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ABSTRACT

Performance and robustness of real-world Acoustic Event Clas-
sification (AEC) solutions depend on ability to train on diverse data
from wide range of end-point devices and acoustic environments.
Federated Learning (FL) provides a framework to leverage anno-
tated and non-annotated AEC data from servers and client devices
in a privacy preserving manner. In this work we propose a novel
Federated Relaxed Pareto Optimization (FedRPO) method for semi-
supervised FL with heterogeneous client data. In contrast to fed-
erated averaging class of FL algorithms (fedAvg) that perform un-
constrained weighted aggregation across all data sources, FedRPO
enables special treatment of data with high quality annotations vs.
data with pseudo-labels of unknown, varying qualities. In partic-
ular, FedRPO computes the updates to the global model solving a
constrained linear program, with explicit Pareto constraints to pre-
vent performance degradation on annotated data, and controlled re-
laxation of the Pareto constraints on pseudo-labeled data to prevent
learning of patterns in conflict with the annotated data. We show
FedRPO significantly outperforms FedAvg on Amazon internal de-
identified dataset on AEC tasks. On supervised learning, FedRPO
improved precision by 32.5% over FedAvg when maintaining recall
at 90%. Combined with FixMatch [1] for semi-supervised learning,
FedRPO outperformed FedAvg on precision by 50.5% at 90% recall.

Index Terms— Acoustic Event Classification, Federated Learn-
ing, Pareto Optimization, Semi-supervised Learning

1. INTRODUCTION
Deep-learning solutions for Acoustic Event Classification (AEC) [2–
4] often require large amount of audio (unannotated or annotated)
for training. However, in many real world applications, audio are
processed locally on the device and unavailable for improving the
AEC solution post deployment. In order to improve the model by
learning from real data, it is of critical importance to move towards
distributed on-device training that allows the model to improve in a
way that preserves user privacy. Consequently, the obtained models
might not generalize to all devices and acoustic environments. It
is of critical importance to move towards distributed training that
allows use of unlabeled data from all devices while following the
data-handling policies for privacy protection.

Federated Learning is the learning task solved by a loose federa-
tion of participating devices, commonly referred to as clients, which
are coordinated by a central server [5]. Each client has a training
dataset which is stored only locally and is never uploaded to the
central server. Instead, each client computes an update to the cur-
rent global model maintained by the server, and only this update is
shared with the server. Federated Averaging (FedAvg) [5] is perhaps
the most commonly used FL algorithm due to its simplicity and have
shown impressive results on a number of supervised-learning tasks.
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It aggregates the client updates by taking the weighted average of
client model weights. Intuitively it can be viewed as a naive exten-
sion of the stochastic gradient descent (SGD) to distributed learning.
Ideally to handle partially labeled dataset for AEC tasks, one would
simply replace SGD components from the existing semi-supervised
learning algorithms with FedAvg. Unfortunately, recent work on
semi-supervised federated learning (SSFL) noted that doing so of-
ten led to degraded performance [6–8]. A number of approaches
have been proposed to mitigate the issue of performance degrada-
tion from the learning perspective. While the common goal is to
control drift of client models [9] from the initial model trained on la-
beled data, many of these approaches resort to introducing heuristic
designs based on the specific learning tasks [6–8].

Inspired by the recent work [10, 11] that systematically frames
FL as multi-objective optimization, we propose Federated Relaxed
Pareto Optimization (FedRPO) for both FL and SSFL. As its name
suggests, FedRPO is based on Pareto optimization [12], a classic op-
timization method of ensuring no degradation of performance among
all users. We introduce a simple relaxation to the Pareto constraint
and apply it to both labeled and partially labeled dataset. We com-
pare FedRPO vis-à-vis FedAvg and show that FedRPO achieves su-
perior performance. These improvements are observed both in the
FL framework, as well as the SSFL framework, when our method is
combined with an extended version of FixMatch [1], a novel algo-
rithm for semi-supervised learning. Compared to [10,11] that works
on FL only, our method has a stronger focus on model utility and is
applicable to both FL and SSFL thanks to our proposed relaxation
technique.

2. RELATED WORK
FedAvg has been successfully applied to a number of acoustic and
visual tasks [5,13–17] for fully supervised learning. However, theo-
retical analyses of FedAvg are mostly pessimistic [18–20] Different
variants of FedAvg have been proposed to address problems that can
impair the learning performance, but most of them resort to tweak-
ing the loss functions [9, 21–24]. FedAvg has been used as a direct
replacement of SGD when adapting centralized learning algorithms
to the federated learning framework with minimal changes. For ex-
ample, [25] extends self-supervised learning to FL via FedAvg in
sound and vision domains. [26] adds additional neural network lay-
ers to client models to allow more personalized training on the client
dataset. Domain-specific implementations based on FedAvg are also
abundant, e.g. [27, 28]. Semi-supervised learning offers an effec-
tive means to improve the model performance by leveraging unla-
beled data. A well-known class of SSL methods involves producing
artificial labels, widely referred to as pseudo-labels, for unlabeled
data. [29] incorporates pseudo-labels derived from model’s predic-
tions for self-training. Similarly, consistency regularization [30–32]
generates pseudo-labels by randomly perturbing the inputs or model
functions. Recent state-of-the-art SSL algorithms such as FixMatch



[1] and Remixmatch [33] regulate the prediction consistency from
more advanced data augmentation functions [34–36]. In this work,
we extend FixMatch to our FedRPO framework.

Semi-supervised learning algorithms have been naively adapted
to the federated learning framework by replacing SGD with FedAvg
but resulted in worse model performance [6, 7]. Recently multiple
methods were proposed to alleviate the issue. These methods dif-
fer in the execution details, but share the same intention–to keep
the client model weights close to the initial global model, i.e. to
avoid the client drift. For example, [6] uses alternate training to con-
trol the client drift. After each global model update, it trains the
updated global model on the server dataset again to prevent its ac-
curacy from dropping on the server dataset. [7] trains two separate
copies of model parameters on server and client data respectively.
When training on server data, it freezes the client model parameters
and vice versa. At test time, it adds the two sets of model parameters
to yield the final model. Similar to FedRPOx [21], a proximity loss
term is included to discourage potential client drifts. Evidently, these
methods include a number of heuristic choices in the algorithmic de-
signs and, by deliberately weakening the influence of client model
updates, reveal a general lack of confidence on the client models.
Our work introduces a much more principled optimization approach
that offers theoretical guarantee based on Pareto Optimization to pre-
vent degradation on server data and safely exposes the model to un-
labeled data to learn patterns which do not conflict with the server
data.

Pareto Optimization is a classical method rooted in economy
theories [12] that solves the problem of optimizing individual client
utilities while not sacrificing a subset of clients for the rest in the
optimization process. Recently, Pareto Optimization has been ap-
plied in Federated Learning to improve the model fairness [10, 11].
Inspired by this work, we propose a simple relaxation of Pareto
Optimization with the focus of obtaining better performance. We
demonstrate that our proposed relaxation is effective on both labeled
dataset and partially labeled dataset. Our work significantly differs
from [11] in that our proposed algorithm does not concentrate on
fairness but instead on global performance. In addition, [11] is lim-
ited to fully labeled dataset whereas we show that our work has a
strong focus on partially labeled dataset for semi-supervised learn-
ing.

3. METHODS
We assume label-at-server [7] setting, where labeled data only exists
on the server, and the client data is completely unlabeled. Given a la-
beled dataset on the server S = {(xi, yi)}|S|

i=1 and a set of unlabeled
datasets from the clients U = {U1, ...,UK}, Uk = {ui}|Uk|

i=1 . The
goal is to train a global modelM(θ, θ ∈ Θ) : xi 7→ y′

i that maps
from the sound input xi to the event prediction y′

i, where xi is the in-
put sound clip, yi is the event label, and y′

i is the predicted event clas-
sification. We assume that the amount of server data is significantly
smaller than the amount of client data |S| << |U|. In addition, the
client data U cannot be shared with the server. The mainstream fed-
erated learning algorithms [5] leverage the client data by optimizing
the model parameter θ with respect to the weighted average of the
server and client losses minθ∈Rd

∑K
k=1

nk
n
Fk(θ)whereFk(θ) =

1
nk

∑
i∈nk

fi(θ), f is the loss function on the edge device, nk ∈ Z is

the local data size on the edge device k, and n =
∑K

k=1 nk. There
exists a wide variety of implementations of solving this problem,
but most of them are based on FedSGD and FedAvg which update
the global model by taking the weighted average of model gradients
(Eq.(1)) or weights (Eq. (2)) respectively from the client device.

(a) Pareto (b) Relaxed Pareto

Fig. 1: Graphical visualization of (relaxed) pareto optimization.
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Notably, the weight aggregation step is unconstrained and may cause
an increase in client losses in contrast to the centralized SGD.

Pareto Optimization
In contrast of FedAvg based methods, Pareto Optimization [12] op-
timizes the client losses directly,

min
θ

[f1(θ), ..., fK(θ)] (3)

It treats each client loss as an objective and finds the Pareto solution
θ∗ defined as follows.

∄θ′ ∈ Θ s.t. ∀i : fi(θ′) ≤ fi(θ
∗) and ∃j : fj(θ

′) ≤ fj(θ
∗) (4)

In words, it means that θ∗ is the solution that cannot be fur-
ther optimized on a subset of losses without harming the rest.
With gradient descent, at each optimization step the loss gradients
[∇θf1(θ), ...,∇θfK(θ)] can be obtained from the clients. To cal-
culate the aggregated gradient without harming any client losses,
one can search for a vector d∗ ∈ RK so that d∗ points towards a
direction not conflicting with any of the loss gradients. As illustrated
in Fig. 1a, intuitively it means the angle between the desired aggre-
gated gradient d∗ and the individual loss gradients are less or equal
to π/2. This can be mathematically expressed as the dot products
between d∗ and individual gradient losses.

d∗T∇θfi(θ) ≥ 0∀i ∈ {1, ...,K} (5)

With sufficiently small gradient step η, by applying d∗ to the
global model, the individual client losses either decrease or stay
unchanged [11]. In practice, it is difficult to directly search for
d∗. Instead, it is common to find d∗ in the convex hull of the loss
gradients G = [∇θf1(θ), ...,∇θfK(θ)] [11]. We can then re-write
d∗ as d∗ = α∗G, where G ∈ Ḡ = {

∑K
i=1{αi∇θfi(θ)} | αj ≥

0 ∀j and
∑K

j=1 αj = 1}. Now the goal is to find α∗ ∈ RK , and it
can be formulated as the linear program as follows.

min
α

αTGTGw

such that αTGTG ≥ 0

K∑
i=1

αi = 1, αi ≥ 0 ∀i ∈ {1, ...,K}

K∑
i=1

wi = 1, wi ≥ 0 ∀i ∈ {1, ...,K} (6)



where w ∈ RK is the client prioritization vector. By iteratively
updating the global model with d∗ in a gradient descent loop, the
global model can gradually converge to θ∗ with an important guar-
antee that every update is constrained to avoid degradation in losses
on any of the clients when the gradient step is sufficiently small [11].
Federated Relaxed Pareto Optimization (FedRPO)
The vanilla Pareto Optimization can easily get stuck at a local op-
tima due to the constraints on the gradient update [11]. To jump
out of the local optima, it may be necessary to sacrifice a subset of
clients for higher global gain. Inspired by this idea, we introduce a
simple relaxation to the Pareto Optimization. As shown in Inequality
(7), we allow the angles between d∗ and a subset of loss gradients
to be slightly greater than π/2. Importantly, the exceeded angle is
controllable by the choice of c.

αTGTG ≥ c, c ∈ [−1, 0] (7)

The idea of the relaxation in Inequality (7) is especially powerful for
partially labeled dataset. Pseudo-labeling is central in many recent
state-of-the-art semi-supervised learning algorithms [1,33]. Regard-
less how the pseudo-labels are generated, the pseudo-labels are gen-
erally less trustworthy than the ground-truth annotations. Therefore,
it is reasonable to apply the relaxed Pareto constraint on the pseudo-
labels. As for the labeled data, we apply the non-relaxed Pareto
constraints to prevent performance degradation. We split the loss
gradients into two groups: Gs denotes the loss gradients from the
labeled data, and Gu denotes the loss gradients from the unlabeled
data. We can formulate the relaxed Pareto constraints for partially
labeled as follows.

αTGTGs ≥ 0 (for labeled data)

αTGTGu ≥ c, c ∈ [−1, 0] (for unlabeled data) (8)

With the above constraints, the global model can be safely ex-
posed to pseudo-labels without concern of performance degradation
on the labeled data. The strength of relaxation on unlabeled data is
controlled by c.

FedRPO with FixMatch
We implement naive extensions of FixMatch [1] with both FedAvg
and FedRPO. FixMatch generates pseudo-labels by a pre-trained in-
termediate teacher model for unlabeled data when the predicted con-
fidence is greater than a preset threshold τ . Both the teacher model
and the global model under training are iteratively updated on the
ground-truth annotations and pseudo-labels. The training objective
is shown below.

f(θ) = fs(θ) + λfu(θ)

where fs(θ) =

|S|∑
i=1

H(pb, pm(y | α(xi))

fu(θ) =

|U|∑
i=1

δ(max(qb) ≥ τ)H(argmax(qb), pm(y | A(ui))

where pb is the event label, fs is the loss function on labeled data,
and fu is the loss function on unlabeled data. H is the cross-entropy
loss. pm(y | x), qb = pm(y | α(x)), pm(y | A(u)) are the
event distributions predicted by the model from the vanilla input x,
the weakly augmented input α(x) and the strongly augmented input
A(u) respectively. max(qb) is the prediction confidence.

4. EXPERIMENTS AND RESULTS
Data We conduct all of our experiments on Amazon internal de-
indentified dataset drawn from June to September 2021.

For supervised learning experiment, we construct a fully labeled
dataset consists of 100 clients, each client contains 100 utterances.
80% data on each client is used for training, the rest 20% is used
for testing. Each utterance stores a 10-second audio clip and the
de-identified device serial number (DSN) of the source device. The
label of an utterance describes the presence of 6 event candidates.

For semi-supervised learning experiment, we construct another
dataset Dserver to simulate the labeled data stored on the cloud
server. This dataset consists of 400 utterances for each of the 6
events. We also use the same dataset in the supervised learning ex-
periment to simulate the client dataset Dclient. 80% data on each
client is used for training, and the remaining 20% is used for in-
distribution testing. We denote the in-distribution test dataset as
Din

client. To test our model on unseen data, we construct a out-of-
distribution test dataset, Dout

client, consisting of 200 utterances per
event for 6 events. The included data is drawn from devices whose
DSNs are unused in neither training nor fine-tuning.
Implementation details We use the same neural network model
architecture for both supervised and semi-supervised experiments.
We first post-process the raw audio signals by computing their Log
Filter Bank Energy (LFBE) features with window size 25 ms and
hop size of 10 ms. The number of mel coefficients is 20, which
results in a log-mel spectrogram feature of size 998 × 20. Fea-
tures are further normalized by global cepstral mean and variance
normalization (CMVN). Our encoder consists of 5 layers of con-
volutional layers followed by an LSTM layer with 64 units, where
the kernels and strides are [(3, 3), (3, 3), (3, 3), (3, 1), (3, 1)] and
[(2, 2), (2, 2), (2, 1), (2, 1), (2, 1)] respectively. The AEC classifier
is made by an additional LSTM layer with hidden size of 96 fol-
lowed by a dense layer on top of the encoder. A softmax function
then maps the dense layer output to a categorical distribution. The
presented results are trained with a learning rate of 0.05, and we ob-
tain consistent results from other learning rates as well (e.g. 0.1,
0.001).
Evaluation Metric We evaluate the performance of models based
on the precision-recall curves. We compare the precisions at the
recall values ranging from 0.6 to 0.9 as these regions are of practical
interest for real use cases.
Baseline For the supervised learning experiment, we compare our
model performance with FedAvg and centralized supervised learn-
ing (denoted as SL in figures). For semi-supervised learning exper-
iment, we compare our model performance with FedAvg as well as
SL trained with onlyDserver and SL trained withDserver∪Dclient.
The former is often used as the empirical lower bound since it is
trained with only server data, and the latter is often used as the em-
pirical upper bound since it is trained with all available data, ignoring
the fact that client data is often not directly accessible and unlabeled.
To study how FedRPO performs on supervised learning, we run
FedRPO and FedAvg without pre-training or data augmentation. As
shown in Fig. 2, FedRPO consistently outperforms FedAvg on both
train and test dataset by a large margin. We posit that the weaker
results of FedAvg may be caused by the stronger statistical hetero-
geneity presented in the real-world data.
For semi-supervised learning, we pre-train a starting model on
Dserver . We then run FedAvg and FedRPO on the same dataset
as in the supervised learning experiments but without using the la-
bels. We evaluate the model performance on Dserver , Din

client, and
Dout

client. As seen in Fig. 3, FedRPO is consistently better than Fe-
dAvg and occasionally reaches comparable precision as centralized



(a) baby cry, train (b) baby cry, test (c) snore, train (d) snore, test

Fig. 2: Precision-recall Curves on fully labeled datasets. Precision on y-axis is relative. In the event of baby crying, FedRPO is 32.5%
relatively better than FedAvg on out-of-distribution test dataset Dout

client at recall value of 0.9. Due to the page limit, we only include 2 events
here. See the link to full results in the footnote.1

(a) baby cry on Dserver (b) baby cry on Din
client (c) baby on Dout

client

(d) snore on Dserver (e) snore on Din
client (f) snore on Dout

client

Fig. 3: PR curves for the semi-supervised experiments on Amazon internal de-identified dataset (labeled server data, unlabeled client data).
Precision on y-axis is relative. In the event of baby crying, FedRPO is 50.5% relatively better than FedAvg on out-of-distribution test dataset
Dout

client at recall value of 0.9. See the link to full results in the footnote. 1

(a) vary c, SSL (b) vary dataset size (c) vary τ

Fig. 4: Ablation PR curves for the semi-supervised learning experiments on the event of baby crying. Precision on y-axis is relative.

supervised learning. We run ablation studies on the choice of c, the
server dataset with fixed server to client ratio, and the value of tau.
According to our results in Fig. 4, c has clear impact on the model
precision. In this case, c = −0.1 and c = −0.2 produce the best re-
sults, whereas c = −1 (full relaxation) is slightly weaker. c = 0 (no
relaxation) delivers the weakest result among all tested values of c.
As we vary the dataset size, we found that our results are close when
the size of the server dataset is from 2400 to 6000. When the server
dataset is reduced to the size of 1200 (200 utterances per event for
6 events), the resulting model performance drops noticeably. The
value of τ is roughly correlated with the quality of pseudo-labels.
Shown in Fig. 4c, FedRPO is resilient against noisy pseudo-labels.
Even at τ = 0.5, the resultant model precision is still reasonably

close to the chosen one at τ = 0.7.

5. CONCLUSION
In this work, we presented FedRPO inspired by Pareto Optimiza-
tion. We showed that FedRPO significantly outperforms FedAvg on
supervised and semi-supervised learning tasks for AEC tasks on an
Amazon internal de-identified dataset. In particular, FedRPO per-
formed better than vanilla Pareto Optimization by exhibiting clear
resilience against noisy pseudo-labels for unlabeled data. Though
we focused on AEC, but our approach can also be applied to other
audio tagging tasks.

1https://drive.google.com/file/d/
1qBkgzjSawiW-rvVIu30PcglUGoguulhW/view?usp=sharing
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