Why Conversational AI won’t replace Healthcare Providers

Abstract
Advances in Artificial Intelligence (AI) will help automate expensive and laborious tasks with ever greater accuracy and throughput. Conversational Intelligence, the ability by which humans connect, engage, problem solve and navigate with others is critical for healthcare providers to help patients reach good outcomes. The rapid rise in the availability of data in healthcare has raised the promise that research in Conversational AI can be applied to replace medical experts with artificial agents or bots. We argue that conversational AI will increase efficiency and accuracy of medical experts and will create new avenues for jobs that never existed before and will not replace healthcare providers.

Author Keywords
Conversational AI in Healthcare; Decision Support Systems; Chatbots

CCS Concepts
• Human-centered computing → Human computer interaction (HCI);

Introduction
Conversational AI encompasses a wide range of fields, including, speech recognition, computer vision, text analytics, summarization, translation and reasoning making conversational AI one of the most challenging and important tasks.
in AI. We are interested here in the impact of advances in Machine Learning (ML) and AI on how healthcare is provided. In the early days of AI, interactive clinical decision support systems employed AI built on rules [28]. ELIZA[25] and PARRY[7] used Natural Language Processing (NLP) techniques to interact with humans via a text interface. Although these systems showed promising results, they were limited by the static knowledge bases powering them. Researchers have continued to invest significant effort in decision support systems, especially in diagnosis and treatment suggestions or recommendations [8, 3, 18, 12] 1

Dialog systems [4, 30], typically contain several modules-(1) Natural Language Understanding (NLU) component is responsible for understanding the user's intent, (2) A Dialog State Tracker component is responsible for maintaining and updating the state of the dialog (3) the Dialog Policy is responsible for selecting the next best action, (4) The Natural Language Generation component then converts the action into a natural language response, optionally, using information from knowledge bases. In addition, these systems can also include a Speech (or other modalities such as vision) Recognition module and a Text-to-Speech system. Each of these components can be rule-based, deep/machine learning-based or a combination. Milabot [21], Xiaolce [29], CleverBot 2, Mitsuku and Gunrock [27] do provide human-like responses but rely on such individually trained components. More recent approaches use deep learning models to create end-end trainable systems [11, 5, 14]. These systems rely on the assumption that appropriate follow up responses have been observed in the training data. These systems are attractive since they do not require expert knowledge about the domain or specially annotated data,

and replace many of the separated modules in the traditional dialog systems. Chatbots such as Meena or GPT2 [1], (although not specifically applied in Healthcare), appear to converse as humans do.

Given these advances in Conversational AI, it is now imperative to define the properties of a good conversational AI solution for healthcare applications. When a patient presents their chief complaint, a good conversational AI should collect all pertinent information, by interacting with the patient. Based on this information, the system should present a plan with next steps, including treatments. When uncertain, the system should request additional information for assessment. For example, an agent may look for lab tests to differentiate a bacterial infection from a viral one in order to triage or diagnose. If the system is still uncertain, it may need to then default back to a human expert. Hence, in addition to 'conventional' ML requirements, the properties of a good conversational AI include the need to 1) be easily extensible with advances in ML and AI, research into new diseases, outbreaks, 2) incrementally learn with a human-in-the-loop and 3) understand when there is model uncertainty and should fall back to an expert. In the following section, we list some of the challenges in achieving these requirements. We claim that despite these challenges, conversational AI can continue to help patients and healthcare providers.

Factors that inhibit Expert Replacement

Challenges in Speech Recognition

While Automatic Speech Recognition (ASR) systems have made great strides, their performance in specific domains having distinct vocabularies may not always generalize [10]. The ASR system design is further complicated since it is typically followed by a module identifying speakers associated with specific utterances, as well as detecting the role

2https://www.cleverbot.com/
of the speaker (doctor or a patient in healthcare settings) [9]. ASR performance typically drops in noisy environments and results are sensitive to the quality and arrangement of microphones [24]. These factors are hard to control in settings where users interact with conversational agents, e.g. over mobile phones. Finally, ASR systems can only recognize speech. Non-verbal indicators of communication are crucial in medical practice [13] and are difficult to quantify without a clinical examination.

Healthcare requires more than just detection
Most of the machine learning applications today have been narrowly focused, specializing on repetitive tasks that machines perform well with greater accuracy and speed. However, medical experts use information from different sources, and knowledge gained over several years in the field play a major role in arriving at an answer. Until AI models are capable of factoring in all scenarios of complex cases, conversational systems will be relegated to providing recommendations to a medical expert, with the ultimate decision taken by the medical expert [23].

Bias and Transparency
Adoption and success of AI technologies requires patient and provider trust in the AI algorithms. Understanding how the models arrived at a result (model interpretation), is a key challenge that machine learning researchers are faced with. Note that the definition of interpretability is itself unclear. Unless these challenges are successfully tackled, technology developers and adopting hospitals will remain anxious, limiting widespread adoption [20]. Another artifact of using data to train algorithms, is the tendency for algorithms to reflect and sometimes magnify biases in data. For instance, a widely used algorithm takes healthcare costs as a proxy for health conditions. This choice resulted in a system that was racially biased, falsely indicating that black patients tend to be sicker than white [19]. Since model performance completely depends on the data input, expert oversight is needed to check the results.

Lack of Representative Data
One of the key ingredients to the success of deep learning models in recent times is the availability of large corpora of labeled training data. Owing to privacy concerns, healthcare data cannot be hosted on crowd-sourcing platforms for collecting annotations. Often, the annotation task at hand also requires domain expertise. Thus collecting accurate clinical data is time-consuming and expensive. Another level of complexity comes from the large number of medical conditions that exist today. As a result of these challenges, clinical training data is never complete and cannot cover all possibilities of care for a problem. This often results in sparse representation for many situations. Thus, a good conversational AI system will again need to fall back on experts when presented with an edge case or if it is uncertain about a decision and collect additional data or have an expert weigh in.

Integration difficulties and Accountability for errors
Translating a technology from development to point of care involves meeting regulatory compliance [22]. This entails accurate assessment and education of users about the risks and benefits of the technology. Data collected by agents in healthcare domain is sensitive and has to follow privacy laws of respective countries. Often this results in silo-ed data present across hospitals, vendors, imaging facilities, and patients, without a central repository. Analogous to the automobile industry, where self-driving cars elicit changes in automobile regulation and insurance, changes in healthcare will also evolve through deliberation of policies [20].

Despite recent advance in deep learning leading to some
claims of super-human performance in specific clinical application tasks, the nature of these models means that they are never free of error. Important decisions such as responsibility for adverse events in case of technology failure will always remain relevant mandating human involvement. In a clinical application, the consequences of such errors, even when rare, can be severe. And it is unclear who should be held accountable for such errors.

Future of Conversational AI in Healthcare

Today, deep learning allows us to build better technology than ML did before. This section lists some of the avenues where Conversational AI can aid medical experts.

Reduce medical errors
Conversational AI can provide assistance to doctors in the form of diagnosis, treatment recommendations, and safety alerts. In contrast to retrospective human chart review, automated systems are real-time, adaptive and can improve detection capabilities of safety monitoring systems significantly [17]. Medical experts spend substantial amounts of time on regulatory and administrative work such as clinical documentation. This has led to burnout and increase in medical errors [26]. Automated language understanding of the conversations can help reduce the overload on medical experts allowing them to concentrate on more superior decision making tasks that require human expertise [15].

Improve patient outcome and experience
Conversational AI that can help patients in understanding their ailments, reduces time lags that exist between when a patient becomes sick and the time at which she is actually treated. Conversational AI supported remote monitoring can eliminate unnecessary appointments. Such systems can also assist patients or the elderly at home and even go to the extent of making emergency calls under critical conditions. By using AI supported tools to collect and manage data, health care providers can spend more time caring for the patients who need them the most.

Improve efficiency and reduce costs
Conversational systems can be used for triaging purposes, where the system interacts with the patient to understand his or her ailments and use predictive models to decide the severity of the conditions. This not only helps predict the number of hospital admissions, it also reduces costs of hospital admissions, thereby improving efficiency in hospitals [6]. Nurses and other medical experts can then concentrate on critical cases that require immediate care.

Create more jobs
With the adoption of AI technologies in healthcare, new jobs that require both technology expertise and medical expertise will arise [16]. A growing number of adults in the US are using the internet to diagnose their medical concerns. With appropriate conversational agents in place, these individuals will be automatically screened for medical problems and triaged to healthcare professionals for further care. There will be an increased demand for medical professionals to treat these screened patients [2].

Conclusion
In this paper, we discussed potential that Conversational AI can offer in transforming many aspects of patient care. We believe AI systems will not replace medical experts but rather augment their efforts and make them more efficient. AI will empower patients and medical practitioners with powerful tools and as a result, healthcare will no longer be confined within the walls of medical facilities.

3 https://www.beckershospitalreview.com/healthcare-information-technology/google-receives-more-than-1-billion-health-questions-every-day.html
REFERENCES

