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Abstract

Open-vocabulary (OV) 3D object detection is an emerg-
ing field, yet its exploration through image-based methods
remains limited compared to 3D point cloud-based meth-
ods. We introduce OpenM3D, a novel open-vocabulary
multi-view indoor 3D object detector trained without hu-
man annotations. In particular, OpenM3D is a single-stage
detector adapting the 2D-induced voxel features from the
ImGeoNet model. To support OV, it is jointly trained with a
class-agnostic 3D localization loss requiring high-quality
3D pseudo boxes and a voxel-semantic alignment loss re-
quiring diverse pre-trained CLIP features. We follow the
training setting of OV-3DET where posed RGB-D images
are given but no human annotations of 3D boxes or classes
are available. We propose a 3D Pseudo Box Generation
method using a graph embedding technique that combines
2D segments into coherent 3D structures. Our pseudo-boxes
achieve higher precision and recall than other methods, in-
cluding the method proposed in OV-3DET. We further sam-
ple diverse CLIP features from 2D segments associated with
each coherent 3D structure to align with the corresponding
voxel feature. The key to training a highly accurate single-
stage detector requires both losses to be learned toward
high-quality targets. At inference, OpenM3D, a highly ef-
ficient detector, requires only multi-view images for input
and demonstrates superior accuracy and speed (0.3 sec. per
scene) on ScanNet200 and ARKitScenes indoor benchmarks
compared to existing methods. We outperform a strong two-
stage method that leverages our class-agnostic detector with
a ViT CLIP-based OV classifier and a baseline incorporating
multi-view depth estimator on both accuracy and speed.

1. Introduction
Thanks to the recent breakthrough of Vision-Language Mod-
els (VLMs) [9, 17, 37], general representations aligned
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across the 2D image and free-form-text spaces have become
available. These VLMs demonstrate impressive general-
ization ability to zero-shot object classification tasks. A
line of work [10, 11, 51] combines existing class-agnostic
2D object proposals with the zero-shot ability of VLMs to
classify 2D object proposals into a large number of object
classes. These methods open the door for Open-Vocabulary
(OV) 2D object detection and segmentation, handling free-
form text descriptions for objects at inference time. For
robotics applications, another line of work explores OV 3D
indoor scene understanding [13, 16, 28, 32, 45] based on
lifting image features from VLMs to 3D. However, all these
methods require high-quality 3D point cloud as inputs. This
reliance on expensive 3D sensors (e.g., depth cameras, stereo
cameras, or laser scanners) is the bottleneck. On the other
hand, for fixed-vocabulary, several multi-view image-based
methods [41, 48, 50] have achieved significantly improved
3D object detection performance. Unlike point cloud-based
methods, image-based methods do not require expensive 3D
sensors at inference time.

We propose OpenM3D, a novel OV multi-view indoor
3D object detector that trained without human annotations.
To the best of our knowledge, this is the first work general-
izing the OV capability to multi-view 3D object detection.
OpenM3D is a single-stage 3D detector adapting the 2D-
induced voxel features from the ImGeoNet model. The
voxel feature is aggregated from multiple RGB features. To
support OV, we need to enable it to localize all objects and
classify them according to OV descriptions. Hence, it is
jointly trained with a class-agnostic 3D localization loss re-
quiring high-quality 3D pseudo boxes and a voxel-semantic
alignment loss requiring diverse pretrained CLIP features.
We follow the training setting of OV-3DET where posed
RGB-D images are given but no human annotations of 3D
boxes or classes are available. We proposed a 3D Pseudo
Box Generation method using a graph embedding technique
that combines 2D segments into coherent 3D structures dur-
ing training (See Fig. 1). Specifically, we apply SAM [19]
on multi-view images to obtain class-agnostic 2D segments.



By treating each segment as a node and computing the re-
lation between nodes according to their connectivity in 3D,
we formulate the 3D pseudo bounding boxes generation as
a novel graph embedding-based clustering problem so that
segments connected in 3D are clustered into a 3D object in-
stance. Our pseudo boxes achieve higher precision and recall
than other methods, including those proposed in OV-3DET.
We further sample diverse CLIP features from 2D segments
associated with each coherent 3D structure to align with the
corresponding voxel feature. The key to training a highly ac-
curate single-stage detector requires both losses to be learned
toward high-quality targets. While depth is utilized during
pseudo-box generation and training, it is not needed for in-
ference. At inference time, OpenM3D is a single-stage OV
3D object detector that requires only multi-view RGB im-
ages as input and runs in 0.3 seconds per scene on a V100
GPU. In contrast, most 3D scene understanding methods
necessitate point clouds or depth information, as well as the
large CLIP ViT model to be applied, leading to significantly
higher computational costs. For example, OV-3DET [28]
takes 5 seconds per scene, while OpenMask3D [45] requires
5–10 minutes per scene.

We evaluate OpenM3D on ScanNet200 [39] and ARK-
itScenes [2]. Our 3D pseudo-boxes achieve higher accu-
racy than those from OV-3DET [28] and SAM3D [55] by
jointly considering 2D segments across all views and em-
ploying graph embedding-based clustering to mitigate frame-
wise errors. OpenM3D also outperforms its counterparts
trained with OV-3DET’s and SAM3D’s 3D boxes in both
class-agnostic and multi-class 3D object detection on Scan-
Net200, demonstrating the effectiveness of our 3D pseudo-
boxes. Moreover, OpenM3D with 3D voxel representation
surpasses a strong two-stage baseline that classifies objects
using 2D CLIP ViT features on both datasets, validating
the contribution of Voxel-Semantic feature alignment. We
also compare against a multi-view depth estimation baseline,
which first estimates depth, applies graph embedding-based
clustering for 3D box proposals, and classifies objects using
2D CLIP ViT features. This approach is at least 270 times
slower due to depth estimation and CLIP ViT inference,
while OpenM3D achieves superior mAP and mAR.

The contributions of our work are the following.
• OpenM3D is the first multi-view open-vocabulary 3D ob-

ject detector achieving SoTA accuracy on ScanNet200 and
ARKitScenes.

• A novel Voxel-Semantic Alignment loss is proposed to
align 3D voxel features with multi-view CLIP embeddings.
This loss enables open-vocabulary classification by aggre-
gating diverse CLIP features from multiple viewpoints,
capturing different object appearances across angles.

• OpenM3D is then trained jointly with both localization
and alignment losses as a single-stage detector running 0.3
seconds per scene on V100.

• For localization loss supervision, we propose a novel 3D
pseudo box generation pipeline that leverages graph em-
bedding to integrate 2D segments into a coherent 3D struc-
ture, surpassing existing methods in experiments.

2. Related Work
3D Object Detection.3D object detection in indoor scenes
has gained more research attention due to the availability
of datasets with ground truth 3D bounding boxes [2, 5].
When the 3D point cloud is available at inference time, two
types of methods are proposed to leverage the 3D geometric
information. Point-based methods directly sample based
on set abstraction and feature propagation [31, 34–36, 42,
44, 56, 57, 60], while grid-based methods are based on grid
representation [7, 12, 21, 29, 40, 43, 52, 53, 63]. Despite the
fact that point cloud-based methods perform well on object
detection, they rely on costly 3D sensors, which narrows
down their use cases.
Multi-View 3D Object Detection. When 3D point clouds
are not available at inference time, several other methods
can leverage multi-view RGB images for 3D object detec-
tion. DETR-based approaches [25, 47, 49] expand upon the
capabilities of DETR [4] to tackle the challenge of 3D object
detection. Previous studies [15, 23] have established the
effectiveness of the bird-eye-view (BEV) representation for
object detection in autonomous driving scenarios. Another
approach focuses on constructing 3D feature volumes from
2D observations. ImVoxelNet [41] achieves strong indoor
3D object detection using a voxel-based feature volume [30],
but struggles to preserve the intrinsic scene geometry. NeRF-
Det [50] addresses this by integrating NeRF to estimate 3D
geometry while minimizing latency through geometry priors
and a shared MLP for a geometry-aware volume. Concur-
rently, ImGeoNet [48] introduces a geometric-shaping com-
ponent that predicts surface structure from multiple RGB
images in the feature volume and enhances geometric preci-
sion. In this work, we build our open-vocabulary multi-view
3D object detector on top of the geometric-shaped 3D feature
volume introduced in ImGeoNet.
2D OV Detection. Open-vocabulary object detection (also
known as zero-shot detection) is the task of detecting novel
classes for which no training labels are provided [11, 38, 58].
Recent methods [11] employ image-text pairs to extract rich
semantics from text, thus expanding the number of classes of
the detector. However, the detector classes will be fixed after
training. Another solution is to replace the classifier with
pre-trained vision-language embeddings [38, 58], allowing a
detector to utilize an OV classifier and perform OV detection.
3D OV Detection. PointCLIP [59] accomplishes OV recog-
nition of point clouds by projecting them into multi-view
images and processing these images with CLIP [37]. How-
ever, this method cannot be directly applied to point-cloud
detection because it does not handle the localization of un-



known objects. Recently, OV-3DET [28] proposed a 3D
point cloud-based 3D object detector learning to align point
cloud-based feature with pre-trained CLIP [37] feature space.
They leverage a large-scale pre-trained external OV-2D de-
tector [62] to generate 3D pseudo boxes for potential novel
objects. Since OV-3DET applies OV-2D detector at each
view to generate 3D pseudo boxes, there are a large number
of overlapping 3D boxes compared to our proposed method.
Moreover, CoDA [3] tackles 3D OV detection in a differ-
ent setting. It assumes a set of base classes are available
with ground truth 3D boxes. Then, an iterative novel object
discovery and model enhancement procedure is proposed.
Hence, we compare with 3D pseudo boxes from OV-3DET
rather than CoDA due to differences in training settings.
ImOV3D [54] mitigates the scarcity of annotated 3D data in
OV 3D object detection by generating pseudo-multimodal
representations from 2D images to bridge the modality gap
with 3D point clouds. However, all these methods rely on 3D
point clouds during inference, whereas our proposed method
is a multi-view image-based 3D object detector.
3D OV Scene Understanding. Beyond 3D OV detection,
many works in 3D scene understanding have been recently
proposed. OpenScene [32] is the seminal work aligning
the representation of 3D points with CLIP features in the
posed images from back-projection. However, it does not
support the output of object 3D box or 3D segment explicitly.
OpenMask3D [45] is designed for 3D instance segmenta-
tion. It projects 3D instance mask proposals to 2D posed
images and refines them with SAM. Label predictions are
made by comparing the CLIP features on visual masks and
text prompts. However, both OpenScene and OpenMask3D
require point clouds and CLIP model computation for infer-
ence. LeRF [18] fuses multi-scale CLIP features extracted
from 2D multi-view images into a neural radiance field for
OV queries. Although no point clouds are required, an extra
scene reconstruction step and CLIP model computation are
required at inference time. In comparison, OpenM3D is an
efficient single-stage OV 3D object detector only requiring
multi-view images as input and runs 0.3 seconds per scene
during inference.

3. Preprocess: 3D Pseudo Box Generation
Our training follows OV-3DET [28], eliminating manual 3D
annotations by leveraging 2D vision and vision-language
models to associate class information with posed RGB-D
images. To train a class-agnostic detector with high recall
and precision, we generate 3D pseudo-boxes from these
images by (1) lifting 2D segments into partial 3D segments
using a class-agnostic 2D segmenter and (2) merging them
across viewpoints via a graph embedding-based method to
form complete 3D segments. Fig. 1 illustrates the proposed
3D pseudo-box generation process.
Partial 3D Segments (Fig. 1 (a,b)). Given an RGB im-

age I , we extract the 2D segments n2D
j of the whole scene

S2D = {n2D
j } using an off-the-shelf class-agnostic 2D in-

stance segmentation approach, where each 2D segment con-
tains a set of pixel positions {(u, v)q}. Subsequently, we lift
each 2D segment into 3D based on the provided camera pose
(R, t), intrinsic K, and depth map D byxy

z

 = RTK−1D(u, v)

uv
1

−RT t . (1)

We denote the result of Eq. 1 as a partial 3D segment n3D
j =

{(x, y, z)q}, comprising numerous 3D points (x, y, z), as
it only includes partial observation from a single view. To
incorporate information from multiple viewpoints, we ex-
plore methods for aggregating 3D partial segments, though
this process is complicated by noise from imperfect 2D seg-
ments. The goal is to merge these noisy partial segments
into a more robust 3D representation. While aggregating
partial segments across views is intuitive for completing a
3D object’s surface, achieving this without amplifying noise
and bias remains challenging.
Complete 3D Segments (Fig. 1 (c,d,e)). A simple sequential
aggregation of partial segments accumulates errors due to
incomplete object understanding. It relies on limited consec-
utive frames from a previous time step, resulting in inherent
noise. Hence, we propose a graph embedding-based method
that considers all viewpoints simultaneously. The scene is
represented as a graph, with each node as a partial 3D seg-
ment n3D

j , and edges indicating a high likelihood on nodes
of the same object.

To learn such graph representation, we apply an off-the-
shelf graph embedding method on the graph data that con-
siders the entire scene. For a pair of nodes (i.e., partial
segments) in this graph data, an edge is established when
the overlapping ratio between two nodes exceeds a specific
threshold θ as follows:

ejk = edge(n3D
j , n3D

k ) =

{
1, if O(n3D

j , n3D
k ) > θ,

0, else
, (2)

O(n3D
j , n3D

k ) =
|n3D

j

⋂
n3D
k |

min(|n3D
j |, |n3D

k |)
(3)

where | · | counts the number of points in a set, and
⋂

denotes
intersection of two sets. We only consider the node pairs
within the same voxel for efficiency. The final graph shows
the interconnections between nodes (i.e., overlapping partial
3D segments) across the entire scene from multiple views.

After obtaining node features from the off-the-shelf graph
embedding method, we generate complete 3D segments
that account for partial object segments from all viewpoints
by grouping similar nodes (i.e., partial segments) using K-
Means. We then form a complete 3D segment by collect-
ing all partial segments in the same cluster q as follows
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Figure 1. Graph Embedding-Based 3D Pseudo Box Generation. Given multi-view images, we utilize an off-the-shelf class-agnostic 2D
instance segmentation approach to produce 2D segments S2D = {n2D

j } (see color-coded 2D masks in (a)). Each 2D segment is then lifted
in 3D to form a partial 3D segment n3D

j following Eq. 1 (see (b)). Next, we build a graph in which each partial segment n3D
j is a node and

we determine edges based on the overlap of segments in 3D following Eq. 2 (see (c)). The graph embedding feature is computed for each
node based on the graph (see (d)). Finally, nodes are clustered with the embedding features to yield complete 3D segments (see (e)). Best
viewed in color.

n̂3D
q = {n3D ∈ Cq}, where C is the set of partial 3D segments

that share the same segment index of a clustered group q.
Mesh Segmentation Refinement. Besides our complete
3D segments derived from multi-view images, we can fur-
ther consider the 3D segments Smesh = {nmesh

j } that are
generated by a mesh-based segmentation method. Using
ground truth mesh as input, we apply an off-the-shelf graph
cut method [8] to generate an additional set of 3D segments
Smesh. To fuse these two kinds of 3D segments, that is
{nmesh

j } and {n̂3D
q }, we apply Eq. 3 to determine the overlap-

ping ratio between any pairs of two segments from images
and the mesh. For each 3D segment nmesh

j from the mesh,
we identify its overlapped 3D segment from our complete
3D segments n̂3D

h with the highest overlapping ratio, and
subsequently update the segment index in nmesh

j from j to h.
By updating segment indices and combining 3D segments
with the same segment index, we fuse the over-segmentation
of the mesh to refine the original complete 3D segments
back-projected from multi-view.
3D Boxes from Complete 3D Segments. To derive the axis-
aligned 3D bounding box that encompasses each complete
3D segment n̂3D

q , we calculate the box center (x, y, z) as the
mean 3D position of the 3D segment in each axis direction,
and the minimum and maximum coordinates in each direc-
tion to derive the width w, length l, and height h of the 3D
box. Additionally, we apply thresholding on the volume of
each 3D box and the number of points contained within each
box to remove abnormally small or less visible boxes.

4. OpenM3D
OpenM3D, our multi-view 3D object detector, is trained
using posed RGB-D images from diverse indoor scenes. It
employs a class-agnostic 3D localization loss (Sec.4.1) su-
pervised by 3D pseudo boxes and a voxel-semantic feature
alignment loss (Sec.4.2) to enable OV classification by align-
ing voxel features with pre-trained CLIP features. During
inference, only RGB images and their corresponding camera

poses are required.

4.1. Class-Agnostic 3D Localization Loss

Given the 3D pseudo boxes with no class labels, we train a
class-agnostic multi-view 3D object detector based on the
model architecture of ImGeoNet [48]. We recap the model
architecture and introduce the learning target below.

The input to the class-agnostic detector consists of a se-
quence of images It along with camera intrinsics K and
extrinsics Pt. We back-project the 2D features of these im-
ages to construct a 3D feature volume V ∈ RHv×Wv×Dv×C ,
where Hv, Wv and Dv represent the height, width, and
depth of the 3D volume in terms of the voxel size unit.
The channel dimension of each voxel in the 3D volume
is denoted as C. Each voxel feature is further weighted
according to the probability of that voxel being located on
an object’s surface to incorporate geometry-shaping infor-
mation. We define the likelihood of the voxel being on an
object surface as the geometry shaping volume S, and the
geometry shaping network geo(·) to generate S = geo(V

′
).

Here we concatenate feature variance with the feature vol-
ume V to obtain V

′
. Note that S shares the same vol-

ume size as the original feature volume V . As such, the
geometry-aware feature volume is obtained by directly ap-
plying the geometry shaping weights from S to the orig-
inal feature volume (Vgeo = S ⊙ V ) . Furthermore, we
add dense 3D convolution layers to the geometry-aware
volume to harvest volumes at different scales, which has
proven helpful in detecting objects at different sizes [41, 48]:
{V (i)

h = Conv3D(i)(Vgeo) | i ∈ {0, 1, ..., L − 1}} . In to-
tal we have L volumes at different scales. A single-stage
anchor-free detector is deployed as the detection head, and
takes the multiscale feature volume V

(i)
h as input. We train

each voxel cell to predict the 3D pseudo box location us-
ing rotated 3D IoU loss [61] for aligning box center, size,
and yaw; centerness using cross-entropy loss [46], which re-
flects the proximity of the voxel to object centers; and binary



OV Classification (inference)

2D CLIP Features

alignment

Class-agnostic 3D Detection

2D Segments

RGB Frames

CLIP
text
enc

A photo of a chair 

A large office table 

A bedroom door

matching

Voxel-Semantic Feature Alignment (training)

M3DConv

3D Voxel Volume

Arbitrary text

CLIP
image 

enc

Feature
Volume

Projection

Voxel Feature3D Convolutions

Geometry 
Shaping

Figure 2. Overview. OpenM3D learns class-agnostic 3D box prediction and open-vocabulary (OV) assignments during training and only
needs multi-view RGB images to infer OV 3D boxes. The bottom branch is our class-agnostic 3D object detector (Sec. 4.1), where we build
the 3D voxel features based on ImGeoNet. During training, given a set of RGBD images and their corresponding poses, we back-project 2D
features from images to form the initial 3D voxel volume and perform geometry-shaping on the volume for 3D object localization. The
top-left panel is our Voxel-Semantic feature alignment branch (only required in training) to empower OV classification on the 3D voxel
features (Sec. 4.2). In the training phase, we use a depth map to match semantic features from 2D segments extracted by CLIP encoder to
corresponding 3D voxels and align the semantic features and voxel features. In the inference phase, OpenM3D only requires a set of RGB
images and their corresponding camera poses to predict 3D boxes and perform OV classification, as shown in the top-right panel.

foreground probability using focal loss [24] to address the
foreground-background imbalance. The complete process of
the class-agnostic detector is depicted as the bottom branch
in Fig. 2.

4.2. Voxel-Semantic Feature Alignment Loss

The 3D feature volume Vh acquired through class-agnostic
3D object detection encodes rich geometric information for
3D object localization. It still lacks the capability of open-
vocabulary classification on 3D objects. To address this
limitation, we introduce an OV classification branch atop the
class-agnostic 3D object detection branch during training.
We propose a novel training loss to minimize the difference
between voxel features from Vh and pre-trained CLIP fea-
tures extracted from the projected multi-view 2D segments
(See Fig. 2, Top-Left Panel). We refer to this as the Voxel-
Semantic Feature Alignment Loss, leveraging CLIP’s ability
to capture image-text semantics and bridge the gap between
2D visual concepts and 3D voxel representations. In detail,
we first deploy the image encoder of CLIP to extract the em-
bedding f2D

j for each 2D segment n2D
j . Following a similar

strategy of Eq.1 in Sec. 3, we lift each 2D segment n2D
j to

a partial 3D segment n3D
j = {(x, y, z)q}. Each 3D point

(x, y, z) is then mapped to a voxel indexed by Hv×Wv×Dv

in Vh. The set of voxel indices for n3D
j is denoted as

V 3D
j = {(xk, yk, zk)k}, and each corresponding voxel fea-

ture is denoted as f3D
k = Vh(xk, yk, zk, :) ∈ RC . The train-

ing objective is to minimize the cosine distance between
CLIP embeddings from 2D segment and voxel features
from 3D volume for alignment: Lalign(f

2D
j , {f3D

k }) =

∑
k∈V 3D

j
(1 − f2D

j ·f3D
k

∥f2D
j ∥∥f3D

k ∥ ) , where the jth 2D segment is

aligned with each voxel feature indexed by k ∈ V 3D
j .

Inference. OpenM3D simply gets 3D boxes from the class-
agnostic 3D detector, and computes softmax over cosine
similarity (i.e., matching) between average voxel features
within the box and the CLIP text embeddings of text prompts
to perform OV classification (See Fig. 2-Top-Right Panel).
Since CLIP text embeddings are precomputed, OpenM3D
is a single-stage detector not requiring heavy computation
of CLIP visual or text features during inference. Contrast-
ingly, most 3D scene understanding methods necessitate the
computation of the large CLIP ViT model during inference.

5. Experiments

We first introduce the setup including datasets, evaluation
metrics, and baseline methods (Sec. 5.1), and implementa-
tion details (Sec. 5.2). In Sec. 5.3, we compare 3D pseudo
boxes generated by our proposed OpenM3D to ones by
the current state-of-the-art approaches, OV-3DET [28] and
SAM3D [55]. For 3D object detection, we show our ex-
perimental results in Sec. 5.4. We further conduct ablation
studies of our proposed OpenM3D in Sec. 5.5.

5.1. Datasets, Evaluation Metrics, and Baselines
ScanNet200. The ScanNet dataset [5] is a widely used
RGB-D video dataset for benchmarking various 3D tasks.
There are in total 1,513 room-level scenes, with 2.5 million
views. We use 1,201 scenes for training and 312 scenes for
testing, which adhere to the public train-val split proposed
in ScanNet. Following [36, 48], we generate axis-aligned



bounding boxes based on semantic labels assigned to the
3D mesh of each scene. For the training and evaluation
of image-based methods, a uniform sampling of 20 views
per scene is performed, guided by frame indices. The im-
ages are then standardized to a resolution of 480 × 640.
Rozenberszki et al. [39] further extend ScanNet from 18
to 200 object categories, denoted as ScanNet200. The 200
categories are further split into 3 subsets, based on the fre-
quency of the number of labeled surface points in the train
set, namely head (66 classes), common (68 classes), and
tail (66 classes) groups. Our experiment focuses primarily
on the ScanNet200 dataset due to the diversity of its cate-
gories, aligning well with real-world OV scenarios. Note
that there are 189 classes available on the validation set for
our evaluation.
ARKitScenes. ARKitScenes [2] provides 5,048 scans col-
lected from 1,661 scenes using Apple LiDAR sensors. These
scans contain RGB-D frames along with 3D object bounding
box annotations of 17 categories. Due to the limited cate-
gories compared to ones in ScanNet200, ARKitScenes is
used to evaluate recall rather than precision.

Besides, it is noteworthy that for the 3D object detection
task, the point clouds in ARKitScenes are of lower quality
compared to ScanNet200, as the depth maps in ARKitScenes
are low-resolution (192×256) from iPad Pro.
Evaluation Metrics. We employ typical precision and recall
for evaluating 3D pseudo box performance on ScanNet200
training set. Moreover, the average precision (AP) and the
average recall (AR) metrics are also applied to measure
detection performance. For each class, AP is calculated by
computing the area under the precision-recall curve, and
AR is computed as the average recall across all intersection
over union (IoU) thresholds. More precisely, we utilize
AP25 and AR25, where the numerical values denote the
3D IoU threshold as 0.25, the minimum IoU required to
classify a detection as a positive match to a ground truth box.
Consequently, we report mean AP and mean AR across all
classes, denoted as mAP25 and mAR25.
Baseline - Pseudo 3D Boxes. We generate pseudo-3D boxes
from the segmentation results of SAM3D [55], which re-
quires frames from multiple viewpoints as input. We also
use OV-3DET [28] generated boxes independently from each
frame, which results in a large number of near-duplicated
pseudo boxes. Hence, it has low precision and longer train-
ing times compared to our approach. To mitigate this issue,
we randomly sample the same number of pseudo boxes gen-
erated by our method.
Baseline - Strong Two-stage Detector (S2D). Unlike
OpenM3D, a single-stage detector simultaneously localizing
3D objects and classifying open-set descriptions of objects,
S2D uses OpenM3D to localize candidate 3D boxes. In
the second stage, each candidate 3D box is projected back
to multi-view 2D images, and the CLIP embeddings are

extracted. The averaged embedding over all projected re-
gions is used to match text prompts of each class. Note that
this baseline uses CLIP ViT/B-32 during the inference stage
which is 7 times slower than our method.
Baseline - S2D using Depth estimated 3D Boxes. We em-
ploy a well-trained multi-view depth estimator [1] to extract
depth from testing images, and generate 3D bounding boxes
by pseudo box generation using estimated depth. The sec-
ond stage of the Strong Two-Stage approach classifies these
boxes, providing an effective solution for open-vocabulary
multi-view 3D object detection. However, an inference time
of 81 seconds per scene for depth estimation on a V100 GPU
is prohibitively long, making it impractical for real-world
applications.

5.2. Implementation Details
Class-agnostic 2D Segments and CLIP Embeddings.
Given multi-view RGB images, we generate class-agnostic
2D instance segments by SAM [19]. Besides, to mitigate
the impact of background elements such as the floor, walls,
and ceiling, which can potentially introduce errors in graph
embedding due to their substantial spatial presence, we use
[22] to filter out such backgrounds in training. We then
extract each segment with CLIP image encoder for the em-
bedding. Unless otherwise specified, we utilized ViT/L-14
in our experiments, with minimal impact observed from al-
ternative image encoders like ViT/B-32 and ViT/B-16. For
more details, please refer to our supplementary material.
Coordinates Standardization. To address minor variations
in 3D point coordinates caused by depth map noise, we
standardize coordinates across all 3D partial segments. We
employ voxelization and K-nearest neighbors (KNN) to fuse
3D points to vertices extracted from the ground truth mesh.
This procedure, involving the fusion of point sets within
voxel grids to the nearest extracted vertex through KNN,
ensures a unified representation of coordinates in 3D partial
segments from diverse viewpoints.
Complete 3D segments and boxes. We construct a graph
from partial 3D segments and apply DeepWalk [33] to gen-
erate graph embeddings. We then cluster these embeddings
using K-means (K=100 for all scenes), grouping similar
nodes into clusters that form complete 3D segments. To
assign a segment label to each point, we first map every
node’s cluster index to its associated 3D points. For points
shared across multiple nodes, we apply majority voting to
determine the final segment assignment. Additionally, a
connected-component algorithm is used to separate spatially
distant point sets within the same cluster. To ensure com-
pleteness, we discard boxes derived from n̂3D

q that contain
fewer than 300 and 500 points for ScanNet200 and ARK-
itScenes, respectively, or have volumes exceeding 8.5,m3,
as such boxes are unlikely to represent entire objects.
Model Training. We follow the general configuration of



Table 1. 3D Pseudo Box Evaluation on ScanNet200 and ARK-
itScenes. Our boxes, with and without Mesh Segmentation Refine-
ment (MSR), exceed OV-3DET and SAM3D in precision at both
IoU thresholds at 0.25(@25) and 0.5(@50) across both datasets.
Our bounding boxes outperform OV-3DET in recall significantly
and demonstrate competitive performance to SAM3D in most set-
tings. (a) Please refer to the supplementary material for detailed
evaluations in different subsets (head, common, tail) on Scan-
Net200. (b) The ∗ indicates that precision is expected to be low
since only 17 classes are labeled in ARKitScenes. Many pseudo
boxes are associated with unlabeled objects and counted as false
positives.

(a) ScanNet200 (b) ARKitScenes

Method
Precision (%) Recall (%) Precision∗ (%) Recall (%)

@25 @50 @25 @50 @25 @50 @25 @50

OV-3DET [28] 11.62 4.40 21.13 7.99 3.74 0.91 32.43 7.93
SAM3D [55] 14.48 9.05 57.70 36.07 6.01 1.49 43.78 10.87

Ours w/o MSR 27.09 11.98 52.43 23.18 6.06 1.34 51.40 11.41
Ours 32.07 18.14 58.30 32.99 5.97 1.58 51.92 13.74

[48] to train OpenM3D. The 2D feature encoder of the input
images It is a ResNet-50 [14] pretrained on ImageNet [6].
In Voxel-Semantic feature alignment, we add an MLP layer
atop the voxel feature to match the CLIP feature dimension.
Our network is trained using AdamW [26] optimizer with an
initial learning rate as 1e−3. Learning rate decay is applied
at the 18th and 45th epochs with a decay rate of 0.1, and the
network undergoes 50 training epochs.

5.3. 3D Pseudo Boxes
We evaluate our class-agnostic pseudo boxes by comparing
them with ground truth boxes using various IoU thresholds.
Additionally, we investigate the impact of Mesh Segmen-
tation Refinement (MSR) on our method. The evaluation
results for ScanNet200 and ARKitScenes are shown in Ta-
ble 1. Our bounding boxes demonstrate higher quality com-
pared to OV-3DET and SAM3D in terms of precision at
IoU@0.25 and IoU@0.5. For training the detector, pseudo
box precision is relatively more important than recall. Our
bounding boxes also outperform OV-3DET in recall by a
significant margin and remain comparable to SAM3D in
most of the settings. This suggests that our pseudo boxes can
more effectively capture objects from various viewpoints.
OV-3DET generates pseudo boxes by back-projecting re-
sults from Detic [62], an OV-2Ddet, into 3D for each 2D
frame. This inherent difference between 2D and 3D domains
causes OV-3DET to fall short in overall precision and recall
compared to our multi-view-aware 3D pseudo box genera-
tion method. Unlike SAM3D, which can be affected by 2D
segmentation errors due to its local adjacent frame merg-
ing, OpenM3D utilizes graph embedding-based clustering
to consider frames from all viewpoints simultaneously. This
approach reduces the impact of segmentation errors from
individual frames, resulting in better pseudo box quality.
In conclusion, MSR improves performance on both Scan-
Net200 and ARKitScenes, though the gains are linked to

Table 2. Class-agnostic 3D Object Detection on ScanNet200. Our
proposed 3D pseudo boxes enable OpenM3D to achieve higher AP
and AR than boxes from OV-3DET and SAM3D.

Method Trained Box AP@25(%) AR@25(%)

OpenM3D
OV-3DET [28] 19.53 35.19
SAM3D [55] 23.77 47.82

Ours (w/o MSR) 25.95 48.14
Ours 26.92 51.19

Table 3. 3D Object Detection on ScanNet200. For OpenM3D,
different “Trained Boxes” are used in training, while for S2D, dif-
ferent “Candidate Boxes” are applied. Specifically, “S2D+Ours”
and “S2D+Depth Estimated” correspond to “Baseline-S2D” and
“Baseline-S2D using Depth Estimated 3D Boxes”, respectively.

Method Trained Box / Candidate box mAP@25(%) mAR@25(%)

OpenM3D
OV-3DET [28] 3.13 10.83
SAM3D [55] 3.92 13.33

Ours (w/o MSR) 4.04 13.77
Ours 4.23 15.12

S2D
Depth estimated 3.80 8.60

Ours 4.17 10.05

Table 4. 3D Object Detection on ScanNetv2. OpenM3D performs
comparably to point-cloud-based methods. This table serves as a
reference for comparing different input modalities in inference, in-
cluding point clouds (pc) and images (im). † indicates methods
evaluated with OV-3DET’s pseudo-boxes, while our evaluation uses
ground-truth 3D boxes from ScanNetv2 in our multi-view setting.

Method Training Data Input Detector AP@25(%)

OV-3DET† [28] ScanNet pc + im Two-Stage 18.02
CoDA† [3] ScanNet pc One-Stage 19.32
ImOV3D† [54] ScanNet, LVIS pc One-Stage 21.45

Ours ScanNet im One-Stage 19.76

mesh quality, with a less pronounced effect on ARKitScenes
due to its lower mesh quality. These findings indicate that
OpenM3D consistently surpasses OV-3DET and SAM3D in
pseudo box quality, irrespective of the mesh quality.

5.4. OV 3D Object Detection Results

Class-Agnostic Scenario. This scenario validates the class-
agnostic 3D object detector of OpenM3D in Sec. 4.1. No
class information is utilized during inference, focusing solely
on accurately predicting foreground bounding boxes. We
show the evaluation results of ScanNet200 in Table 2. Com-
pared to OV-3DET [28], our proposed framework can im-
prove AP@25 by 37% (19.53%→26.92%), underscoring the
superiority of our pseudo boxes. Given that OV-3DET gener-
ates 3D boxes solely based on a single-view RGB image and
depth map, there is a risk that the resulting 3D box may devi-
ate significantly from the actual object, thereby influencing
the class-agnostic training. Additionally, we compare our
framework to SAM3D, which requires multi-view frames
as input. Our proposed approach consistently outperforms
SAM3D by 13% in AP@25. Furthermore, significant im-
provements are observed in mAR@25, with our framework



surpassing SAM3D by 3.3% and OV-3DET by 16%.
Open-Vocabulary Scenario. This scenario validates
OpenM3D, covering both Sec. 4.1 and Sec. 4.2. We evalu-
ated OV 3D detection on ScanNet200 and report in Table 3.
Similar to the trend in Table 2, OpenM3D outperforms our
method trained with OV-3DET boxes on both mAP@25 and
mAR@25, for 1.1% and 4.3%, respectively, with relative im-
provements exceeding 30% on the challenging ScanNet200
dataset. Moreover, OpenM3D surpasses models trained with
SAM3D pseudo boxes, thereby highlighting the effective-
ness of our graph-embedding-based pseudo boxes. Notably,
using better segmentation models, e.g., CropFormer [27],
OpenM3D achieves a significant 12.5% improvement in
mAP@25, from 4.23% to 4.76%. For more details, please
refer to the supplementary materials.

To highlight the contribution of our Voxel-Semantic fea-
ture alignment, we compare OpenM3D to S2D, both utilizing
the same class-agnostic foreground detector. As a single-
stage detector, our method achieves comparable mAP@25
to S2D. However, S2D shows a significant drop in mAR@25,
from 0.15 to 0.10, indicating that 3D voxel features recall
object classes better than multi-view 2D CLIP features. Fur-
thermore, S2D requires the CLIP image encoder during in-
ference, introducing high computational costs and a sixfold
increase in inference time compared to our framework. On
ARKitScenes, our method achieves 42.77 mAR@25, outper-
forming S2D at 19.58 mAR@25, with mAP not reported for
the same reason as in 3D pseudo box evaluation.

Table 4 presents the results of OpenM3D on ScanNetv2,
demonstrating performance comparable to other point-cloud-
based methods. This indicates that OpenM3D, using only 2D
images at inference, achieves results on par with methods
that rely on 3D data. For additional baseline results on
ScanNetv2, please refer to the supplementary material.

Detection results on ScanNet200 and ARKitScenes are
shown in Fig. 3. To showcase OV detection ability, we visual-
ized detection results using a subset of text prompts by CLIP
on ImageNet, and specific prompts in Fig. 3. OpenM3D
consistently detects 3D objects across various classes us-
ing general prompts like ‘a photo of a large {}’, and accu-
rately locates specific objects, such as chairs and small desks,
demonstrating its strength in OV 3D object detection.

5.5. Ablation study
Influence of Class Number. To investigate the impact of
class number, we evaluate OpenM3D across various numbers
of classes (18 to 189), following the “head,” “common,”
and “tail” splits from ScanNet200. As shown in Fig. 4, our
method consistently achieves higher mAP and mAR than the
“Strong Two-stage” method as the class number increases.
Different Prompts. CLIP [37] indicated that multiple
prompts benefit more comprehensive understanding of the
desired context, and provided a list of prompts for various
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'a photo of a dirty {trash can}.'

'Label this image with the 
indoor {chair}.'

'a photo of a large {door}.'
'a photo of many{chair}.'

'a photo of a my {bed}.'

'a photo of a clean {chair}.'

'Identify and label the indoor 
{desk} in this image.'
'a bright photo of a {pillow}.'Predicted as “object”

'a good photo of a {bed}.'

'a photo of one {table}.'

'a photo of a hard to see 
{sofa}.'

Figure 3. Qualitative Results of OpenM3D on ScanNet200 and
ARKitScenes. Given multi-view images and corresponding cam-
era poses, OpenM3D can detect objects by arbitrary text prompts
towards open-vocabulary detection. The color-coded boxes corre-
spond to different object classes. We show a subset of text prompts
used in the ImageNet dataset and specific prompts.

Figure 4. mAP25 and mAR25 in various class numbers from 18
to 189 classes. As the class number gets larger, OpenM3D scores
consistently higher mAP (Left) and mAR (Right) compared with
the “Strong Two-stage” method.

datasets depending on the dataset domains. OpenM3D pre-
dicts classes by matching the 3D voxel feature with the text
embeddings of class names wrapped in multiple prompts,
such as “A photo of a {}”, and selects the category
with the highest cosine similarity. We apply the same here
and mostly used the prompts of ImageNet [6] dataset. We
primarily used ImageNet [6] prompts but also evaluated our
model with Cifar100 [20] prompts. The Cifar100 prompts re-
sulted in mAP@25 and mAR@25 values of 4.14 and 14.79,
respectively, showing minimal difference in performance .
This implies that adjusting the prompts might not signifi-
cantly improve performance.

6. Conclusion

We introduced OpenM3D, a novel single-stage open-
vocabulary multi-view 3D object detector trained without hu-
man annotations. It leverages class-agnostic 3D localization
and voxel-semantic alignment losses, guided by high-quality
3D pseudo-boxes and diverse CLIP features. We introduce
a graph-based 3D pseudo-box generation method achieving
superior precision and recall in pseudo-box quality than OV-
3DET and SAM3D. At inference, requiring only multi-view
images, OpenM3D outperforms a strong two-stage approach
and models trained with OV-3DET and SAM3D boxes on
ScanNet200 and ARKitScenes, while excelling over an esti-
mated multi-view depth baseline in accuracy and speed.
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