropagation
20: end for

Solving for 𝑑L
𝑑𝛼

= 0, we get

𝛼 = 1 + |𝑉 |∑ |𝑉 |
𝑖=1 𝑙𝑛

𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑖)
𝑑𝑚𝑖𝑛

(3)

We employ Equation 3 in Algorithm 2 (lines 1-2) to estimate 𝛼 . The
time complexity to estimate 𝛼 including computing the degree of
every node is O(|V| + |E|).

For each node 𝑢, we estimate, 𝑛𝑝𝑜𝑠𝑢 , the neighborhood size of 𝑢
to be sampled (Algorithm 2 line 3). This would make 𝑛𝑝𝑜𝑠𝑢 small
for high-degree nodes and large for low-degree nodes, compared
to a fixed value. We scale 𝑛𝑝𝑜𝑠𝑢 ,∀𝑢 between 5 and 50 (line 4). The
time complexity to estimate 𝑛𝑝𝑜𝑠𝑢 for all nodes is O(|V|).
2. Biased (Assign high probability to high-degree neighbors). In order
to bias the neighborhood sampling towards high-degree nodes, we
assign a score to every edge inspired by the preferential attachment
model [2, 18] as shown below:

𝑒𝑠𝑐𝑜𝑟𝑒𝑢𝑣 = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢) ∗ 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) (4)

Based on Equation 4, for every end-vertex𝑢, the edges connected to
its high-degree neighbors would be assigned a higher score (line 8
in Algorithm 2). This would assign high degree neighbors a higher
chance to be chosen during sampling. Notably, this would mitigate
degree bias, and achieve improved performance both on low and
high-degree nodes. For every node 𝑢, we sample 𝑛𝑝𝑜𝑠𝑢 neighbors
from its neighbors using the computed edge scores. The time com-
plexity to compute the edge scores is O(|E|).

BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs WSDM ’23, Feb 27– March 3, 2023, Singapore

3. Training. For each node, we sample positive edges 𝐸𝑝𝑜𝑠 basis
the estimated edge scores 𝑒𝑠𝑐𝑜𝑟𝑒 and neighborhood sizes 𝑛𝑝𝑜𝑠 (line
12). We sample 𝑛𝑝𝑜𝑠 random (uniform) distribution negative (non-
existing) links for every node (line 13). The time taken to perform
sampling is𝑂

(
|𝑉 | ∗ (𝑛𝑝𝑜𝑠𝑢 + 𝑛𝑛𝑒𝑔)

)
. 𝑛𝑛𝑒𝑔 and 𝑛𝑝𝑜𝑠𝑢 (≤ 50 ∀𝑢) are

constants making the time complexity of sampling 𝑂 (|𝑉 |).
4. Asymmetric Loss.We employ an asymmetric loss function to learn
the model parameters (line 18 in Algorithm 2). It can be decom-
posed into four terms. For every positive link (𝑢, 𝑣) (from 𝐸𝑝𝑜𝑠), we
force the dot product of source embedding of 𝑢 and target embed-
ding of 𝑣 to be high (line 14). For every negative link (𝑢, 𝑣) (from
𝐸𝑛𝑒𝑔), we force the dot product of source embedding of𝑢 and target
embedding of 𝑣 to be low (line 15). The third and the fourth terms
in the loss explicitly captures the edge direction i.e., asymmetry in
relationship between nodes. Specifically, for each one-way directed
link (𝑢, 𝑣) i.e. (𝑢, 𝑣) ∈ 𝐸𝑝𝑜𝑠 ∧ (𝑣,𝑢) ∉ 𝐸𝑝𝑜𝑠 , we want the model to
assign a high score to (𝑢, 𝑣) and a small score to (𝑣,𝑢) (lines 16–17).
We perform back propagation to update the model parameters.
Complexity. In terms of training BLADE, the time complexity of
estimating 𝛼 , 𝑛𝑝𝑜𝑠 and 𝑒𝑠𝑐𝑜𝑟𝑒 (Algorithm 2 lines 1–9) is O(|V|+|E|).
The time complexity of sampling is O(|V|) as the number of epochs
is constant. The backpropagation and inference procedure (Algo-
rithm 1) is same for any model, as long as the model architecture is
asymptotically similar. We use FAISS [8] to perform efficient nearest
neighbor lookup. Our model uses O(|𝑉 |) space to store embeddings
corresponding to |𝑉 | nodes. This makes BLADE efficient and easily
deployable in an e-commerce production environment, where the
graph consists of millions of edges.

3 EXPERIMENTS
In this section, we evaluate the performance of BLADE against
state-of-the-art GNN models for directed graphs. Specifically, we
aim to answer the following evaluation questions:
EQ1: Is BLADE able to deliver superior performance for the node
recommendation task compared to existing baselines?
EQ2: How effective is BLADE in capturing node asymmetry i.e.
predicting the correct edge direction?
EQ3: How does initializing node embeddings impact the perfor-
mance of BLADE for recommending nodes?
EQ4:Howdoes using varying neighborhood size used in BLADE com-
pare to a fixed neighborhood size employed by traditional GNN
models for node recommendation?
EQ5: How does biased (non-uniform) edge sampling affect the per-
formance of BLADE compared to an unbiased uniform edge sam-
pling and graph attention based edge weighing?
EQ6: What is the runtime overhead incurred by the biased neigh-
borhood sampling employed in BLADE compared to minibatch
sampling employed by Vanilla GCN during model training?
PublicDatasets.Weemploy six open-source directed graph datasets
for benchmarking the performance of different models for node
recommendation task. The overview of the datasets is shown in
Table 2. All the open-source graphs are taken from SNAP and
KONECT databases. WikiVote contains Wikipedia voting data from
its inception till January 2008. Nodes in the network represent
Wikipedia users and a directed edge from node 𝑖 to node 𝑗 rep-
resents that user 𝑖 voted on user 𝑗 . Cora and DBLP are citation

networks where we represent the papers as nodes, and a directed
edge from node 𝑖 to node 𝑗 represents that paper 𝑖 cites paper 𝑗 .
Twitter is a social network of users where a directed edge from
node 𝑖 to node 𝑗 represents that user 𝑖 follows user 𝑗 . Amazon1 and
Amazon2 correspond to directed co-purchase networks. Each node
in the graph is a product and a directed edge from node 𝑖 to node 𝑗

indicates that customers bought product 𝑖 before product 𝑗 .
Proprietary Datasets.We also employ two proprietary directed
graph datasets for benchmarking BLADE against existing baselines.
E-comm1 and E-comm2 are proprietary datasets sampled from dif-
ferent stores of an e-commerce major. Each node in the proprietary
graph corresponds to a product, and a directed edge corresponds
to a co-purchase relation between the two products. Owing to con-
fidentialy, we do not disclose how the edge directions have been
crafted in these datasets.

Observe that all the graph datasets are unweighted, non-attributed
and directed. The graph datasets are selected to capture diverse
structural aspects of a graph i.e., domain, size, directed edges % and
average degree. The graph datasets range from 7K-5.5M nodes and
50K-31M edges.
Implementation Details.We implemented BLADE using DGL

Table 2: Directed Graph Datasets used in experiments

Dataset |V| |E| Average
Degree

% Directed
Edges

WikiVote 7,115 103,689 14.57 94.34
DBLP 12,590 49,759 3.95 99.53
Cora 23166 91,500 3.95 94.87

Twitter 81,306 1,768,149 21.75 51.83
Amazon1 259,005 1,206,557 4.66 45.72
Amazon2 403,394 3,387,388 8.4 44.26
E-comm1 1,988,703 14,152,887 7.3 76.33
E-comm2 5,541,372 31,759,139 5.76 79.97

and PyTorch. We observe that a learning rate of 10−4 using Adam’s
optimizer works the best. We use (𝐿 =) 3 layer GNN model for
BLADE. After generating the node embeddings, we perform nearest
neighbor lookup to suggest top-𝑘 (𝑘 ∈ {5, 10, 20}) node recommen-
dations. All the experiments are conducted on a 64-core machine
with a 488 GB RAM running Linux. For all models, we learn 128
dimensional node embeddings trained for a maximum of 30 epochs.
We repeat all the experiments 10 times and report the average value
across the runs.
Baselines.We previously discussed state-of-the-art models in di-
rected graphs (Section 1.2). In order to evaluate BLADE, we choose
the most competitive baselines as follows:
(1) We choose APP [28] and NERD [9] as they deliver superior
performance compared to deepwalk[16], node2vec [4], LINE [20],
HOPE[15] and VERSE [24]. These are the best performing random
walk based models suitable for directed graphs.
(2) DGGAN [29] is a GAN [3] based model which outperforms deep-
walk [16], node2vec [4], LINE [20], APP[28], HOPE [15] and graph
auto-encoder based models like VGAE [10], Gravity GAE [17] etc.
(3) MagNet [27] is a GNN model that uses a complex Hermitian
matrix to encode the graph structure, and it outperforms Graph-
Sage [6], GAT [25], DGCN [23] and APPNP [12].

http://snap.stanford.edu/data/
http://konect.cc/networks/
https://snap.stanford.edu/data/wiki-Vote.html
http://konect.cc/networks/subelj_cora/
http://konect.cc/networks/dblp-cite/
https://snap.stanford.edu/data/ego-Twitter.html
https://snap.stanford.edu/data/amazon0302.html
https://snap.stanford.edu/data/amazon0601.html
https://snap.stanford.edu/data/wiki-Vote.html
http://konect.cc/networks/dblp-cite/
http://konect.cc/networks/subelj_cora/
https://snap.stanford.edu/data/ego-Twitter.html
https://snap.stanford.edu/data/amazon0302.html
https://snap.stanford.edu/data/amazon0601.html

WSDM ’23, Feb 27– March 3, 2023, Singapore Srinivas and Anoop, et al.

In summary, we compare BLADE against APP [28], NERD [9],
DGGAN [29] andMagNet [27]. We use publicly released code repos-
itories for all the baselines and employ parameter tuning to choose
the best parameters for each baseline.
Experimental Setup. In order to answer the evaluation questions,
we setup the experiments (similar to [28], [27], [6]) as follows:
• Node Recommendation Task: For each graph dataset, we
use 75%, 5% and 20% non-overlapping edges for training,
validation and testing respectively. For a ground-truth rec-
ommendation (𝑢, 𝑣) (from the test data), where𝑢 is the query
node, we retrieve top-𝑘 node recommendations (𝑅𝑞

𝑘
) sug-

gested by each model. In order to evaluate the quality of
recommendations, we use HitRate@k and MRR@k for k in
{5, 10, 20}. This provides an insight into how a model cap-
tures relationship between nodes. We will employ this setup
to answer EQ1, EQ3, EQ4, EQ5 and EQ6.
• Directed link prediction Task: For each graph dataset, we
use 75%, 5% and 20% non-overlapping edges for training,
validation and testing respectively. In this task, we consider
only one-way directed edges ((𝑢, 𝑣) ∈ 𝐺 ∧ (𝑣,𝑢) ∉ 𝐺) as
positive links.We reverse the direction of the positive links to
create negative links while testing. We want to evaluate how
different models capture the edge direction; a good model
assigns a high score to the correct edge (positive link), and a
low score to the reverse edge (negative link). We evaluate
the model performance using AUC for this task. We employ
this setup to answer EQ2.

4 RESULTS
In this section, we present results corresponding to the performance
of different models in jointly capturing node relationship (Section 4)
and edge direction (Section 4). We also perform ablation study (Sec-
tion 4.1) to analyze the impact of different optimizations employed
in BLADE like adaptive neighborhood size, biased neighborhood
sampling and random walk with restart based initial node repre-
sentations. For proprietary datasets, we do not show the absolute
values, and results relative to an internal baseline is presented ow-
ing to confidentiality.

EQ1. Node Recommendation Task The results for the node rec-
ommendation task is shown in Table 3.We observe that BLADE con-
sistently outperforms existing baselines in terms of both HitRate
and MRR. DGGAN delivers the second best performance, but it fails
to complete model training in 48 hours on the proprietary datasets
indicated by OOT (Out Of Time)2. It does not scale to real-world
datasets; DGGAN [29] demonstrate their model efficacy on small
datasets (the biggest graph employed in their experiment has 15K
nodes). MagNet is not applicable for node recommendation task,
and we evaluate it against BLADE only for the link prediction task.
Overall, BLADE captures relationship between nodes the best com-
pared to the existing baselines.

EQ2. Link Direction Prediction TaskWe present the perfor-
mance of different models in predicting edge direction in Table 4.
2OOT: Out of time. The model training could not be completed in 48 hours.

We observe that BLADE outperforms existing baselines in terms of
AUC. We observe that MagNet and DGGAN perform the second
best. As mentioned earlier, DGGAN is marked OOT for the largest
datasets. From Table 3 and Table 4, we infer that BLADE is able to
jointly capture relationship between nodes and edge direction in
directed graphs the best compared to state-of-the-art baselines.

4.1 Ablation Study
Recall that BLADE employs different optimizations like employing
adaptive neighborhood size, biased neighborhood sampling and
random walk with restart based initial node representations. In
order to analyse the impact of these optimizations on the perfor-
mance of BLADE, and deduce the importance of each optimization,
we perform ablation study on the Twitter dataset which we present
next.

EQ3. Initial Node Embeddings (X) In this work, we consider
unweighted and non-attributed directed graphs where the nodes
and edges have no explicit features or weights. However, GNNs
require initial node representations for both training and inference.
To this end, we explore different ways to set the initial nodes em-
beddings:
(1) BLADE-U: The embedding is sampled from a uniform distribu-
tion in [−1, 1].
(2) BLADE-N: The embedding is sampled from a standard normal
distribution (mean 0 and standard deviation 1).
(3) BLADE-XU: The embedding is sampled from a Xavier uniform
distribution.
(4) BLADE-XN: The embedding is sampled from a Xavier normal
distribution.
(5) BLADE-RWR: We generate random walks with restart based
walks which we leverage to generate node embeddings similar to
DeepWalk [16], Node2Vec [4] etc.

We present the impact of initial node embeddings on the per-
formance of BLADE in Table 5 in terms of HitRate and MRR. We
find that among different distributions, initializing the embeddings
using a standard normal distribution (BLADE-N) performs the best.
This is consistent with the results shown in [1]. However, we ob-
serve that initializing the node embeddings using random walk
with restart based model (BLADE-RWR) delivers the best perfor-
mance; RWR based embeddings captures the node connectivity
structure. Note that the results corresponding to BLADE in Table 3
and Table 4 employ RWR based initial node representations.

EQ4. Impact of Adaptive Neighborhood Size Recall that a GNN
employs fixed size neighborhood batch sampling during training.
Irrespective of the node characteristic, for every node it samples
a fixed number of neighbors in every batch. Both GNNs and ran-
dom walk based models do not capture the node representations
for low-degree nodes the best. In order to overcome this issue,
BLADE employs an adaptive neighborhood size based on the node
degree as explained earlier. The impact of using a variable neigh-
borhood size on BLADE is shown in Table 6. Observe that having
an adaptive neighborhood size with BLADE performs better than
having a fixed neighborhood size. Further, to perform a deeper

BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs WSDM ’23, Feb 27– March 3, 2023, Singapore

Table 3: Node Recommendation. Best results are in bold

Dataset k HitRate@k MRR@k

NERD APP DGGAN BLADE NERD APP DGGAN BLADE

WikiVote
5 0.0068 0.0031 0.0158 0.0164 0.0028 0.0013 0.0075 0.0079
10 0.0121 0.0064 0.0282 0.0302 0.0035 0.0017 0.0091 0.0097
20 0.0236 0.0151 0.0497 0.0589 0.0043 0.0023 0.0106 0.0116

DBLP
5 0.0086 0.0098 0.0201 0.0462 0.0042 0.0033 0.0092 0.0194
10 0.0141 0.0283 0.0337 0.0978 0.005 0.0057 0.011 0.0261
20 0.0249 0.0515 0.0526 0.1751 0.0057 0.0073 0.0123 0.0313

Cora
5 0.0183 0.0638 0.0146 0.1136 0.0083 0.0192 0.0076 0.0359
10 0.0373 0.1239 0.023 0.2683 0.0108 0.031 0.0087 0.0563
20 0.0671 0.2283 0.0401 0.4287 0.0128 0.0382 0.0098 0.0675

Twitter
5 0.0213 0.0452 0.008 0.0564 0.0064 0.0198 0.004 0.0223
10 0.0546 0.0901 0.0139 0.1173 0.0107 0.0257 0.0047 0.0303
20 0.1211 0.1629 0.0219 0.2152 0.0152 0.0306 0.0053 0.0369

Amazon1
5 0.253 0.3163 0.3195 0.333 0.1133 0.1338 0.1298 0.2105
10 0.3808 0.5635 0.5784 0.6142 0.1306 0.1674 0.1781 0.2492
20 0.4882 0.6917 0.71 0.7544 0.1381 0.1767 0.185 0.2593

Amazon2
5 0.1868 0.1838 0.1758 0.2013 0.0849 0.0563 0.056 0.1043
10 0.3515 0.3752 0.3742 0.4498 0.1065 0.0717 0.0717 0.1187
20 0.4927 0.5701 0.5848 0.6498 0.1165 0.0808 0.0818 0.1327

E-comm1
5 0.62x 2.14x OOT 3.57x 0.61x 1.02x OOT 1.65x
10 1.94x 4.01x OOT 6.25x 0.71x 1.26x OOT 2x
20 3.14x 6.95x OOT 9.98x 0.79x 1.46x OOT 2.25x

E-comm2
5 1.28x 1.23x OOT 3.87x 0.71x 0.67x OOT 1.87x
10 1.85x 1.99x OOT 6.25x 0.78x 0.77x OOT 2.18x
20 2.63x 3.31x OOT 9.12x 0.84x 0.85x OOT 2.38x

Table 4: Link Direction prediction (AUC). Best results are in bold

Model Dataset

WikiVote DBLP Cora Twitter Amazon1 Amazon2 E-comm1 E-comm2

NERD 63.67 52.9 53.2 63.2 50.9 53.4 7.1x 2.48x
APP 51.1 52.3 51.87 50.13 51.36 52.29 0.1x 0.15x

DGGAN 67.71 55.8 57.42 71.46 53.05 53.47 OOT OOT
MagNet 67.5 52.2 59.93 61.52 51.6 56.93 12.65x 6.62x

BLADE 68.88 61.7 65.75 78.54 55.83 57.6 14.72x 12.53x

Table 5: Impact of Initial Node Embeddings on BLADE’s per-
formance for Twitter Dataset

Model HitRate@20 MRR@20

BLADE-U 0.185 0.0318
BLADE-N 0.2137 0.0354
BLADE-XU 0.212 0.0352
BLADE-XN 0.2108 0.0349

BLADE-RWR 0.2152 0.0369

analysis, we split the test edges into low3 and high-degree bins
based on the out-degree of the source node. Results indicate that
using BLADE with an adaptive neighborhood size improves both
the performance on both low-degree and high-degree test edges.
Note that the results corresponding to BLADE in Table 3 and Table 4
employ sampling using adaptive neighborhood size.

3For Twitter dataset, a node having less than an in-degree of 10 is considered to be a
low-degree node.

EQ5. Impact of Biased Edge Sampling Graph neural networks
assign equal importance to every edge in unweighted graphs having
no node features. An exception to this is GAT [25], which provides
different attention scores to every neighbor. However, attention
based models consume significant time and memory for training
and are very slow on real-world e-commerce datasets. In order to
provide a differential treatment, we present a bias towards high-
degree neighbors inspired by the preferential attachment mecha-
nism [2, 18].We use the computed edge scores during neighborhood
sampling i.e. for every node 𝑖 , we sample 𝑛𝑝𝑜𝑠𝑖 neighbors based on
the edge score. We show the impact of using a biased edge sampling
scheme on the performance of BLADE in Table 7. We observe that
using the computed edge scores during neighborhood sampling
shows an improvement in performance compared to an unbiased
sampling procedure. Further, observe that BLADE using a GAT
layer trained for 30 epochs perform very poorly (5x drop in HitRate
and MRR). BLADE using GAT based layer takes 12x more training
time compared to BLADE using a GCN layer. GAT models converge

WSDM ’23, Feb 27– March 3, 2023, Singapore Srinivas and Anoop, et al.

Table 6: Impact of Adaptive Neighborhood Size on BLADE’s performance for Twitter Dataset

Model HitRate@20 MRR@20

All test edges
Test Edges

with low-degree
source nodes

Test Edges
with high-degree
source nodes

All test edges
Test Edges

with low-degree
source nodes

Test Edges
with high-degree
source nodes

BLADE
(5 neighbors) 0.2118 0.3935 0.1684 0.0366 0.0698 0.0286

BLADE
(10 neighbors) 0.2122 0.3933 0.1686 0.0367 0.0696 0.0288

BLADE
(25 neighbors) 0.212 0.3926 0.1686 0.0367 0.0694 0.0288

BLADE
(50 neighbors) 0.2118 0.3926 0.1683 0.0366 0.0694 0.0287

BLADE
(All neighbors) 0.2119 0.3922 0.1686 0.0366 0.0696 0.0287

BLADE
(Adaptive) 0.2152 0.3999 0.1706 0.0369 0.0702 0.0289

very slowly and need to be trained for 500-1000 epochs [5, 25] to
derive optimal performance, making it unsuitable for e-commerce
graphs. Note that the results corresponding to BLADE in Table 3
and Table 4 employ the biased edge sampling scheme during train-
ing and inference of BLADE.

Table 7: Impact of Biased Edge Sampling on BLADE’s perfor-
mance for Twitter Dataset

Model HitRate@20 MRR@20

BLADE
(3-layer 4-head GAT) 0.0469 0.0088

BLADE
(Uniform Edge Sampling) 0.2148 0.0368

BLADE
(Biased Edge Sampling) 0.2152 0.0369

EQ6. Running Time Comparison From results, we observed
the crucial role of biased sampling in BLADE while modelling di-
rected graphs. We have also previously discussed the time complex-
ity of biased sampling, and shown that it is asymptotically similar
to random sampling employed in Vanilla GCN. Here, we show the
run time comparison of BLADE against vanilla GCN in Table 8.
Observe that the there is only a slight difference between the per

Table 8: Training time per epoch (s)

Dataset Vanilla GCN BLADE

WikiVote 0.64 1.3
DBLP 0.78 0.95
Cora 0.94 2.2

Twitter 11.38 16.79
Amazon1 22.6 32.28
Amazon2 43.2 55.03
E-comm1 164.78 184.82
E-comm2 398.66 471.16

epoch time of BLADE and Vanilla GCN. Specifically, this slight
increase is due to the biased sampling employed by BLADE, which
can be accommodated for deriving significant gains compared to
baselines basis experiments. This clearly indicates the efficiency of
BLADE and paves way for deploying it in an e-commerce produc-
tion environment, where the graph consists of millions of edges.

4.2 Production A/B Test
We further evaluate the performance of BLADE in recommending
co-purchasable productions by conducting an A/B test in two dif-
ferent marketplaces. For the control group, we use an incumbent
approach based on product co-purchases, while for the treatment
group, we show the recommendations generated from BLADE. We
run the experiments for 4 weeks and observe +160% improvement
on product sales and +175% improvement on profit gain. All the
results are statistically significant with p-value < 0.05. These results
show the product recommendations generated from BLADE can
significantly improve customer shopping experience in discovering
potentially related products of interest.

5 CONCLUSIONS
In this paper, we presented BLADE, a novel Graph Neural Network,
for node recommendation in directed graphs. In order to train the
model, we employ an asymmetric loss function to jointly capture
link likelihood and link direction. During training, we also em-
ploy a locally adaptive neighborhood sampling approach which
is biased towards high-degree neighbors. We leverage the trained
GNN model to generate dual embeddings for each node, by ap-
propriately aggregating features from its neighborhood. Extensive
offline experiments show that BLADE outperforms state-of-the-art
baselines for the node recommendation and link prediction task on
both publicly available and proprietary directed graph datasets. We
perform ablation study to highlight the benefit of different compo-
nents of BLADE.We evaluate the efficiency of BLADE both through
run time complexity analysis and benchmarking. The efficiency of
BLADE makes it deployable on large e-commerce graphs. Further,
BLADE delivers significant improvement in revenue and sales as
measured through an A/B experiment.

BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs WSDM ’23, Feb 27– March 3, 2023, Singapore

REFERENCES
[1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2020.

The surprising power of graph neural networks with random node initialization.
arXiv preprint arXiv:2010.01179 (2020).

[2] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex
networks. Reviews of modern physics 74, 1 (2002), 47.

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. In NIPS.

[4] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In 22nd ACM SIGKDD. 855–864.

[5] Hantao Guo, Rui Yan, Yansong Feng, Xuesong Gao, and Zhanxing Zhu. 2020.
Simplifying Graph Attention Networks with Source-Target Separation. In ECAI
2020. IOS Press, 1166–1173.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. NIPS 30 (2017).

[7] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-
pling towards fast graph representation learning. Advances in neural information
processing systems 31 (2018).

[8] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Transactions on Big Data 7, 3 (2021), 535–547.

[9] Megha Khosla, Jurek Leonhardt, Wolfgang Nejdl, and Avishek Anand. 2019. Node
representation learning for directed graphs. In ECML PKDD. 395–411.

[10] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. NIPS
Workshop on Bayesian Deep Learning (2016).

[11] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. ICLR (2017).

[12] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. ICLR
(2019).

[13] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-GNN: Tail-Node
Graph Neural Networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1109–1119.

[14] Buddhika Nettasinghe and Vikram Krishnamurthy. 2021. Maximum Likelihood
Estimation of Power-law Degree Distributions via Friendship Paradox-based
Sampling. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 6
(2021), 1–28.

[15] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In SIGKDD. 1105–1114.

[16] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In SIGKDD. 701–710.

[17] Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet-Anh Tran, and
Michalis Vazirgiannis. 2019. Gravity-inspired graph autoencoders for directed
link prediction. In CIKM. 589–598.

[18] Herbert A Simon. 1955. On a class of skew distribution functions. Biometrika 42,
3/4 (1955), 425–440.

[19] Jiankai Sun, Bortik Bandyopadhyay, Armin Bashizade, Jiongqian Liang, P Sa-
dayappan, and Srinivasan Parthasarathy. 2019. Atp: Directed graph embedding
with asymmetric transitivity preservation. In AAAI, Vol. 33. 265–272.

[20] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[21] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal,
Prasenjit Mitra, and Suhang Wang. 2020. Investigating and mitigating degree-
related biases in graph convoltuional networks. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 1435–1444.

[22] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and
Andrew Lim. 2020. Digraph inception convolutional networks. NIPS 33 (2020),
17907–17918.

[23] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew
Lim. 2020. Directed graph convolutional network. arXiv preprint arXiv:2004.13970
(2020).

[24] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
Verse: Versatile graph embeddings from similarity measures. In Proceedings of
the 2018 World Wide Web Conference. 539–548.

[25] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. (2018).

[26] Saladi Anoop Virinchi, Srinivas and Abhirup Mondal. [n. d.]. Recommending
Related Products Using Graph Neural Networks in Directed Graphs. In ECML
PKDD.

[27] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew
Hirn. 2021. Magnet: A neural network for directed graphs. NIPS 34 (2021).

[28] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
graph embedding for asymmetric proximity. In AAAI, Vol. 31.

[29] Shijie Zhu, Jianxin Li, Hao Peng, Senzhang Wang, Philip S Yu, and Lifang He.
2021. Adversarial directed graph embedding. AAAI (2021).

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 BLADE
	3 Experiments
	4 Results
	4.1 Ablation Study
	4.2 Production A/B Test

	5 Conclusions
	References

