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Abstract
We study offline evaluation of two-stage recommender systems,

focusing on the first stage, candidate generation. Traditionally,

candidate generators have been evaluated in terms of standard in-

formation retrieval metrics, using curated or heuristically labeled

data, which does not always reflect their true impact to user experi-

ence or business metrics. We instead take a holistic view, measuring

their effectiveness with respect to the downstream recommendation

task, using data logged from past user interactions with the system.

Using the contextual bandit formalism, we frame this evaluation

task as off-policy evaluation (OPE) with a new action set induced

by a new candidate generator. To the best of our knowledge, ours

is the first study to examine evaluation of candidate generators

through the lens of OPE. We propose two importance-weighting

methods to measure the impact of a new candidate generator using

data collected from a downstream task. We analyze the asymptotic

properties of these methods and derive expressions for their respec-

tive biases and variances. This analysis illuminates a procedure to

optimize the estimators so as to reduce bias. Finally, we present

empirical results that demonstrate the estimators’ efficacy on syn-

thetic and benchmark data. We find that our proposed methods

achieve lower bias with comparable or reduced variance relative to

baseline approaches that do not account for the new action set.
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1 Introduction
Modern recommender systems often employ a two-stage architec-

ture, comprised of a candidate generator and a policy [13]. The role

of the candidate generator is to winnow an extremely large cat-

alog of items down to a much smaller set of potentially relevant

candidates, which are then given to the policy to select the final

recommendation(s). This division of work is often motivated by

efficiency and scaling, since recommending content from a large

catalog poses computational challenges. Accordingly, the candidate

generator prioritizes efficiency and recall, while the policy focuses

on precision. The two-stage architecture supports a wide range of

applications, including online advertising [2], video recommenda-

tions [4, 5, 49], news [27, 47] and social media [7].

The candidate generator can have a significant impact on overall

system performance (such as user engagement), since it defines

the action space over which the downstream policy operates. It is

therefore critical to evaluate any changes to the candidate generator

before deploying said changes to a production environment. Reliable

offline evaluation is essential, not only to guide model training and

selection, but also to justify online evaluation of new models via

A/B testing.

Traditionally, candidate generators have been evaluated offline

using an information retrieval (IR) methodology, wherein metrics

such as precision, recall and NDCG are evaluated against certain

benchmark, “ground truth” datasets—which are often heuristically

derived from user interactions or hand-labelled data [50]. While

intuitive and easy to implement, this approach suffers from several

well-known limitations: (i) IR metrics may not reflect business

objectives; (ii) this evaluation ignores the downstream policy that

directly influences user outcomes; and (iii) using interaction data

generated by previously deployed models to validate new models

can create a feedback loop, introducing bias and blind spots.

Meanwhile, the contextual bandit framework has emerged as a

powerful formalism for recommender systems; and through this

view, off-policy evaluation (OPE) provides a principled methodology

for evaluating recommender systems offline. OPE involves estimat-

ing the performance of a new (target) policy using data collected

under a different (logging) policy (which is typically a randomized

variant of the current production system). These methods usually

assume that both policies operate in the same action space, and have

common support on this set. Unfortunately, these assumptions break

down with a two-stage architecture—specifically, when estimating
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the impact of changes to the candidate generation stage. While

most OPE research has focused on evaluating the final ranking or

decision policy, no prior work has studied the effect of upstream

components, such as candidate generators.

Our work fills this gap and addresses the limitations of traditional

IR evaluation. We frame the evaluation problem as OPE of the

downstream recommendation policy under a change to its action

set, which is induced by a candidate generator that differs from the

one used to log the data. Unlike the IR approach, OPE lets us directly

measure impact to the downstream recommendation task, in terms

of business metrics, while accounting for selection bias. To estimate

expected performance (a.k.a. reward), we propose two importance-

weightingmethods, which we refer to as the intersection method and

the proxy method, respectively. The intersection method restricts

the target policy to the intersection of action sets, which provides a

simple and intuitive starting point—as well as a surprisingly strong

baseline. The more sophisticated proxy method is based on the idea

that actions can be grouped into equivalence classes, within which

old actions can serve as proxies for new actions. To this end, we

leverage marginalized propensities over the equivalence classes to

effectively share rewards observed on old actions with the other

actions in their respective equivalence classes. This reduces bias

from unseen new actions by incorporating their probability mass

into observed existing actions from the same equivalence classes.

We pair each of these importance weighting methods with reward

modeling to further reduce bias on unseen actions, and reduce

overall variance.

The contributions of this paper are as follows:

• We formulate offline evaluation of candidate generators as OPE

with a changed action set.

• We propose two importance-weighting methods, intersection

and proxy, to address this scenario and derive corresponding

estimators for each.

• We analyze the bias and variance of the proxy method, which

provides theoretical insights into their inherent trade-off, as

well as guidance for how to optimize the parameters of the

proxy-based estimators.

• We present empirical results on both synthetic and real-world

data that demonstrate the superiority of our methods in evalu-

ating a new candidate generator.

1.1 Related Work
Off-policy evaluation (and learning) has been studied extensively

in the literature on contextual bandits [1, 6, 11, 20–23, 44, 46], rein-

forcement learning [8, 15, 26, 42, 43] and counterfactual learning

[3, 16–19, 33, 36, 38–40]. Many of these works analyzed the bias,

variance and uniform convergence of reward estimators, but they

focus on a setting in which the logging and target policies have

common support on the action set. While this assumption is rea-

sonable when the action set is fixed, in our setting, the changing

action set makes common support impossible to satisfy.

Lack of common support—or support deficiency, as it is sometimes

called—often arises in off-policy (not necessarily offline) learning,

when the logging (a.k.a. behavioral) policy does not sufficiently

explore actions available to the target policy. To compensate, one

can constrain the target policy to stay close to the behavioral pol-

icy [25, 29, 34], or constrain the target action space to that of the

logging policy [29]. Alternatively, one can simply impute reward

for actions not taken by the behavioral policy [10, 29]. While these

methods make off-policy learning “safe,” their impact on off-policy

evaluation has not been explored. London and Joachims [24] an-

alyzed an evaluation setting very similar to ours—in which the

action set changes, causing support deficiency—and showed that

the bias of certain model-based estimators depends crucially on the

reward model’s ability to predict rewards for new actions. They did

not, however, propose a new estimator. We build on London and

Joachims’s [24] analysis and propose new estimators. Felicioni et al.

[9] investigated evaluation with support deficiency and proposed

an estimator that is similar to our proxy method, but does not in-

corporate reward modeling. Our work can be viewed as extending

theirs by incorporating reward modeling—which reduces bias on

new actions as well as variance.

One particular setting in which common support becomes chal-

lenging is when the action set is very large—which often arises

in applications such as slate optimization or ranking, in which

the action set combinatorial in nature. Even if common support

is achieved, the probability of selecting any given action becomes

very small, resulting in large variance in importance-weighting esti-

mators. Techniques like weight clipping [14] and self-normalization

[40] are common remedies to the variance issue, but they come at a

cost of introducing bias. Alternatively, researchers often introduce

simplifying assumptions about the environment’s reward function

[37, 41, 45]. Recent work [28, 31, 32, 35] has adopted an approach

based on action grouping, leveraging implicit structure in the action

space (e.g., latent factors, clusters, or representative “main” actions).

The corresponding importance-weighting estimators marginalize

the propensities over action groupings, thereby reducing variance.

Our approach is similar in that we also impose structure on the

action space—in terms of equivalence classes—and marginalize

propensities over these equivalence classes. However, while the

primary focus of prior work has been on variance reduction under

fixed, large action sets, we tackle a fundamentally different problem

with two-stage recommender systems. The fact that the action set

changes between logging and evaluation creates challenges that go

beyond large action spaces, and offers a novel perspective on the

marginalization approach. It is also worth noting that our theoreti-

cal analysis is arguably simpler and more intuitive than previous

analyses of marginalized importance-weighting estimators, so our

proof techniques may shed new light on prior work.

2 Preliminaries
A deployed two-stage recommender system can be formalized in the

following contextual bandit framework, involving a sequence of i.i.d.

interactions with users. In each interaction, a context, 𝑥—which en-

capsulates the current user’s state and any other relevant variables—

is sampled from the environment. Given the context, the candidate

generator,A, determines a set of available actions (i.e., items),A(𝑥),
from which the policy, 𝜋 , can select. As its selection may be stochas-

tic, we can think of the policy as inducing a conditional distribution

on A(𝑥). Upon sampling an action, 𝑎 ∼ 𝜋 ( · | A, 𝑥), the environ-
ment generates a stochastic reward, such as engagement with the
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recommended item. We can equivalently think of the reward as a

function of the context and action, 𝑟 (𝑥, 𝑎), that is sampled, with

each context, from the environment. Our metric of interest is the

expected reward for the deployed two-stage recommender:

𝑅(A, 𝜋) ≜ E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋 ( · | A,𝑥 )

[
𝑟 (𝑥, 𝑎)

]
. (1)

2.1 Problem Setup
Suppose we have previously deployed a candidate generator, A0,

and a policy, 𝜋 , which we will henceforth refer to as the target pol-

icy (or production policy). Additionally, suppose we have deployed

another policy, 𝜋0, for the purpose of randomized data collection.

We will refer to 𝜋0 as the logging policy. In many applications, the

logging policy is distinct from the target policy (which serves the

majority of users) because we usually wish to limit randomness in

the user experience. The logging policy may be of any parametric or

nonparametric form; all we require from 𝜋0 is that it is randomized

and has full support onA0—meaning, for any 𝑥 and 𝑎 ∈ A0 (𝑥), we
have 𝜋0 (𝑎 | A0, 𝑥) > 0. We let the logging policy run for 𝑛 rounds

of interaction and collect a dataset,

𝑆 ≜
(
𝑥𝑖 , 𝑎𝑖 , 𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 ), 𝑟 (𝑥𝑖 , 𝑎𝑖 )

)𝑛
𝑖=1
,

where (𝑥𝑖 , 𝑟𝑖 ) ∼ D and 𝑎𝑖 ∼ 𝜋0 ( · | A0, 𝑥𝑖 ). For ease of exposition,
we may write the distribution of 𝑆 as (D × 𝜋0)𝑛 .

Now, suppose we want to test how a different candidate genera-

tor, A1, will perform with 𝜋 . We assume that A1 generates actions

that are not generated by A0 for certain contexts; that is, more

formally, ∃𝑥, A1 (𝑥) \A0 (𝑥) ≠ ∅. For actions generated byA0 that

are not generated by A1, we can equivalently say that they have

zero probability under 𝜋 . To reduce clutter, we will use the notation

A0∪1 (𝑥) ≜ A0 (𝑥) ∪ A1 (𝑥) to denote the union of old and new

actions, A0∩1 (𝑥) ≜ A0 (𝑥) ∩ A1 (𝑥) to denote the intersection of

old and new actions, and A
1\0

(𝑥) ≜ A1 (𝑥) \ A0 (𝑥) to denote the

strictly new actions.

Recalling the definition of expected reward (Equation 1), our goal

is to estimate 𝑅(A1, 𝜋) using the logged data, 𝑆 . Formally, since the

data was collected by a policy that is different from the target policy,

this is a problem of off-policy estimation. There is much literature

in this subject, and many of the existing methods use some form of

importance weighting to obtain unbiased estimates [12]. However, it

is usually assumed that the action set available to the target policy

will be the same as the one used by the logging policy—which is

not the case here.
1
This creates a fundamental challenge: we cannot

observe reward for any strictly new action, 𝑎 ∈ A
1\0

(𝑥), during
data collection. Without additional assumptions, any importance-

weighted reward estimate will be biased.

Throughout this work, we will use

Bias(𝑅,A, 𝜋) ≜ E
𝑆∼(D×𝜋0 )𝑛

[
𝑅(A, 𝜋, 𝑆)

]
− 𝑅(A, 𝜋),

to denote the bias of a reward estimator, 𝑅, given a candidate gen-

erator, A, and target policy, 𝜋 .

1
Another way to view this setting is that there was only ever candidate generator A1 ,

which subsumes A0 , and the logging policy simply had deficient support [9, 29].

2.2 Estimating Expected Reward
Before introducing our proposedmethods, we review some standard

existing techniques. Arguably, the most basic reward estimator is

the inverse propensity scoring (IPS) estimator [12],

𝑅ips (A1, 𝜋, 𝑆) ≜
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝑟 (𝑥𝑖 , 𝑎𝑖 ), (2)

which re-weights the observed rewards by an importance weight

involving the ratio of action probabilities under the target and

logging policies. Normally, when A0 and A1 coincide and the

logging policy has full support, this importance weight corrects the

sampling distribution induced by the logging policy to that of the

target policy, thereby yielding an unbiased estimate of expected

reward. However, here we have specifically modified the notation

to account for the fact that the target policy will use a different

action set, as dictated by the new candidate generator, A1. It is

straightforward to show that this causes bias equal to

Bias(𝑅ips,A1, 𝜋) = E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋 ( · | A1,𝑥 )

[
−1{𝑎 ∈ A

1\0
(𝑥)} 𝑟 (𝑥, 𝑎)

]
.

Essentially, the estimator can only account for old actions, but

misses the rewards for strictly new actions.

Clearly, importance weighting alone cannot produce useful re-

ward estimates, since it cannot account for the impact of new ac-

tions. To compensate, we could adopt amodel-based approach using

the so-called direct method (DM) estimator,

𝑅dm (A1, 𝜋, 𝑆) ≜
1

𝑛

𝑛∑︁
𝑖=1

E
𝑎∼𝜋 ( · | A1,𝑥𝑖 )

[
ℎ(𝑥𝑖 , 𝑎)

]
.

This estimator employs a reward model, ℎ, to predict the reward

for each available action, which is then weighted by the probability

of selecting said action under the target policy. It is well known

that the bias of this estimator is

Bias(𝑅dm,A1, 𝜋) = E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎) − 𝑟 (𝑥, 𝑎)

]
; (3)

that is, it is determined by the prediction error of the reward model

under the target policy’s action distribution, regardless of whether

the actions are old or new.

By combining IPS with DM, we get the classic doubly-robust (DR)

estimator [6],

𝑅dr (A1, 𝜋, 𝑆) ≜ 𝑅dm (A1, 𝜋, 𝑆)

+ 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝛿 (𝑥𝑖 , 𝑎𝑖 ), (4)

where 𝛿 (𝑥, 𝑎) ≜ 𝑟 (𝑥, 𝑎) − ℎ(𝑥, 𝑎) . (5)

While this reduces the bias in our setting even further, it does not

completely eliminate it. Indeed, London and Joachims [24] showed

that the bias is

Bias(𝑅dr,A1, 𝜋)
= E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋 ( · | A1,𝑥 )

[
1{𝑎 ∈ A

1\0
(𝑥)}

(
ℎ(𝑥, 𝑎) − 𝑟 (𝑥, 𝑎)

) ]
.

Since DR combines IPS and DM, it makes sense that its bias is

a combination of their respective biases. Thanks to importance

weighting, the bias is limited to strictly new actions; and thanks to

DM, an accurate reward predictor can reduce the bias further.
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3 Estimation via Intersection
Before presenting our proposed proxy-based methods, it is instruc-

tive to consider an intuitive baseline that addresses a limitation

in the standard IPS estimator in our setting. Specifically, the IPS

estimator ignores the probability mass that the target policy assigns

to strictly new actions,A
1\0

. As a result, the more the target policy

emphasizesA
1\0

, the greater the potential bias in the IPS estimates.

While the DR estimator partially addresses this by incorporating

reward prediction forA
1\0

, further improvements are possible with

importance weighting alone.

Intuitively, if the rewards for strictly new actions are similar

to those of the “carry-over” new actions—i.e., actions that are not

strictly new, at the intersection of A0 and A1—then redistributing

the probability mass from A
1\0

to A0∩1 should allow the impor-

tance weighting to capture more of their reward.We can accomplish

this by forcing the target policy to focus on these actions at the

intersection; effectively, redistributing probability mass via nor-

malization. Note that this constraint would only be applied to the

target policy during evaluation, but the deployed policy would have

access to all actions from A1.

We therefore define two new estimators,

𝑅iips (A1, 𝜋, 𝑆) ≜
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A0∩1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝑟 (𝑥𝑖 , 𝑎𝑖 ), (6)

𝑅idr (A1, 𝜋, 𝑆) ≜ 𝑅dm (A1, 𝜋, 𝑆)

+ 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A0∩1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝛿 (𝑥𝑖 , 𝑎𝑖 ), (7)

using the definition of 𝛿 from Equation 5. We refer to 𝑅iips as the

intersection inverse propensity scoring (IIPS) estimator, and 𝑅idr as

the intersection doubly-robust (IDR) estimator. Our experiments

(Section 6) show that IIPS consistently outperforms the standard

IPS estimator, and IDR further improves by reducing variance.

4 Estimation via Proxy Actions
Our second class of estimators is based on the intuition that, if each

new action is similar to at least one of the old actions, then we

should be able to estimate the reward for a new action using old

actions as proxy. We can rely on importance weighting to estimate

reward for the old actions, then predict the difference in reward

using a model. This idea is conceptually similar to DR, in that it

combines importance weighting with reward prediction. We also

draw inspiration from some recently proposed estimators for large

or combinatorial action sets in which actions are effectively pro-

jected onto a low-dimensional representation (e.g., clusters, groups

or “main” actions) and importance weights are marginalized over

this representation [28, 31, 32, 35].

Before defining the estimator, we begin with some notation

and auxiliary definitions. By convention, we assume that a policy

outputs zero probability mass for any action not contained in the

given action set (that is, not output by the candidate generator); i.e.,

𝜋 (𝑎 | A, 𝑥) = 0 for any action 𝑎 ∉ A(𝑥).
Recall our guiding intuition, that each new action performs simi-

larly to some representative proxies in the old actions. We therefore

define a proxy operator, which maps any action (in any context) to

similar actions, some of which must come from the old action set.

Definition 1. For a context, 𝑥 ∈ X, let M(𝑥) ⊂ P(A0∪1) denote
a set of equivalence classes defined by an equivalence relation, ∼𝑥 ,
on the set all actions, A0∪1, where P indicates the power set. We

say that an equivalence relation is valid if every equivalence class

contains at least one old action; i.e., ∀𝑚 ∈ M(𝑥), 𝑚 ∩A0 (𝑥) ≠ ∅.2
Given an equivalence relation, a proxy operator,𝜙 (𝑎, 𝑥) = {𝑎′ | 𝑎′ ∼𝑥
𝑎}, is a contextual mapping from an action to its equivalence class.

To simplify notation, we refer to𝑚 ∩A as a candidate generator

induced by equivalence class𝑚, where (𝑚 ∩ A)(𝑥) ≜𝑚 ∩ A(𝑥).
We also define some auxiliary propensities that marginalize over

the proxy mappings. Let

𝜋 (𝑎 | A, 𝑥) ≜
∑︁

𝑎′∈A(𝑥 )
𝜋 (𝑎′ | A, 𝑥)1{𝜙 (𝑥, 𝑎) = 𝜙 (𝑥, 𝑎′)},

denote the marginalized propensities, where 𝜙 is the proxy operator.

With the above definitions, we are now ready to define the proxy-

based estimators, which we refer to as proxy IPS (PIPS) and proxy

DR (PDR), respectively:

𝑅pips (A1, 𝜋, 𝑆) ≜
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝑟 (𝑥𝑖 , 𝑎𝑖 ) (8)

𝑅pdr (A1, 𝜋, 𝑆) ≜ 𝑅dm (A1, 𝜋, 𝑆)

+ 1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝛿 (𝑥𝑖 , 𝑎𝑖 ), (9)

where 𝛿 is defined in Equation 5. The key difference between PDR

and DR is that the importance weight is defined in terms of the

marginalized propensities. PDR can be viewed as an instance of

the OffCEM estimator [32], but with a constraint that each action

cluster contains some old actions. Alternatively, PDR can be viewed

as the OPCB estimator [35], but with “main actions” being limited

to certain old actions.

4.1 Analysis
We now characterize the bias and variance of the above estimator,

starting with a more general statement for any allowable mapping

(per Definition 1). We then consider a simple proxy mapping, which

helps ground the theory in a specific example.

The bias will involve the following quantity:

Δ (𝑥, 𝑎, 𝑎′) ≜
(
𝑟 (𝑥, 𝑎) − 𝑟 (𝑥, 𝑎′)︸               ︷︷               ︸

Δ𝑟 (𝑥,𝑎,𝑎′ )

)
−

(
ℎ(𝑥, 𝑎) − ℎ(𝑥, 𝑎′)︸               ︷︷               ︸

Δℎ (𝑥,𝑎,𝑎′ )

)
= 𝛿 (𝑥, 𝑎) − 𝛿 (𝑥, 𝑎′)

where Δ𝑟 (𝑥, 𝑎, 𝑎′) and Δℎ (𝑥, 𝑎, 𝑎′) denote the differences in actual

and predicted rewards, respectively, between two actions.

4.1.1 General Proxy Mappings. Following is a general character-
ization of the bias for an arbitrary proxy operator that satisfies

Definition 1. The proof is provided in Appendix A.1.

Theorem 1. Let 𝜙 be any proxy operator, with proxiesM, satisfying

Definition 1. For any 𝑥 ∈ X and 𝑚 ∈ M(𝑥), with some abuse of

2
It is straightforward to ensure validity—e.g., by defining equivalences between old

actions, then assigning strictly new actions to these equivalence classes.
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notation, let

𝜋 (𝑚 | A, 𝑥) ≜
∑︁

𝑎∈A(𝑥 )
𝜋 (𝑎 | A, 𝑥)1{𝜙 (𝑥, 𝑎) =𝑚}

denote themarginal probability of selecting an action that getsmapped

to proxy𝑚. Further, let

𝜋 (𝑎 |𝑚 ∩ A, 𝑥) ≜
𝜋 (𝑎 | A, 𝑥)
𝜋 (𝑚 | A, 𝑥) (10)

denote the conditional probability of selecting an action from𝑚, where

𝜋 (𝑎 |𝑚∩A, 𝑥) ≜ 0 if 𝑎 ∉𝑚 or 𝜋 (𝑎 | A, 𝑥) = 0. If 𝜋0 has full support

on A0, then PDR estimator has bias

Bias(𝑅pdr,A1, 𝜋)

= E
(𝑥,𝑟 )∼D

E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎∼𝜋0 ( · |𝑚∩A0,𝑥 )
𝑎′∼𝜋 ( · |𝑚∩A1,𝑥 )

[
𝛿 (𝑥, 𝑎) − 𝛿 (𝑥, 𝑎′)

]
(11)

= E
(𝑥,𝑟 )∼D

E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎∼𝜋0 ( · |𝑚∩A0,𝑥 )
𝑎′∼𝜋 ( · |𝑚∩A1,𝑥 )

[
Δ (𝑥, 𝑎, 𝑎′)

]
. (12)

To understand Theorem 1, it helps to think of the generative

process that computes the bias. First, a context and reward func-

tion are sampled from the environment, (𝑥, 𝑟 ) ∼ D. Then, a proxy,
𝑚 ∼ 𝜋 ( · | A1, 𝑥), is sampled according to the marginalized propen-

sities under target policy’s distribution over new actions. Finally,

we sample two actions: one old action, 𝑎, from𝑚 ∩ A0, using the

distribution induced by the logging policy; and one new action,

𝑎′, from𝑚 ∩ A1, using the distribution induced by the target pol-

icy. Then, we compute either 𝛿 (𝑥, 𝑎) − 𝛿 (𝑥, 𝑎′) (Equation 11) or

Δ (𝑥, 𝑎, 𝑎′) (Equation 12), which are equivalent.

In Equation 11, the bias decreases as ℎ becomes a better reward

predictor; and if ℎ is perfect, then there is no bias, which agrees with

intuition. Yet having accurate reward prediction is an overly strong

condition; according to Equation 12, it actually suffices to predict

how the reward of a new action differs from that of an old action

from the same class. The latter observation suggests an alternative

method for training ℎ via pairwise differences.

We now provide an expression for the variance of PDR (proven

in Appendix A.2), which illuminates how the choice of equivalence

classes and reward model affect variance.

Theorem 2. Under the assumptions of Theorem 1, the variance of

the PDR estimator can be upper-bounded as

𝑛 Var(𝑅pdr,A1, 𝜋) ≤ E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋0 ( · | A0,𝑥 )

[(
𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

)
2

𝛿 (𝑥, 𝑎)2

]
︸                                                          ︷︷                                                          ︸

penalty for importance-weighting

+ V
𝑥∼D

E
𝑎∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎)

]
︸                            ︷︷                            ︸
variance of reward prediction

.

Theorem 2 tells us that the variance of PDR estimator can be

upper-bounded by the sum of two terms. The first term comes from

the variance of importance weighting, and highlights the effect

of marginalization over equivalence classes. Large, coarse-grained

classes create more equivalences between actions—especially be-

tween old and new actions—which effectively reduces the magni-

tudes of the marginalized importance weights, thereby reducing

variance. However, variance alone does not tell the whole story;

according to Theorem 1, finer-grained classes may lead to lower

bias. Therefore, there is a bias-variance trade-off when determining

the optimal granularity of equivalence classes, and this is corrob-

orated by our experimental results. The second term comes from

the reward regressor; more expressive reward models can lead to

a higher variance. Compared to prior variance analyses for simi-

lar estimators (under a fixed action space) [32, 35], our expression

provides an upper bound that reduces to two terms. Arguably, this

provides a more readable statement, and a more straightforward

intuition for the factors that contribute to variance.

Remark 1. It is worth emphasizing that our bias and variance anal-

yses make no assumptions about the proxy mapping other than the

validity of the underlying equivalence classes—that is, each class

must contain at least one old action—a property which is always

satisfiable by construction. No further assumptions are made about

how equivalence classes are defined, or how similar the proxy ac-

tions are, or the degree of overlap between the old and new actions.

4.1.2 A Simple Proxy Mapping. We now consider a specialization

of Definition 1 in which any old action is its own proxy, and any

new action is mapped to the most “similar" old action. (This implies

that the classes are the old actions, M(𝑥) = A0 (𝑥).) A proof is

provided in Appendix A.3.

Corollary 1. For a context, 𝑥 ∈ X, and action, 𝑎 ∈ A0∪1 (𝑥), let

𝜙 (𝑥, 𝑎) ≜

{
𝑎 if 𝑎 ∈ A0 (𝑥),
arg max𝑎′∈A0 (𝑥 ) 𝑠 (𝑎, 𝑎

′) otherwise,

(13)

where 𝑠 (𝑎, 𝑎′) ∈ R is an arbitrary similarity metric, and the argmax

uses arbitrary tie-breaking. If 𝜋0 has full support on A0, then PDR,

with the proxy operator defined in Equation 13, has bias

Bias(𝑅pdr,A1, 𝜋)

= E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋 ( · | A1,𝑥 )

[
1{𝑎 ∈ A

1\0
(𝑥)}

(
𝛿 (𝑥, 𝜙 (𝑥, 𝑎)) − 𝛿 (𝑥, 𝑎)

)]
= E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋 ( · | A1,𝑥 )

[
1{𝑎 ∈ A

1\0
(𝑥)} Δ (𝑥, 𝜙 (𝑥, 𝑎), 𝑎)

]
.

We first note that the bias is really only a function of the strictly

new actions, A
1\0

(𝑥). Therefore, the smaller this set is, the lower

the bias; and if there are no new actions, then the bias vanishes,

which concurs with intuition. Like Equation 11, the bias decreases

as ℎ becomes more accurate; or, alternatively, if we can predict how

the reward of a new action differs from its (old) proxy.

5 Optimizing the Proxy Method
According to our theoretical analysis in the previous section, the

choice of reward model, ℎ, and proxy operator, 𝜙 , can have a big

impact on the bias (Theorem 1) and variance (Theorem 2) of the

proxy method. We now describe a procedure to optimize these

hyper-parameters.

5.1 Reward Model ℎ
The simplest way to train the reward model is to regress on the ob-

served rewards, using the context and action as covariates. Assum-

ing the reward is continuous (i.e., not binary or ordinal), one would

typically aim to minimize the squared error loss: (𝑟𝑖 − ℎ(𝑥𝑖 , 𝑎𝑖 ))2
.
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Since the loss function operates on a single action, we refer to this

as the pointwise formulation. According to Equation 11, minimizing

this loss function effectively reduces bias of PDR.

Our bias analysis also motivates an alternative procedure. Recall

the term Δ (𝑥, 𝑎, 𝑎′) = Δ𝑟 (𝑥, 𝑎, 𝑎′) − Δℎ (𝑥, 𝑎, 𝑎′) in the bias expres-

sion (Equation 12), wherein 𝑎 and 𝑎′ are actions from the same

equivalence class, and Δ𝑟 and Δℎ represent the differences in the

actual and predicted rewards, respectively. The more accurately

we can predict Δ𝑟 for actions in the same equivalence class, the

more we reduce bias. This motivates a two-step pairwise procedure

to optimize ℎ, stemming from a decomposition of the reward into

terms driven by proxy and residual effects,

ℎ(𝑥, 𝑎) ≜ 𝑔(𝑥, 𝜙 (𝑥, 𝑎)) + 𝑓 (𝑥, 𝑎),

where we shall interpret 𝑔 and 𝑓 to denote the proxy and residual

effects, respectively.

Step 1: optimizing the residual effect 𝑓 . We propose to optimize a

pairwise objective,

min

𝑓

∑︁
𝑥,𝑟𝑖 ,𝑟 𝑗 ,𝑎𝑖 ,𝑎 𝑗 :𝜙 (𝑥,𝑎𝑖 )=𝜙 (𝑥,𝑎 𝑗 )

(
(𝑟𝑖 − 𝑟 𝑗 ) − (𝑓 (𝑥, 𝑎𝑖 ) − 𝑓 (𝑥, 𝑎 𝑗 ))

)
2

,

where the loss is summed over pairs of observations in the same con-

text, with two actions coming from the same equivalence class. This

effectively minimizes Δ (𝑥, 𝑎, 𝑎′) in Equation 12, thereby reducing

bias. In practice, it is challenging or infeasible to observe rewards

from two actions in the same context especially in a standard bandit

setting, wherein only one action is logged per context. Further, it

may be challenging to observe rewards for actions from the same

equivalence class. Hence, we can relax the context constraint and

pair actions based on a subset of relaxed context features. We con-

duct an experiment in Section 6.2 to demonstrate the efficacy of

this pairwise procedure.

Step 2: optimizing the proxy effect 𝑔. After obtaining ˆ𝑓 to model

the residual effect, we optimize the following objective to account

for the proxy effect:

min

𝑔

𝑛∑︁
𝑖=1

(
(𝑟𝑖 − ˆℎ(𝑥𝑖 , 𝑎𝑖 )) − 𝑔(𝑥𝑖 , 𝜙 (𝑥𝑖 , 𝑎𝑖 ))

)
2

,

where the set 𝜙 (𝑥𝑖 , 𝑎𝑖 ) is mapped to some feature representation

of the equivalence class to serve as inputs to the model. In our

experiments, we achieve this by computing the centroids for each

equivalence class. In the case of the simple proxy mapping intro-

duced in Section 4.1.2, this falls back to using the action itself as the

proxy. Optimizing 𝑔 has an effect of reducing variance, because it

stabilizes the reward prediction within the same equivalence class.

5.2 Proxy Operator 𝜙
According to Definition 1, a proxy operator 𝜙 defines a contextual

mapping from any action in A0∪1 to its equivalence class. Impor-

tantly, for 𝜙 to be valid, each equivalence class must contain at least

one old action from A0. This requirement naturally leads to a clus-

tering solution, wherein we cluster the actions in A0, then assign

actions in A1 to their nearest clusters. To motivate this procedure,

recall that the bias of the estimator (given in Equation 12) is a func-

tion of Δ (𝑥, 𝑎, 𝑎′), where 𝑎 and 𝑎′ belong to the same equivalence

class. Suppose that the true and predicted rewards are Lipschitz

functions of action features (arguably, a natural and common as-

sumption), with Lipschitz constants 𝜆𝑟 and 𝜆ℎ , respectively. Then,

using shorthand ∥𝑎 − 𝑎′∥ to denote the distance between actions

in feature space, it is straightforward to show that

Δ (𝑥, 𝑎, 𝑎′) ≤ (𝜆𝑟 + 𝜆ℎ)


𝑎 − 𝑎′

 .

Thus, by minimizing intra-class distances—which is precisely what

clustering does—we thereby reduce bias.

While there are multiple applicable clustering algorithms in the

literature [48], we adopt 𝐾-means clustering due to its simplicity,

efficiency and broad applicability whenever actions are represented

by continuous features.. For each context, 𝑥 , we apply 𝐾-means

clustering to A0 (𝑥), thereby partitioning the old actions into dis-

tinct equivalence classes (i.e., clusters). Then, for ever new action

in A1 (𝑥), its equivalence class is determined by the closest cluster

from the previous step.

The parameter𝐾 effectively controls the granularity of the equiv-

alence classes. The granularity is coarser for smaller 𝐾 , resulting in

a greater number of equivalences. This has the effect of stablilizing

the importance weights (which reduces variance), as well as provid-

ing more pairwise training examples for optimizing 𝑓 . On the other

hand, choosing 𝐾 too small can introduce bias by grouping dissimi-

lar actions together, potentially obscuring important distinctions

between actions with different reward distributions. Thus, choice

of 𝐾 represents another bias-variance trade-off. We investigate this

trade-off empirically in our experiments.

6 Experiments
We empirically evaluate our proposed methods on synthetic and

real-world data. Recall that the intersection method yields two esti-

mators, IIPS and IDR (Equations 6 and 7), and the proxy method also

yields two estimators, PIPS and PDR (Equations 8 and 9). We com-

pare these to two natural baselines that do not adjust for changing

action sets: IPS (Equation 2) and DR (Equation 4).

6.1 Experiments on Synthetic Data
In this section, we describe our experiments on synthetic data,

designed to simulate a simple recommendation environment. This

allows us to explore how the various facets of our problem setting—

such as action set overlap and reward model misspecification—

affect our proposed estimators. We also investigate the effect of

equivalence class granularity on the proxy method.

Figure 1: Synthetic data: MSE, absolute bias and variance.
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Figure 2: Synthetic data: Comparing PDR to DR/IDR with
varying overlap ratios between A0 and A1.

Figure 3: Synthetic data: Varying the granularity of equiva-
lence classes used in PDR via the number of clusters 𝐾

6.1.1 Synthetic Environment. In our synthetic experiments, we

consider 1000 actions, each represented by a 10-dimensional action

vector 𝑣𝑎 , and contexts represented by a 3-dimensional vector 𝑣𝑐 .

We set the true expected reward for a context-action pair as:

𝑟 (𝑥, 𝑎) ≜ 𝛼𝑇 𝑣𝑎 + 𝛽𝑇 𝑣2

𝑎 + 𝛾𝑇 𝑣𝑐 + 𝜁𝑇 (𝑣𝑎 ⊗ 𝑣𝑐 ),
where parameters 𝛼 , 𝛽 , 𝛾 , and 𝜁 are constants and the expected

rewards are designed to be bounded between 0 and 1. Observed

rewards are sampled from a normal distribution centered at 𝑟 (𝑥, 𝑎)
with standard deviation of 0.1.

To define the candidate generators and policies, we use an ac-

tion scoring function that is essentially a noisy reward predictor.
3

For each context-action pair, we define the scoring function as

𝑟 ≜ 𝑟 (𝑥, 𝑎) + Uni(0, 𝜂), where Uni(0, 𝜂) is uniformly distributed

noise in [0, 𝜂]. We allow different noise parameters for logging and

target, and we denote these by 𝜂0 and 𝜂1, respectively. Each candi-

date generator selects the 50 highest-scoring actions according to 𝑟 ;

then, the policy samples an action from this set using a softmax dis-

tribution over the scores. Note that adjusting the noise parameters

not only allows us to control the quality of a candidate generator

3
This reward predictor is solely used to define the candidate generators and policies,

and should not be confused with the reward model used in the estimators, which is

trained from logged data.

(and its associated policy), it also allows us to control the overlap

between the logging and target action sets. Higher magnitude noise

creates greater variation in ranking, leading to less overlap.

6.1.2 Results. Figure 1 plots the MSE, absolute value of bias and

variance of each estimator as a function of the data size. In these

results, the logging scoring function uses noise parameter 𝜂0 = 0.5,

while the target scoring function uses noise parameter 𝜂1 = 0.2,

yielding an average overlap of approximately 30.6% between the

candidate sets A0 (𝑥) and A1 (𝑥). The proxy-based methods use

𝐾 = |A0 (𝑥) | = 50—effectively recreating the simple proxy mapping

from Corollary 1, in which each old action is its own class.

Among the importance-weighting variants (i.e., without reward

modeling), PIPS notably outperforms both IIPS and standard IPS.

Compared to IIPS, PIPS achieves lower variance by marginalizing

propensities over equivalence classes, while simultaneously improv-

ing bias through better reward estimation for strictly new actions

(based on observed proxies). Compared to standard IPS, where ac-

tions favored by the target policy but never taken by the logging

policy contributes nothing to the IPS estimate. Consequently, the

variance of the estimator may appear reduced—not because the

estimate is more stable in a meaningful sense, but because it sys-

tematically omits parts of the action space. This omission induces

bias while artificially lowering variance, since unobserved actions

do not contribute any stochasticity to the estimate.

Focusing now on the model-based estimators, all methods ex-

hibit comparable MSE, as the reward model significantly reduces

bias across the board. Consequently, although the relative variance

relationships observed above among importance-weighting meth-

ods is maintained, the differences in variance become much less

pronounced. However, as we will subsequently show, this perfor-

mance parity is likely due to having a sufficiently accurate reward

regressor; notably, PDR shows greater robustness to model mis-

specification.

In Figure 2, we vary the overlap between A0 and A1 by adjust-

ing the noise parameters used in the logging and target scoring

functions. To simplify, we set both noise parameters to the same

value, 𝜂0 = 𝜂1 = 𝜂, so that varying 𝜂 alone controls the overlap

ratio. In these comparisons, we plot the ratio of the evaluation

metrics between the given estimators. For example, in the PDR/DR

MSE plot, a ratio of 0.8 indicates that the MSE of PDR is 80% of the

MSE of DR. Values below 1 indicate superior performance of the

numerator estimator PDR and vice-versa.

Varying action set overlap. The first and second subplots of Fig-

ure 2 compare the performance of PDR against DR and IDR, respec-

tively, under varying overlap ratios betweenA0 andA1. Intuitively,

as overlap decreases, and the strictly new action set grows, the bias

incurred from strictly new actions increases. PDR addresses this

bias via marginalized importance weighting, whereas DR and IDR

do not. Since squared bias is the dominant component of MSE (as

can be observed in Figure 1), it is critically important to address this

bias. Indeed, in both comparisons and all overlap ratios, we find

that PDR demonstrates superior performance as the overlap ratio

decreases, and this decrease is primarily driven by bias reduction.

Model misspecification. The third and fourth subplots of Figure 2

examine the robustness of the three model-based methods against
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model misspecification. To simulate model misspecification, we in-

tentionally bias the regressors via scaling their outputs by a factor of

0.7 after training. As before, we plot the ratio of metrics, comparing

PDR against DR and IDR, respectively. DR demonstrates vulnera-

bility to the biased regressor, with PDR increasingly outperforming

DR in terms of both MSE and bias as the overlap ratio decreases.

In contrast, the comparison between PDR and IDR is much closer,

indicating that both methods are robust to model misspecification.

Nonetheless, PDR still performs better than IDR in this setting.

Equivalence class granularity. Figure 3 shows the effect of varying

the number of equivalence classes used for PDR, which is deter-

mined by the number of clusters used in 𝐾-Means. Increasing 𝐾

creates finer-grained equivalence classes. At one extreme, when

𝐾 = |A0 (𝑥) | = 50, we obtain the simple proxy mapping in which

each old action is its own proxy. Reducing𝐾 stabilizes the marginal-

ized importance weights and lowers variance, but can introduce

bias by creating more heterogeneous equivalence classes. In syn-

thetic experiments, this bias-variance trade-off is evident: larger 𝐾

reduces bias but increases variance. However, real-world results

show the trade-off is not always monotonic, and the optimal 𝐾 is

problem-dependent.

6.2 Experiments on Real-World Data
This section describes our experiments on a from an e-commerce

platform. The results showcase the superiority of the PDR estimator

in a real-world setting. We also conduct an ablation study of the

estimator’s two primary parameters: equivalence class granularity

and reward model training.

6.2.1 Data and Experiment Setup. The Open Bandit Dataset (OBD)

[30] contains logged bandit feedback from a large-scale fashion e-

commerce platform, comprising six datasets across three campaigns

(‘ALL’, ‘men’, ‘women’). Each campaign was randomly assigned

either a uniform random policy or a Bernoulli TS policy. We fo-

cus on the ‘ALL’ campaign, which includes 80 possible actions per

context. Contexts are represented by 20-dimensional vectors, and

each action is represented by a 4-dimensional action vector. The

reward is binary: 0 or 1. We set the uniform random policy as the

logging policy and the Bernoulli TS policy as the target policy. To

simulate reward estimation after adding new merchandise to the

candidate pool, we remove the last 40 actions from the original

logging pool. All events involving these actions are discarded, and

logging propensities are re-normalized across the remaining 40

merchandise items, resulting in 𝜋0 (𝑎 |𝑥) = 1/40. Using this adjusted

log, we estimate rewards for the target policy, which selects from

the full set of 80 merchandise items. We train a logistic regression

model to capture the binary reward presented in OBD. Input fea-

tures are preprocessed using min-max normalization to address

distributional differences among feature dimensions.

6.2.2 Results. As illustrated in Table 1, the results align with our

synthetic experiments. PDR achieves the lowest MSE, highlighting

the advantage of proxy-based estimators. Below, we analyze the

proxy method’s performance across different levels of equivalence

class granularity, different overlap ratio between A0 and A1 and

discuss the potential advantage of pairwise regression.

Table 1: Open Bandit: Comparison between DR, IDR and PDR

Estimator MSE Squared bias Variance

DR 1.72 × 10
−6

6.66 × 10
−7

1.05 × 10
−6

IDR 5.57 × 10
−7

5.04 × 10
−7

5.35 × 10
−8

PDR 4.93 × 10−7 4.58 × 10−7 3.44 × 10−8

Table 2: Open Bandit: Comparison between PDR using dif-
ferent number of equivalence classes

Num. proxies (K) MSE Squared bias Variance

5 8.91 × 10
−7

8.70 × 10
−7 2.08 × 10−8

20 5.03 × 10−7 4.57 × 10−7 4.61 × 10
−8

40 6.72 × 10
−7

6.05 × 10
−7

6.64 × 10
−8

Table 3: Open Bandit: Bias comparison between PIPS using
different number of equivalence classes

Num. proxies (K) bias: old actions bias: new actions

5 7.35 × 10
−4

1.63 × 10
−3

20 1.39 × 10
−4 1.44 × 10−3

40 2.47 × 10−5 1.59 × 10
−3

Equivalence class granularity. Table 2 presents PDR performance

for various cluster granularities, controlled by the number of clus-

ters in 𝐾-Means. Coarser clusters (smaller 𝐾) effectively reduce

variance, while moderate granularity provides optimal bias reduc-

tion. To better understand how granularity impacts bias, we de-

compose the bias into two parts: bias associated with old actions

and bias from new actions. To do so, we decompose the target

policy into two components, 𝑝 (𝑎 ∈ A0∩1)𝜋 (𝑎 | A0∩1, 𝑥) and
𝑝 (𝑎 ∈ A

1\0
)𝜋 (𝑎 | A

1\0
, 𝑥), and examine each separately.

We focus on PIPS rather than PDR to isolate the effect ofmarginal-

ized propensities from the regressor. Table 3 illustrates bias de-

composition on old versus new actions using PIPS across varying

granularities. Bias on old actions generally increases with coarser

clustering due to using marginalized propensities instead of the

“raw” propensities. However, bias on new actions dominates bias

on old actions in magnitude, achieving its minimum at moderate

granularity. Extremely fine clusters lead to “overfitting,” treating

new actions identically to their nearest old action, whereas overly

coarse clusters lead to “underfitting.”

Varying action set overlap. In Table 4, we compare DR, IDR, and

PDR with a variable number of actions available to the logging

policy, which effectively determines the amount of overlap with

the target policy’s action set. Modifying the protocol described in

Section 6.2.1, we randomly keep 30%, 50%, 70%, and 90% of the

original 80 actions in the logging action set. Similar to the syn-

thetic data results, PDR outperforms both DR and IDR, with DR

showing the weakest performance due to deficient support. The

advantage of PDR over IDR becomes more pronounced as the over-

lap ratio decreases, as PDR effectively adjusts for deficient support

through proxy mapping, whereas IDR relies on conditioning onto
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Table 4: Open Bandit: MSE comparison between DR, IDR and
PDR with different action set overlap ratios

Overlap ratios MSE: DR MSE: IDR MSE: PDR

30% 2.98 × 10
−6

4.03 × 10
−7 6.12 × 10−8

50% 2.52 × 10
−6

5.54 × 10
−7 5.41 × 10−7

70% 8.46 × 10
−7

3.11 × 10
−7 1.32 × 10−7

90% 5.02 × 10
−7

4.31 × 10
−7 3.21 × 10−7

Table 5: Open Bandit: Comparison between PDR using pair-
wise vs pointwise regressor

Regressor MSE Squared bias Variance

Pointwise 5.10 × 10
−7

4.75 × 10
−7 3.50 × 10−8

Pairwise 2.12 × 10−7 1.77 × 10−7 3.52 × 10
−8

the intersection of the action sets. This study further highlights

the robustness of PDR in scenarios with limited overlap between

logging and target policies.

Pairwise regression. In OBD, we observe only one action per

context. Hence, for pairwise training, we must relax the context

specificity constraint and pair actions based solely on their equiv-

alence classes, which are defined independently of context here.

Table 5 compares PDR estimators leveraging either pointwise or

pairwise regression to train the reward model. The pairwise regres-

sor achieves lower MSE thanks to its reduced bias, which concurs

with our bias decomposition (Theorem 1). The pointwise regressor

exhibits slightly lower variance; however, the difference is likely

statistically insignificant.

7 Conclusion
We introduced a framework for off-policy evaluation of candidate

generators in two-stage recommender systems, framing the prob-

lem as off-policy evaluation with a changing action set. We pro-

posed two importance weighting methods—intersection-based and

proxy-based—with the latter leveraging equivalence classes and

marginalized propensities to handle unseen actions. Our theoretical

analysis highlights the inherent bias-variance trade-offs, and our

experiments on synthetic and real-world data demonstrate that the

proposed proxy-based estimators achieve lower bias and compara-

ble or reduced variance relative to the baselines. This work therefore

provides a practical path toward more principled offline evaluation

of candidate generators in two-stage recommender systems.

That said, while the methods are promising and broadly applica-

ble, it is important to acknowledge their limitations. Specifically,

the quality of the PDR estimator depends on the quality of the

equivalence classes and reward model. If the equivalence classes

exhibit too much variation in their Δ values—which, recall, are

functions of the true and predicted rewards—then the proxy-based

reward estimates will suffer (as supported by our analysis in Sec-

tion 4.1). Thus, construction (and possibly joint optimization) of

the equivalence classes and reward model remains an important

direction for future work.
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A Deferred Proofs
This appendix contains proofs deferred from the main manuscript.

A.1 Proof of Theorem 1
Via linearity of expectation, we can decompose the bias of PDR into the expected value of the importance-weighed term plus the bias of DM:

Bias(𝑅pdr,A1, 𝜋) = E
𝑆∼(D×𝜋0 )𝑛

[
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝛿 (𝑥𝑖 , 𝑎𝑖 )
]
+ E

𝑆∼(D×𝜋0 )𝑛
[
𝑅dm (A1, 𝜋, 𝑆) − 𝑅(A1, 𝜋)

]
= E

𝑆∼(D×𝜋0 )𝑛

[
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝛿 (𝑥𝑖 , 𝑎𝑖 )
]
+ Bias(𝑅dm,A1, 𝜋).

The bias of DM is given by Equation 3, and we can simplify it using the notation in Equation 5:

Bias(𝑅dm,A1, 𝜋) = E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋 ( · | A1,𝑥 )

[
− 𝛿 (𝑥, 𝑎)

]
.

For the importance-weighted term, we can apply linearity of expectation to push the expectations inside the average, then rename the

variables (because they are i.i.d.):

E
𝑆∼(D×𝜋0 )𝑛

[
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝑎𝑖 | A1, 𝑥𝑖 )
𝜋0 (𝑎𝑖 | A0, 𝑥𝑖 )

𝛿 (𝑥𝑖 , 𝑎𝑖 )
]
= E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

𝛿 (𝑥, 𝑎)
]
.

Combining these quantities, we get

Bias(𝑅pdr,A1, 𝜋) = E
(𝑥,𝑟 )∼D

[
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

𝛿 (𝑥, 𝑎)
]

︸                                          ︷︷                                          ︸
(𝑎)

− E
𝑎∼𝜋 ( · | A1,𝑥 )

[
𝛿 (𝑥, 𝑎)

]
︸                      ︷︷                      ︸

(𝑏 )

]
. (14)

We then analyze term (a) in Equation 14:

E
𝑎∼𝜋0 ( · | A0,𝑥 )

[
𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

𝛿 (𝑥, 𝑎)
]
=

∑︁
𝑎∈A0

𝜋0 (𝑎 | A0, 𝑥)
𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

𝛿 (𝑥, 𝑎)

=
∑︁

𝑚∈M(𝑥 )

∑︁
𝑎∈𝑚∩A0 (𝑥 )

𝜋0 (𝑎 | A0, 𝑥)
𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

𝛿 (𝑥, 𝑎) (15)

=
∑︁

𝑚∈M(𝑥 )

∑︁
𝑎∈𝑚∩A0 (𝑥 )

𝜋0 (𝑎 | A0, 𝑥)
𝜋 (𝑚 | A1, 𝑥)
𝜋0 (𝑚 | A0, 𝑥)

𝛿 (𝑥, 𝑎) (16)

=
∑︁

𝑚∈M(𝑥 )

∑︁
𝑎∈𝑚∩A0 (𝑥 )

𝜋0 (𝑎 |𝑚 ∩ A0 (𝑥), 𝑥)𝜋 (𝑚 | A1, 𝑥)𝛿 (𝑥, 𝑎) (17)

= E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎∼𝜋0 ( · |𝑚∩A0 (𝑥 ),𝑥 )

[
𝛿 (𝑥, 𝑎)

]
. (18)

Equation 15 uses the fact that 𝜙 partitions A0 (𝑥), such that every 𝑎 ∈ A0 (𝑥) belongs to exactly one𝑚 ∈ M(𝑥). Equation 16 uses the

equivalences 𝜋 (𝑎 | A1, 𝑥) = 𝜋 (𝑚 | A1, 𝑥) and 𝜋0 (𝑎 | A0, 𝑥) = 𝜋0 (𝑚 | A0, 𝑥) when 𝑚 = 𝜙 (𝑥, 𝑎). Finally, Equation 17 applies Equation 10.

Rearranging terms, we end up with Equation 18, expressed as a double expectation.

Applying the same reasoning to term (b) in Equation 14:

E
𝑎∼𝜋 ( · | A1,𝑥 )

[
𝛿 (𝑥, 𝑎)

]
=

∑︁
𝑎∈A1

𝜋 (𝑎 | A1, 𝑥)𝛿 (𝑥, 𝑎)

=
∑︁

𝑚∈M(𝑥 )

∑︁
𝑎∈𝑚∩A1 (𝑥 )

𝜋 (𝑚 | A1, 𝑥)
𝜋 (𝑚 | A1, 𝑥)

𝜋 (𝑎 | A1, 𝑥)𝛿 (𝑥, 𝑎)

=
∑︁

𝑚∈M(𝑥 )

∑︁
𝑎∈𝑚∩A1 (𝑥 )

𝜋 (𝑚 | A1, 𝑥)𝜋 (𝑎 |𝑚 ∩ A1 (𝑥), 𝑥)𝛿 (𝑥, 𝑎)

= E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎∼𝜋 ( · |𝑚∩A1 (𝑥 ),𝑥 )

[
𝛿 (𝑥, 𝑎)

]
. (19)

To complete the proof, we simply plug Equations 18 and 19 into Equation 14 and apply linearity of expectation to combine the expectations.
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A.2 Proof of Theorem 2
First, to simplify presentation, we introduce some notation,

ˆ𝛿 (𝑥, 𝑎) ≜ 𝜋 (𝑎 | A1, 𝑥)
𝜋0 (𝑎 | A0, 𝑥)

𝛿 (𝑥, 𝑎),

to denote the marginal importance-weighting of the reward prediction error, 𝛿 . We then leverage the i.i.d. assumption to express the variance

of the estimator as the variance of a single interaction:

𝑛 Var(𝑅pdr,A1, 𝜋) =
1

𝑛

𝑛∑︁
𝑖=1

 V
(𝑥𝑖 ,𝑟𝑖 )∼D

𝑎𝑖∼𝜋0 ( · | A0,𝑥𝑖 )

[
ˆ𝛿 (𝑥𝑖 , 𝑎𝑖 ) + E

𝑎′∼𝜋 ( · | A1,𝑥𝑖 )
ℎ(𝑥𝑖 , 𝑎′)

]
= V

(𝑥,𝑟 )∼D
𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎) + E

𝑎′∼𝜋 ( · | A1,𝑥 )
ℎ(𝑥, 𝑎′)

]
. (20)

Then, we apply the law of total variance to decompose this variance:

(20) = E
(𝑥,𝑟 )∼D

V
𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎) + E

𝑎′∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎′)

] ]
(21)

+ V
(𝑥,𝑟 )∼D

[
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

]
+ E

𝑎′∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎′)

] ]
. (22)

In Equation 21, we have that the DM term, E𝑎′∼𝜋 ( · | A1,𝑥 ) , is constant w.r.t. the inner variance over 𝑎 ∼ 𝜋0 ( · | A0, 𝑥), and can therefore be

ignored. Then, expanding the inner variance using the identity Var[ ˆ𝛿] = E[ ˆ𝛿2] − (E[ ˆ𝛿])2
, we have

(21) = E
(𝑥,𝑟 )∼D

V
𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

]
= E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)2

]
− E

(𝑥,𝑟 )∼D

(
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

] )2

. (23)

In Equation 22, we have that the inner expectations involve independent random variables, 𝑎 ∼ 𝜋0 ( · | A0, 𝑥) and 𝑎′ ∼ 𝜋 ( · | A1, 𝑥). Thus,
we can decompose the outer variance as

(22) = V
(𝑥,𝑟 )∼D

E
𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

]
+ V

𝑥∼D
E

𝑎′∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎′)

]
. (24)

Note that the reward, 𝑟 , is irrelevant to the second term and is thus omitted. We then combine Equations 23 and 24 and obtain

(21) + (22) = E
(𝑥,𝑟 )∼D

E
𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)2

]
− E

(𝑥,𝑟 )∼D

(
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

] )2

+ V
(𝑥,𝑟 )∼D

E
𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

]
+ V

𝑥∼D
E

𝑎′∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎′)

]
= E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)2

]
−

(
E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)

] )2

+ V
𝑥∼D

E
𝑎′∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎′)

]
≤ E

(𝑥,𝑟 )∼D
E

𝑎∼𝜋0 ( · | A0,𝑥 )

[
ˆ𝛿 (𝑥, 𝑎)2

]
+ V

𝑥∼D
E

𝑎′∼𝜋 ( · | A1,𝑥 )

[
ℎ(𝑥, 𝑎′)

]
.

In the final step, we upper bound the variance by removing the middle squared term due to its non-negativity, which completes the proof.

A.3 Proof of Corollary 1
We will proceed by splitting the expectation in Equation 11 into two terms, so that we can analyze each in isolation. We then re-combine

them to obtain the final expressions.
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Starting with the lefthand expectation:

E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎∼𝜋0 ( · |𝑚∩A0 (𝑥 ),𝑥 )

[
𝛿 (𝑥, 𝑎)

]
=

∑︁
𝑚∈M(𝑥 )

∑︁
𝑎∈𝑚∩A0 (𝑥 )

𝜋 (𝑚 | A1, 𝑥)𝜋0 (𝑎 |𝑚 ∩ A0 (𝑥), 𝑥)𝛿 (𝑥, 𝑎)

=
∑︁

𝑎′∈A0 (𝑥 )

∑︁
𝑎∈𝜙 (𝑎′,𝑥 )

𝜋 (𝑎′ | A1, 𝑥)𝜋0 (𝑎 | 𝜙 (𝑎′, 𝑥) ∩ A0, 𝑥)𝛿 (𝑥, 𝑎)

=
∑︁

𝑎′∈A0 (𝑥 )
𝜋 (𝑎′ | A1, 𝑥)𝜋0 (𝑎′ | {𝑎′}, 𝑥)𝛿 (𝑥, 𝑎′)

=
∑︁

𝑎′∈A0 (𝑥 )
𝜋 (𝑎′ | A1, 𝑥)𝛿 (𝑥, 𝑎′)

=
∑︁

𝑎′∈A0 (𝑥 )

∑︁
𝑎∈A1 (𝑥 )

𝜋 (𝑎 | A1, 𝑥)1{𝑎′ = 𝜙 (𝑥, 𝑎)}𝛿 (𝑥, 𝑎′)

=
∑︁

𝑎∈A1 (𝑥 )
𝜋 (𝑎 | A1, 𝑥)𝛿 (𝑥, 𝜙 (𝑥, 𝑎))

= E
𝑎∼𝜋 ( · | A1,𝑥 )

[
𝛿 (𝑥, 𝜙 (𝑥, 𝑎))

]
.

Turning now to the righthand expectation, we can simply reverse Equation 19:

E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎′∼𝜋 ( · |𝑚∩A1 (𝑥 ),𝑥 )

[
𝛿 (𝑥, 𝑎′)

]
= E

𝑎′∼𝜋 ( · | A1,𝑥 )

[
𝛿 (𝑥, 𝑎′)

]
.

Finally, substituting the above identities into Equation 11, we have

E
𝑚∼𝜋 ( · | A1,𝑥 )

E
𝑎∼𝜋0 ( · |𝑚∩A0 (𝑥 ),𝑥 )
𝑎′∼𝜋 ( · |𝑚∩A1 (𝑥 ),𝑥 )

[
𝛿 (𝑥, 𝑎) − 𝛿 (𝑥, 𝑎′)

]
= E

𝑎∼𝜋 ( · | A1,𝑥 )

[
𝛿 (𝑥, 𝜙 (𝑥, 𝑎)) − 𝛿 (𝑥, 𝑎)

]
= E

𝑎∼𝜋 ( · | A1,𝑥 )

[
1{𝑎 ∈ A

1\0
(𝑥)}

(
𝛿 (𝑥, 𝜙 (𝑥, 𝑎)) − 𝛿 (𝑥, 𝑎)

)]
.

The last equality holds because, for any 𝑎 ∈ A0∩1 (𝑥)—that is, an old action that is also a member of A1 (𝑥)—its proxy is itself; hence,

𝛿 (𝑥, 𝜙 (𝑥, 𝑎)) − 𝛿 (𝑥, 𝑎) = 0, leaving only the actions in A
1\0

(𝑥) to influence the bias.
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