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Abstract

Starting in 2013, we set out to build a new database to act as
the configuration store for a high-performance cloud block
storage system (Amazon EBS).This database needs to be not
only highly available, durable, and scalable but also strongly
consistent. We quickly realized that the constraints on avail-
ability imposed by the CAP theorem, and the realities of
operating distributed systems, meant that we didn’t want one
database. We wanted millions. Physalia is a transactional key-
value store, optimized for use in large-scale cloud control
planes, which takes advantage of knowledge of transaction
patterns and infrastructure design to offer both high availabil-
ity and strong consistency to millions of clients. Physalia uses
its knowledge of datacenter topology to place data where it is
most likely to be available. Instead of being highly available
for all keys to all clients, Physalia focuses on being extremely
available for only the keys it knows each client needs, from
the perspective of that client.

This paper describes Physalia in context of Amazon EBS,
and some other uses within Amazon Web Services. We be-
lieve that the same patterns, and approach to design, are widely
applicable to distributed systems problems like control planes,
configuration management, and service discovery.

1 Introduction

Traditional architectures for highly-available systems assume
that infrastructure failures are statistically independent, and
that it is extremely unlikely for a large number of servers to
fail at the same time. Most modern system designs are aware
of broad failure domains (data centers or availability zones),
but still assume two modes of failure: a complete failure of a
datacenter, or a random uncorrelated failure of a server, disk
or other infrastructure. These assumptions are reasonable for
most kinds of systems. Schroder and Gibson found [51] that
(in traditional datacenter environments), while the probability
of a second disk failure in a week was up to 9x higher when
a first failure had already occurred, this correlation drops off

to less than 1.5x as systems age. While a 9x higher failure
rate within the following week indicates some correlation, it
is still very rare for two disks to fail at the same time. This
is just as well, because systems like RAID [43] and primary-
backup failover perform well when failures are independent,
but poorly when failures occur in bursts.

When we started building AWS in 2006, we measured the
availability of systems as a simple percentage of the time
that the system is available (such as 99.95%), and set Service
Level Agreements (SLAs) and internal goals around this per-
centage. In 2008, we introduced AWS EC2 Availability Zones:
named units of capacity with clear expectations and SLAs
around correlated failure, corresponding to the datacenters
that customers were already familiar with. Over the decade
since, our thinking on failure and availability has continued
to evolve, and we paid increasing attention to blast radius and
correlation of failure. Not only do we work to make outages
rare and short, we work to reduce the number of resources
and customers that they affect [55], an approach we call blast
radius reduction. This philosophy is reflected in everything
from the size of our datacenters [30], to the design of our
services, to operational practices.

Amazon Elastic Block Storage (EBS) is a block storage
service for use with AWS EC2, allowing customers to create
block devices on demand and attach them to their AWS EC2
instances. volumes are designed for an annual failure rate
(AFR) of between 0.1% and 0.2%, where failure refers to a
complete or partial loss of the volume. This is significantly
lower than the AFR of typical disk drives [44]. EBS achieves
this higher durability through replication, implementing a
chain replication scheme (similar to the one described by van
Renesse, et al [54]). Figure 1 shows an abstracted, simplified,
architecture of EBS in context of AWS EC2. In normal opera-
tion (of this simplified model), replicated data flows through
the chain from client, to primary, to replica, with no need for
coordination. When failures occur, such as the failure of the
primary server, this scheme requires the services of a config-
uration master, which ensures that updates to the order and
membership of the replication group occur atomically, are
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Figure 1: Simplified model of one EBS volume connected to
an AWS EC2 instance. For the volume to be available for IO,
either both the master and replica, or either storage server and
Physalia, must be available to the instance.

well ordered, and follow the rules needed to ensure durability.
The requirements on this configuration master are unusual.

In normal operation it handles little traffic, as replication
continues to operate with no need to contact the configu-
ration master. However, when large-scale failures (such as
power failures or network partitions) happen, a large num-
ber of servers can go offline at once, requiring the master
to do a burst of work. This work is latency critical, because
volume IO is blocked until it is complete. It requires strong
consistency, because any eventual consistency would make
the replication protocol incorrect. It is also most critical at the
most challenging time: during large-scale failures.

Physalia is a specialized database designed to play this role
in EBS, and other similar systems at Amazon Web Services.
Physalia offers both consistency and high availability, even in
the presence of network partitions, as well as minimized blast
radius of failures. It aims to fail gracefully and partially, and
strongly avoid large-scale failures.

1.1 History

On 21 April 2011, an incorrectly executed network configura-
tion change triggered a condition which caused 13% of the
EBS volumes in a single Availability Zone (AZ) to become
unavailable. At that time, replication configuration was stored
in the EBS control plane, sharing a database with API traffic.
From the public postmortem [46]:

When data for a volume needs to be re-mirrored,
a negotiation must take place between the AWS
EC2 instance, the EBS nodes with the volume data,
and the EBS control plane (which acts as an au-
thority in this process) so that only one copy of the

data is designated as the primary replica and recog-
nized by the AWS EC2 instance as the place where
all accesses should be sent. This provides strong
consistency of EBS volumes. As more EBS nodes
continued to fail because of the race condition de-
scribed above, the volume of such negotiations with
the EBS control plane increased. Because data was
not being successfully re-mirrored, the number of
these calls increased as the system retried and new
requests came in. The load caused a brown out of
the EBS control plane and again affected EBS APIs
across the Region.

This failure vector was the inspiration behind Physalia’s
design goal of limiting the blast radius of failures, including
overload, software bugs, and infrastructure failures.

1.2 Consistency, Availability and Partition
Tolerance

As proven by Gilbert and Lynch [22], it is not possible for
a distributed system to offer both strong consistency (in the
sense of linearizability [31]), and be available to all clients
in the presence of network partitions. Unfortunately, all real-
world distributed systems must operate in the presence of
network partitions [6], so systems must choose between
strong consistency and availability. Strong consistency is non-
negotiable in Physalia, because it’s required to ensure the cor-
rectness of the EBS replication protocol. However, because
chain replication requires a configuration change during net-
work partitions, it is especially important for Physalia to be
available during partitions.

Physalia then has the goal of optimizing for availability
during network partitions, while remaining strongly consis-
tent. Our core observation is that we do not require all keys
to be available to all clients. In fact, each key needs to be
available at only three points in the network: the AWS EC2
instance that is the client of the volume, the primary copy, and
the replica copy. Through careful placement, based on our
system’s knowledge of network and power topology, we can
significantly increase the probability that Physalia is avail-
able to the clients that matter for the keys that matter to those
clients.

This is Physalia’s key contribution, and our motivation for
building a new system from the ground up: infrastructure
aware placement and careful system design can significantly
reduce the effect of network partitions, infrastructure fail-
ures, and even software bugs. In the same spirit as Paxos
Made Live [12], this paper describes the details, choices and
tradeoffs that are required to put a consensus system into
production. Our concerns, notably blast radius reduction and
infrastructure awareness, are significantly different from that
paper.



Figure 2: Overview of the relationship between the colony,
cell and node.

2 The Design of Physalia

Physalia’s goals of blast radius reduction and partition tol-
erance required careful attention in the design of the data
model, replication mechanism, cluster management and even
operational and deployment procedures. In addition to these
top-level design goals, we wanted Physalia to be easy and
cheap to operate, contributing negligibly to the cost of our
dataplane. We wanted its data model to be flexible enough
to meet future uses in similar problem spaces, and to be easy
to use correctly. This goal was inspired by the concept of
misuse resistance from cryptography (GCM-SIV [27], for
example), which aims to make primitives that are safer under
misuse. Finally, we wanted Physalia to be highly scalable,
able to support an entire EBS availability zone in a single
installation.

2.1 Nodes, Cells and the Colony

The Portuguese man o’ war (Physalia physalis) is not one
animal, but a siphonophore: a colonial organism made up
of many specialized animals called zooids. These zooids are
highly adapted to living in the colony, and cannot live out-
side it. Nevertheless, each zooid is a stand-alone organism,
including everything that is required for life. Physalia’s high-
level organization is similar: each Physalia installation is a
colony, made up of many cells. The cells live in the same
environment: a mesh of nodes, with each node running on a
single server. Each cell manages the data of a single partition
key, and is implemented using a distributed state machine,
distributed across seven nodes. Cells do not coordinate with
other cells, but each node can participate in many cells. The
colony, in turn, can consist of any number of cells (provided
there are sufficient nodes to distribute those cells over). Fig-
ure 2 captures the relationship between colony, cell and node.
Figure 3 shows the cell: a mesh of nodes holding a single
Paxos-based distributed state machine, with one of the nodes
playing the role of distinguished proposer.

The division of a colony into a large number of cells is our
main tool for reducing radius in Physalia. Each node is only
used by a small subset of cells, and each cell is only used by
a small subset of clients.
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Figure 3: A cell is a group of nodes, one of which assumes
the role of distinguished proposer.

Each Physalia colony includes a number of control plane
components. The control plane plays a critical role in main-
taining system properties. When a new cell is created, the
control plane uses its knowledge of the power and network
topology of the datacenter (discovered from AWS’s datacen-
ter automation systems) to choose a set of nodes for the cell.
The choice of nodes balances two competing priorities. Nodes
should be placed close to the clients (where close is measured
in logical distance through the network and power topology)
to ensure that failures far away from their clients do not cause
the cell to fail. They must also be placed with sufficient diver-
sity to ensure that small-scale failures do not cause the cell
to fail. Section 3 explores the details of placement’s role in
availability.

The cell creation and repair workflows respond to requests
to create new cells (by placing them on under-full nodes),
handling cells that contain failed nodes (by replacing these
nodes), and moving cells closer to their clients as clients move
(by incrementally replacing nodes with closer ones).

We could have avoided implementing a seperate control-
plane and repair workflow for Physalia, by following the ex-
ample of elastic replication [2] or Scatter [23]. We evaluated
these approaches, but decided that the additional complex-
ity, and additional communication and dependencies between
shards, were at odds with our focus on blast radius. We chose
to keep our cells completely independent, and implement the
control plane as a seperate system.

2.2 Physalia’s Flavor of Paxos
The design of each cell is a straightforward consensus-based
distributed state machine. Cells use Paxos [35] to create an
ordered log of updates, with batching and pipelining [48]
to improve throughput. Batch sizes and pipeline depths are
kept small, to keep per-item work well bounded and ensure
short time-to-recovery in the event of node or network fail-
ure. Physalia uses a custom implementation of Paxos written



Figure 4: The size of cells is a trade-off between tolerance to
large correlated failures and tolerance to random failures.

in Java, which keeps all required state both in memory and
persisted to disk. In typical cloud systems, durability is made
easier by the fact that systems can be spread across multiple
datacenters, and correlated outages across datacenters are rare.
Physalia’s locality requirement meant that we could not use
this approach, so extra care in implementation and testing
were required to ensure that Paxos is implemented safely,
even across dirty reboots.

In the EBS installation of Physalia, the cell performs Paxos
over seven nodes. Seven was chosen to balance several con-
cerns:

• Durability improves exponentially with larger cell size
[29]. Seven replicas means that each piece of data is
durable to at least four disks, offering durability around
5000x higher than the 2-replication used for the volume
data.

• Cell size has little impact on mean latency, but larger
cells tend to have lower high percentiles because they
better reject the effects of slow nodes, such as those
experiencing GC pauses [17].

• The effect of cell size on availability depends on the type
of failures expected. As illustrated in Figure 4, smaller
cells offer lower availability in the face of small numbers
of uncorrelated node failures, but better availability when
the proportion of node failure exceeds 50%. While such
high failure rates are rare, they do happen in practice,
and a key design concern for Physalia.
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Figure 5: The Physalia schema.

• Larger cells consume more resources, both because
Paxos requires O(cellsize) communication, but also be-
cause a larger cell needs to keep more copies of the data.
The relatively small transaction rate, and very small data,
stored by the EBS use of Physalia made this a minor
concern.

The control plane tries to ensure that each node contains a
different mix of cells, which reduces the probability of cor-
related failure due to load or poison pill transitions. In other
words, if a poisonous transition crashes the node software
on each node in the cell, only that cell should be lost. In the
EBS deployment of Physalia, we deploy it to large numbers
of nodes well-distributed across the datacenter. This gives the
Physalia control plane more placement options, allowing it to
optimize for widely-spread placement.

In our Paxos implementation, proposals are accepted opti-
mistically. All transactions given to the proposer are proposed,
and at the time they are to be applied (i.e. all transactions with
lower log positions have already been applied), they are com-
mitted or ignored depending on whether the write conditions
pass. The advantage of this optimistic approach is that the
system always makes progress if clients follow the typical op-
timistic concurrency control (OCC) pattern. The disadvantage
is that the system may do significant additional work during
contention, passing many proposals that are never committed.

2.3 Data Model and API
The core of the Physalia data model is a partition key. Each
EBS volume is assigned a unique partition key at creation
time, and all operations for that volume occur within that
partition key. Within each partition key, Physalia offers a
transactional store with a typed key-value schema, supporting
strict serializable reads, writes and conditional writes over
any combination of keys. It also supports simple in-place op-
erations like atomic increments of integer variables. Figure
5 shows the schema: one layer of partition keys, any number
(within operational limitations) of string keys within a parti-
tion, and one value per key. The API can address only one
partition key at a time, and offers strict serializable batch and
conditional operations within the partition.

The goal of the Physalia API design was to balance two



competing concerns. The API needed to be expressive enough
for clients to take advantage of the (per-cell) transactional
nature of the underlying store, including expressing condi-
tional updates, and atomic batch reads and writes. Increasing
API expressiveness, on the other hand, increases the prob-
ability that the system will be able to accept a transition
that cannot be applied (a poison pill). The Physalia API is
inspired by the Amazon DynamoDB API, which supports
atomic batched and single reads and writes, conditional up-
dates, paged scans, and some simple in-place operations like
atomic increments. We extended the API by adding a com-
pound read-and-conditional-write operation.

Phsyalia’s data fields are strong but dynamically typed.
Supported field types include byte arrays (typically used to
store UTF-8 string data), arbitrary precision integers, and
booleans. Strings are not supported directly, but may be of-
fered as a convenience in the client. Floating-point data types
and limited-precision integers are not supported due to diffi-
culties in ensuring that nodes will produce identical results
when using different software versions and hardware (see
[24] and chapter 11 of [1]). As in any distributed state ma-
chine, it’s important that each node in a cell gets identical
results when applying a transition. We chose not to offer a
richer API (like SQL) for a similar reason: our experience is
that it takes considerable effort to ensure that complex updates
are applied the same way by all nodes, across all software
versions.

Physalia provides two consistency modes to clients. In the
consistent mode, read and write transactions are both lineariz-
able and serializable, due to being serialized through the state
machine log. Most Physalia clients use this consistent mode.
The eventually consistent mode supports only reads (all writes
are consistent), and offers a consistent prefix [7] to all readers
and monotonic reads [53] within a single client session. Even-
tually consistent reads are provided to be used for monitoring
and reporting (where the extra cost of linearizing reads worth
it), and the discovery cache (which is eventually consistent
anyway).

The API also offers first-class leases [25] (lightweight time-
bounded locks). The lease implementation is designed to
tolerate arbitrary clock skew and short pauses, but will give
incorrect results if long-term clock rates are too different. In
our implementation, this means that the fastest node clock
is advancing at more than three times the rate of the slowest
clock. Despite lease safety being highly likely, leases are only
used where they are not critical for data safety or integrity.

In the Physalia API, all keys used to read and write data, as
well as conditions for conditional writes, are provided in the
input transaction. This allows the proposer to efficiently detect
which changes can be safely batched in a single transaction
without changing their semantics. When a batch transaction
is rejected, for example due to a conditional put failure, the
proposer can remove the offending change from the batch and
re-submit, or submit those changes without batching.

i-2 i-1 i i+1 i+2 i+3

Reconfiguration 
accepted here

Takes effect
here

……

Figure 6: Changes in membership are placed into the log, but
only take effect some time later (pictured here is α = 2)

2.4 Reconfiguration, Teaching and Learning

As with our core consensus implementation, Physalia does not
innovate on reconfiguration. The approach taken of storing
per-cell configuration in the distributed state machine and
passing a transition with the existing jury to update it follows
the pattern established by Lampson [37]. A significant factor
in the complexity of reconfiguration is the interaction with
pipelining: configuration changes accepted at log position i
must not take effect logically until position i+α, where α is
the maximum allowed pipeline length (illustrated in Figure 6).
Physalia keeps α small (typically 3), and so simply waits for
natural traffic to cause reconfiguration to take effect (rather
than stuffing no-ops into the log). This is a very sharp edge in
Paxos, which doesn’t exist in either Raft [42] or Viewstamped
Replication [41].

Physalia is unusual in that reconfiguration happens fre-
quently. The colony-level control plane actively moves
Physalia cells to be close to their clients. It does this by replac-
ing far-away nodes with close nodes using reconfiguration.
The small data sizes in Physalia make cell reconfiguration
an insignificant portion of overall datacenter traffic. Figure 7
illustrates this process of movement by iterative reconfigura-
tion. The system prefers safety over speed, moving a single
node at a time (and waiting for that node to catch up) to mini-
mize the impact on durability. The small size of the data in
each cell allows reconfiguration to complete quickly, typically
allowing movement to complete within a minute.

When nodes join or re-join a cell they are brought up to
speed by teaching, a process we implement outside the core
consensus protocol. We support three modes of teaching. In
the bulk mode, most suitable for new nodes, the teacher (any
existing node in the cell) transfers a bulk snapshot of its state
machine to the learner. In the log-based mode, most suitable
for nodes re-joining after a partition or pause, the teacher
ships a segment of its log to the learner. We have found
that this mode is triggered rather frequently in production,
due to nodes temporarily falling behind during Java garbage
collection pauses. Log-based learning is chosen when the size
of the missing log segment is significantly smaller than the
size of the entire dataset.

Finally, packet loss and node failures may leave persistent
holes in a node’s view of the log. If nodes are not able to find
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Figure 7: When Physalia detects that a cell’s client has moved
(a), it replaces nodes in the cell with ones closer to the client
(b), until the cell is entirely nearby the client (c).

another to teach them the decided value in that log position (or
no value has been decided), they use a whack-a-mole learn-
ing mode. In whack-a-mole mode, a learner actively tries to
propose a no-op transition into the vacant log position. This
can have two outcomes: either the acceptors report no other
proposals for that log position and the no-op transition is ac-
cepted, or another proposal is found and the learner proposes
that value. This process is always safe in Paxos, but can affect
liveness, so learners apply substantial jitter to whack-a-mole
learning.

2.5 The Discovery Cache
Clients find cells using a distributed discovery cache. The
discovery cache is a distributed eventually-consistent cache
which allow clients to discover which nodes contain a given
cell (and hence a given partition key). Each cell periodically
pushes updates to the cache identifying which partition key
they hold and their node members. Incorrect information in
the cache affects the liveness, but never the correctness, of
the system. We use three approaches to reduce the impact
of the discovery cache on availability: client-side caching,
forwarding pointers, and replication. First, it is always safe for
a client to cache past discovery cache results, allowing them to
refresh lazily and continue to use old values for an unbounded
period on failure. Second, Physalia nodes keep long-term (but
not indefinite) forwarding pointers when cells move from
node to node. Forwarding pointers include pointers to all
the nodes in a cell, making it highly likely that a client will
succeed in pointer chasing to the current owner provided that
it can get to at least one of the past owners. Finally, because
the discovery cache is small, we can economically keep many

copies of it, increasing the probability that at least one will be
available.

2.6 System Model and Byzantine Faults
In designing Physalia, we assumed a system model where
messages can be arbitrarily lost, replayed, re-ordered, and
modified after transmission. Message authentication is im-
plemented using a cryptographic HMAC on each message,
guarding against corruption occurring in lower layers. Mes-
sages which fail authentication are simply discarded. Key
distribution, used both for authentication and prevention of
unintentional Sybil-style attacks [20] is handled by our envi-
ronment (and therefore out of the scope of Physalia), optimis-
ing for frequent and low-risk key rotation.

This model extends the “benign faults” assumptions of
Paxos [11] slightly, but stops short of Byzantine fault toler-
ance1. While Byztantine consensus protocols are well under-
stood, they add significant complexity to both software and
system interactions, as well as testing surface area. Our ap-
proach was to keep the software and protocols simpler, and
mitigate issues such as network and storage corruption with
cryptographic integrity and authentication checks at these
layers.

3 Availability in Consensus Systems

State-machine replication using consensus is popular ap-
proach for building systems that tolerate faults in single
machines, and uncorrelated failures of a small number of
machines. In theory, systems built using this pattern can
achieve extremely high availability. In practice, however,
achieving high availability is challenging. Studies across three
decades (including Gray in 1990 [26], Schroeder and Gibson
in 2005 [50] and Yuan et al in 2014 [57]) have found that
software, operations, and scale drive downtime in systems
designed to tolerate hardware faults. Few studies consider a
factor that is especially important to cloud customers: large-
scale correlated failures which affect many cloud resources at
the same time.

3.1 Physalia vs the Monolith
It is well known that it is not possible to offer both all-clients
availability and consistency in distributed databases due to
the presence of network partitions. It is, however, possible
to offer both consistency and availability to clients on the
majority side of a network partition. While long-lived network
partitions are rare in modern datacenter networks, they do
occur, both due to the network itself and other factors (see
Bailis and Kingsbury [6] and Alquraan et al [5] for surveys of

1This approach is typical of production consensus-based systems, includ-
ing popular open-source projects like Zookeeper and etcd



causes of network partitions). Short-lived partitions are more
frequent. To be as available as possible to its clients, Physalia
needs to be on the same side of any network partition as them.
For latency and throughput reasons, EBS tries to keep the
storage replicas of a volume close to the AWS EC2 instances
the volumes are attached to, both in physical distance and
network distance. This means that client, data master and data
replica are nearby each other on the network, and Physalia
needs to be nearby too. Reducing the number of network
devices between the Physalia database and its clients reduces
the possibility of a network partition forming between them
for the simple reason that fewer devices means that there’s
less to go wrong.

Physalia also optimizes for blast radius. We are not only
concerned with the availability of the whole system, but want
to avoid failures of the whole system entirely. When failures
happen, due to any cause, they should affect as small a subset
of clients as possible. Limiting the number of cells depending
on a single node, and clients on a single cell, significantly
reduce the effect that one failure can have on the overall
system.

This raises the obvious question: does Physalia do better
than a monolithic system with the same level of redundancy?
A monolithic system has the advantage of less complexity.
No need for the discovery cache, most of the control plane,
cell creation, placement, etc. Our experience has shown that
simplicity improves availability, so this simplification would
be a boon. On the other hand, the monolithic approach loses
out on partition tolerance. It needs to make a trade-off between
being localized to a small part of the network (and so risking
being partitioned away from clients), or being spread over the
network (and so risking suffering an internal partition making
some part of it unavailable). The monolith also increases
blast radius: a single bad software deployment could cause a
complete failure (this is similar to the node count trade-off of
Figure 4, with one node).

3.2 Placement For Availability

The EBS control plane (of which the Physalia control plane
is a part) continuously optimizes the availability of the EBS
volume P(Av) to the client AWS EC2 instance, and the EBS
storage servers that store the volume. This is most interesting
to do when the client instance is available. If the volume
is unavailable at the same time as the client instance, we
know that the instance will not be trying to access it. In other
words, in terms of the availability of the volume (Av), and
the instance (Ai), the control plane optimizes the conditional
probability P(Av|Ai). The ideal solution to this problem is to
entirely co-locate the volume and instance, but EBS offers
the ability to detach a volume from a failed instance, and
re-attach it to another instance. To make this useful, volumes
must continue to be durable even if the instance suffers a
failure. Placement must therefore balance the concerns of

having the volume close enough for correlated availability,
but far enough away for sufficiently independent durability to
meet EBS’s durability promise.

As an example, consider an idealized datacenter with three
levels of network (servers, racks and rows) and three power
domains (A, B and C). The client instance is on one rack,
the primary copy on another, and replica copy on a third,
all within the same row. Physalia’s placement will then en-
sure that all nodes for the cell are within the row (there’s no
point being available if the row is down), but spread across
at least three racks to ensure that the loss of one rack doesn’t
impact availability. It will also ensure that the nodes are in
three different power domains, with no majority in any single
domain.

This simple scheme faces two challenges. One is that real-
world datacenter topology is significantly more complex, es-
pecially where datacenters contain multiple generations of
design and layout. Another is that EBS volumes move by
replication, and their clients move by customers detaching
their volumes from one instance and attaching them to an-
other. The Physalia control plane continuously responds to
these changes in state, moving nodes to ensure that placement
constraints continue to be met.

3.3 Non-Infrastructure Availability Concerns

Another significant challenge with building high-availability
distributed state machines is correlated work. In a typical
distributed state machine design, each node is processing the
same updates and the same messages in the same order. This
leads the software on the machines to be in the same state.
In our experience, this is a common cause of outages in real-
world systems: redundancy does not add availability if failures
are highly correlated. Having all copies of the software in the
same state tends to trigger the same bugs in each copy at
the same time, causing multiple nodes to fail, either partially
or completely, at the same time. Another issue is that the
correlated loads cause memory, hard drives, and other storage
on each host to fill up at the same rate. Again, this causes
correlated outages when each host has the same amount of
storage. Poison pill transactions may also cause outages; these
are transactions that are accepted by the cell but cannot be
applied to the state machine once consensus is reached.

Software deployments and configuration changes also con-
tribute to downtime. Good software development practices,
including code review and automated and manual testing, can
reduce the risk of software changes but not entirely eliminate
it. Incremental deployment, where code is rolled out slowly
across the fleet and rolled back at the first sign of trouble, is
a required operational practice for highly available systems.
The fault-tolerant nature of distributed state machines makes
this approach less effective: because the system is designed
to tolerate failure in less than half of hosts, failure may not be
evident until new code is deployed to half of all hosts. Prac-



tices like positive validation, where the deployment system
checks that new nodes are taking traffic, reduce but do not
eliminate this risk.

Poison pills are a particularly interesting case of software
failure. A poison pill is a transaction which passes validation
and is accepted into the log, but cannot be applied without
causing an error. Pipelining requires that transactions are val-
idated before the state they will execute on is fully known,
meaning that even simple operations like numerical division
could be impossible to apply. In our experience, poison pills
are typically caused by under-specification in the transaction
logic ("what does dividing by zero do?", "what does it mean
to decrement an unsigned zero?"), and are fixed by fully spec-
ifying these behaviors (a change which comes with it’s own
backward-compatibility challenges).

All of these factors limit the availability of any single dis-
tributed state machine, as observed by its clients. To achieve
maximum availability, we need many such systems spread
throughout the datacenter. This was the guiding principle of
Physalia: instead of one database, build millions.

3.4 Operational Practices
Our experience of running large distributed systems is that
operations, including code and configuration deployments,
routine system operations such as security patching, and scal-
ing for increased load, are dominant contributors to system
downtime, despite ongoing investments in reducing opera-
tional defect rates. This conclusion isn’t particular to the envi-
ronment at AWS. For example, Jim Gray found in 1990 that
the majority of failures of Tandem computers were driven by
software and operations [26]. Operational practices at AWS
already separate operational tasks by region and availability
zone, ensuring that operations are not performed across many
of these units at the same time.

Physalia goes a step further than this practice, by introduc-
ing the notion of colors. Each cell is assigned a color, and
each cell is constructed only of nodes of the same color. The
control plane ensures that colors are evenly spread around the
datacenter, and color choice minimally constrains how close
a cell can be to its clients. Physalia’s very large node and cell
counts make this possible. When software deployments and
other operations are performed, they proceed color-by-color.
Monitoring and metrics are set up to look for anomalies in
single colors. Colors also provide a layer of isolation against
load-related and poison pill failures. Nodes of different colors
don’t communicate with each other, making it significantly
less likely that a poison pill or overload could spread across
colors.

3.5 Load in Sometimes-Coordinating Systems
Load is another leading cause of correlated failures. Funda-
mentally, a consensus-based system needs to include more

than half of all nodes in each consensus decision, which means
that overload can take out more than half of all nodes. Colors
play a role in reducing the blast radius from load spikes from
a few clients, but the load on Physalia is inherently spiky.

During normal operation, load consists of a low rate of calls
caused by the background rate of EBS storage server failures,
and creation of new cells for new volumes. During large-scale
failures, however, load can increase considerably. This is an
inherent risk of sometimes-coordinating systems like EBS:
recovery load is not constant, and highest during bad network
or power conditions. See Section 5.2.1 for a brief exploration
of the magnitude of these spikes.

Per-cell Physalia throughput, as is typical of Paxos-style
systems, scales well up to a point, with significant wins com-
ing from increased batch efficiency. Beyond this point, how-
ever, contention and the costs of co-ordination cause good-
put to drop with increased load (as predicted by Gunther’s
model [28]). To avoid getting into this reduced-goodput mode,
cells reject load once their pipelines are full. While this isn’t
a perfect predictor of load, it works well because it decreases
attempted throughput with increased latency (and is therefore
stable in the control theory sense), and gets close to peak sys-
tem throughput. Clients are expected to exponentially back
off, apply jitter, and eventually retry their rejected transactions.
As the number of clients in the Physalia system is bounded,
this places an absolute upper limit on load, at the cost of
latency during overload.

4 Testing

The challenge of testing a system like Physalia is as large
as the challenge of designing and building it. Testing needs
to cover not only the happy case, but also a wide variety of
error cases. Our experience mirrors the findings of Yuan, et
al [57] that error handling is where many bugs hide out, and
Alquraan et al [5] that network partitions are rare events that
easily hide bugs. As Kingsbury’s Jepsen [33] testing work
has found, many consensus implementations also have bugs
in the happy path. Good testing needs to look everywhere.
To get the coverage required, we needed to make the bar to
building a new test case extremely low.

4.1 The SimWorld
To solve this problem, we picked an approach that is in wide
use at Amazon Web Services, which we would like to see
broadly adopted: build a test harness which abstracts network-
ing, performance, and other systems concepts (we call it a
simworld). The goal of this approach is to allow developers
to write distributed systems tests, including tests that simulate
packet loss, server failures, corruption, and other failure cases,
as unit tests in the same language as the system itself. In this
case, these unit tests run inside the developer’s IDE (or with
junit at build time), with no need for test clusters or other



infrastructure. A typical test which tests correctness under
packet loss can be implemented in less than 10 lines of Java
code, and executes in less than 100ms. The Physalia team have
written hundreds of such tests, far exceeding the coverage that
would be practical in any cluster-based or container-based
approach.

The key to building a simworld is to build code against
abstract physical layers (such as networks, clocks, and disks).
In Java we simply wrap these thin layers in interfaces. In
production, the code runs against implementations that use
real TCP/IP, DNS and other infrastructure. In the simworld,
the implementations are based on in-memory implementa-
tions that can be trivially created and torn down. In turn, these
in-memory implementations include rich fault-injection APIs,
which allow test implementors to specify simple statements
like:

net.partitionOff(PARTITION_NAME , p5.
getLocalAddress());

...
net.healPartition(PARTITION_NAME);

Our implementation allows control down to the packet
level, allowing testers to delay, duplicate or drop packets based
on matching criteria. Similar capabilities are available to test
disk IO. Perhaps the most important testing capability in a
distributed database is time, where the framework allows each
actor to have it’s own view of time arbitrarily controlled by
the test. Simworld tests can even add Byzantine conditions
like data corruption, and operational properties like high la-
tency. We highly recommend this testing approach, and have
continued to use it for new systems we build.

4.2 Additional Testing Approaches
In addition to unit testing, we adopted a number of other
testing approaches. One of those approaches was a suite
of automatically-generated tests which run the Paxos imple-
mentation through every combination of packet loss and re-
ordering that a node can experience. This testing approach
was inspired by the TLC model checker [56], and helped us
build confidence that our implementation matched the formal
specification.

We also used the open source Jepsen tool [33] to test the
system, and make sure that the API responses are linearizable
under network failure cases. This testing, which happens at
the infrastructure level, was a good complement to our lower-
level tests as it could exercise some under-load cases that are
hard to run in the simworld.

Finally, we performed a number of game days against de-
ployments of Physalia. A game day is a failure simulation that
happens in a real production or production-like deployment
of a system, an approach that has been popular at Amazon for
20 years. Game days test not only the correctness of code, but
also the adequacy of monitoring and logging, effectiveness
of operational approaches, and the team’s understanding of

how to debug and fix the system. Our game day approach is
similar to the chaos engineering approach pioneered by Net-
flix [32], but typically focuses on larger-scale failures rather
than component failures.

4.3 The Role of Formal Methods

TLA+ [36] is a specification language that’s well suited to
building formal models of concurrent and distributed systems.
We use TLA+ extensively at Amazon [39], and it proved
exceptionally useful in the development of Physalia. Our
team used TLA+ in three ways: writing specifications of our
protocols to check that we understand them deeply, model
checking specifications against correctness and liveness prop-
erties using the TLC model checker, and writing extensively
commented TLA+ code to serve as the documentation of
our distributed protocols. While all three of these uses added
value, TLA+’s role as a sort of automatically tested (via TLC),
and extremely precise, format for protocol documentation was
perhaps the most useful. Our code reviews, simworld tests,
and design meetings frequently referred back to the TLA+
models of our protocols to resolve ambiguities in Java code or
written communication. We highly recommend TLA+ (and
its Pluscal dialect) for this use.

One example of a property we checked using TLA+ is the
safety of having stale information in the discovery cache. For
correctness, it is required that a client acting on stale informa-
tion couldn’t cause a split brain by allowing a group of old
nodes to form a quorum. We started with the informal argu-
ment that the reconfiguration protocol makes f > N

2 of the
pre-reconfiguration nodes aware of a configuration change,
and therefore aware if they have been deposed from the jury.
In other words, at most

⌊N
2

⌋
nodes may have been deposed

from the jury without being aware of the change, and because
they do not form a quorum they cannot pass split brain pro-
posals. This argument becomes successively more complex
as multiple reconfigurations are passed, especially during a
single window of α. Multiple reconfigurations also introduce
an ABA problem when cells move off, and then back onto, a
node. TLA+ and TLC allowed us to build confidence in the
safety of our protocols in this complex case and cases like it.

5 Evaluation

Evaluating the performance of a system like Physalia is chal-
lenging. Performance, including throughput and latency, are
important, but the most important performance metrics are
how the system performs during extremely rare large-scale
outages. We evaluate the performance of Physalia in produc-
tion, and evaluate the design through simulations. We also use
simulations to explore some particularly challenging whole-
system aspects of Physalia.



Figure 8: Mean availability of the configuration store from
the perspective of the EBS primary, bucketed by month, for a
production colony. The vertical line shows the deployment of
Physalia in this datacenter, replacing a legacy system.

Figure 9: Number of hours per month where EBS masters
experienced an error rate > 0.05% in a production colony.
The vertical line shows the deployment of Physalia.

5.1 Production Experience
Physalia is deployed in production in AWS, running in over
60 availability zones. Figure 8 shows the effect that it’s de-
ployment has had on one measure of volume availability:
how often the primary copy of the volume is able to con-
tact the configuration store on the first try. The deployment
of Physalia shows a clear (p = 7.7x10−5) improvement in
availability. Availability failures in the previous system were
caused both by infrastructure failures and by transient over-
load (see Section 3.5).

Figure 9 shows the same data in a different way, looking
at compliance against an internal error rate goal, significantly
stricter than the external SLA for EBS. In this case, the inter-
nal goal is 0.05%, and we count the number of hours where
this goal is exceeded.

In production deployments within AWS, Physalia deploy-
ments at availability-zone scale routinely serve thousands of
requests per second. Latency varies between read and write
optimizations. Linearizable reads can sometimes be handled
by the distinguished proposer. Writes, on the other hand, need

Figure 10: Physalia read and write latencies for one large-
scale cluster. p50 is the 50th percentile, and p99 is the 99th.

to complete a Paxos round before they are committed, and
therefore require substantially more communication. Figure
10 presents a multi-day view of read and write latency per-
centiles, calculated on a one-minute bucket. In this typical
installation, reads take less than 10ms at the 99th percentile,
and writes typically take less than 50ms.

In a distributed state machine, not only must operations be
applied deterministically across all replicas, but they must be
applied the same way by all production versions. Our opera-
tional and testing practices handle this edge case by testing
between adjacent versions. Early in our production rollout,
a bug in our deployment tools lead to a rollback to an old
version of the code base on a small number of nodes. These
nodes applied transactions differently, simply not applying
a conditional they didn’t understand, leading to state to di-
verge on the cells where they were members. While we fixed
this issue quickly with little customer impact, we took three
important lessons away from it. First, Postel’s famous robust-
ness principle (be conservative in what you do, be liberal
in what you accept from others) [45] does not apply to dis-
tributed state machines: they should not accept transactions
they only partially understand and allow the consensus pro-
tocol to treat them as temporarily failed. Second, our testing
processes needed to cover more than adjacent versions, and
include strong mechanisms for testing rollback cases (both ex-
pected and unexpected). The third lesson is perhaps the most
important: control planes should exploit their central position
in a systems architecture to offer additional safety. When the
rollback issue occurred, affected cells were corrupted in a
way that caused the control plane to see them as empty, and
available for deletion. The control plane dutifully took action,
deleting the cells. Based on this experience, we modified the
control plane to add rate limiting logic (don’t move faster
than the expected rate of change), and a big red button (al-
lowing operators to safely and temporarily stop the control
plane from taking action). Control planes provide much of the
power of the cloud, but their privileged position also means
that they have to act safely, responsibly, and carefully to avoid



introducing additional failures.

5.2 Design Validation via Simulation

The statistical behavior of a system as complex as Physalia
can be difficult, if not intractable, to analyze in closed form.
From early in the feasibility stages to production deployment,
we used simulation to understand the dynamic behavior of
the system, explore alternative system designs, and calculate
baselines for our testing. In this section, we present some sim-
ulation results, and conclude by comparing the performance
of the system to those results.

The availability offered by a Physalia deployment is highly
sensitive to the failure modes of the underlying infrastructure,
and the statistical properties of each of those failure modes.
These results use a simplified (and outdated) model of a dat-
acenter network: servers are organized into racks, each with
a top-of-rack switch (tor), which in turn connects to one or
more aggregation routers (aggs), which connect to one or
more core routers (cores). Typical real-world networks con-
tain some redundancy. For example, a tor is likely to connect
to more than one agg. In these results we’ve left out redun-
dancy for simplicity’s sake, but the results are qualitatively
similar (although the failure statistics are very different), once
redundancy is considered.

One significant area that we explored with simulation is
placement. Globally optimizing the placement of Physalia
volumes is not feasible for two reasons, one is that it’s a
non-convex optimization problem across huge numbers of
variables, the other is that it needs to be done online because
volumes and cells come and go at a high rate in our produc-
tion environment. Figure 11 shows the results of using one
very rough placement heuristic: a sort of bubble sort which
swaps nodes between two cells at random if doing so would
improve locality. In this simulation, we considered 20 candi-
dates per cell. Even with this simplistic and cheap approach
to placement, Physalia is able to offer significantly (up to 4x)
reduced probability of losing availability.

5.2.1 Simulations of System Load

As discussed in Section 3.5, load on Physalia can vary dra-
matically with different network conditions. Simulation of
failures in different network topologies allows us to quantify
the maximum expected load. Figure 12 shows the results of
simulating agg failures (in the same model used above) on
offered load to Physalia. A volume needs to call Physalia if
the client AWS EC2 instance can get to either the master or
replica EBS server, but the master and replica can’t get to
each other.

At small failure rates, expected load increases linearly with
the count of failed devices, up to maximum of 29%. Beyond
this, load drops off, as volumes become likely to be com-
pletely disconnected from the client. Multiplying this graph

(a)

(b)

Figure 11: Simulated availability of volumes using Physalia,
versus a baseline of a single-point database, under network
partitions caused by device failures at the agg layer. (a) shows
raw results for cell sizes 5 and 9, and (b) shows the ratio
between Physalia and baseline availability.

Figure 12: Load on Physalia vs. agg failure rate for a simu-
lated 3-tier datacenter network.

(or, ideally one simulated on actual datacenter topology) with
the expected values of device failures yields a graph of the
expectation of the magnitude of maximum load on Physalia
(or, indeed, any configuration master in an EBS-like repli-
cated system). These results closely match what we have
observed of the real-world behavior of the EBS deployment
of Physalia.



6 Related Work

Physalia draws ideas from both distributed co-ordination sys-
tems and distributed databases. Distributed co-ordination sys-
tems, like Zookeeper [19], Chubby [9], Boxwood [38] and
etcd [14], have the goal of providing a highly-available and
strongly-consistent set of basic operations that make imple-
menting larger distributed systems easier. Physalia’s design
approach is similar to some of these systems, being based on
the state machine replication pattern popularized by the work
of Schneider [49], Oki [40] and Lampson [37]. Physalia’s key
differences from these systems are its fine-grained consensus
(millions of distributed state machines, rather than a single
one), and infrastructure awareness. This makes Physalia more
scalable and more resistant to network partitions, but also
significantly more complex.

The problem of providing highly-available distributed stor-
age in fallible datacenter networks faces similar challenges
to global and large-scale systems like OceanStore [34] and
Farsite [3], with emphasis on moving data close to its ex-
pected to improve availability and latency. While the design
of Physalia predates the publication of Spanner [15] and Cos-
mosDB, Physalia takes some similar design approaches with
similar motivation.

Horizontal partitioning of databases is a long-established
idea for both scaling and availability. Systems like Dynamo
[18] and its derivatives dynamically move partitions, and rely
on client behavior or stateless proxies for data discovery. Dy-
namic discovery of high-cardinality data, as addressed by
Physalia’s discovery cache and forwarding pointers, has been
well explored by systems like Pastry [47] and Chord [52].
Optimizing data placement for throughput and latency is also
a well-established technique (such as in Tao [8], and Dabek et
al [16]), but these systems are not primarily concerned with
availability during partitions, and do not consider blast radius.

Physalia’s approach to infrastructure-aware placement re-
flects some techniques from software-defined networking
(SDN) [21]. Another similarity with SDN (and earlier sys-
tems, like RCP [10]) is the emphasis on separating control and
data planes, and allowing the data plane to consist of simple
packet-forwarding elements. This reflects similar decisions to
separate Physalia from the data plane of EBS, and the data-
and control planes of Physalia itself.

Infrastructure awareness, an important part of Physalia’s
contribution, seems to be an under-explored area in the sys-
tems literature. Some systems (like SAUCR [4], and the
model proposed by Chen et al [13]) are designed to change
operating modes when infrastructure failures occur or request
patterns change, but we are not aware of other database ex-
plicitly designed to include data placement based on network
topology (beyond simple locality concerns).

7 Conclusion

Physalia is a classic consensus-based database which takes a
novel approach to availability: it is aware of the topology and
datacenter power and networking, as well as the location of
the clients that are most likely to need each row, and uses data
placement to reduce the probability of network partitions. This
approach was validated using simulation, and the gains have
been borne out by our experience running it in production at
high scale across over 60 datacenter-scale deployments. Its
design is also optimized to reduce blast radius, reducing the
impact of any single node, software, or infrastructure failure.

While few applications have the same constraints that we
faced, many emerging cloud patterns require strongly consis-
tent access to local data. Having a highly-available strongly-
consistent database as a basic primitive allows these systems
to be simpler, more efficient, and offer better availability.
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