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ABSTRACT
Modern deep learning systems embrace the compilation idea
to self generate code of a deep learning model to catch up the
rapidly changed deep learning operators and newly emerged
hardware platforms. The performance of the self-generated
code is guaranteed via auto-tuning frameworks which nor-
mally take a long time to find proper execution schedules
for the given operators, which hurts both user experiences
and time-to-the-market in terms of model developments and
deployments.
To efficiently deliver a high-performance schedule upon

requests, in this paper, we present Lorien, an open source
infrastructure, to tune the operators and orchestrate the
tuned schedules in a systematic way. Lorien is designed to be
extensible to state-of-the-art auto-tuning frameworks, and
scalable to coordinate a number of compute resources for
its tuning tasks with fault tolerance. We leveraged Lorien
to extract thousands of operator-level tuning tasks from 29
widely-used models in Gluon CV model zoo [22], and tune
them on x86 CPU, ARM CPU, and NVIDIA GPU to construct
a database for queries. In addition, to deliver reasonably high
performance schedules for unseen workloads in seconds or
minutes, Lorien integrates an AutoML solution to train a per-
formance cost model with collected large-scale datasets. Our
evaluation shows that the AutoML-based solution is accurate
enough to enable zero-shot tuning, which does not fine-tune
the cost model during tuning nor perform on-device mea-
surements, and is able to find decent schedules with at least
10× less time than existing auto-tuning frameworks.
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1 INTRODUCTION
As the wide adoption of deep learning becomes a trend in
many domains, the performance of deep learning models
becomes crucial. To achieve high performance for inference
tasks, major deep learning frameworks (e.g., TensorFlow [1],
PyTorch [32], and MXNet [10]) leverage optimized kernel
libraries (e.g., cuDNN [13], OneDNN [23]) provided by hard-
ware vendors to accelerate commonly used deep learning
operators. However, it is hard for kernel libraries to keep up
with the rapid emergence of new operators and hardware
cloud/edge platforms.

On the other hand, deep learning compilers, such as Halide
[35], XLA [45], Tensor Comprehensions [42], and TVM [11],
directly generate operator kernels for different hardware plat-
forms. This enables operator developers to quickly sketch the
semantics of a new operator using a high-level declarative
language and evaluate the end-to-end model accuracy. The
performance of the new operators can be caught up later
by either a hardware expert or automatic schedule tuning
frameworks [2, 12, 31, 39, 42, 46, 47]. As a result, this ap-
proach is more scalable and can shorten the time-to-market
compared to the kernel libraries.

Although auto-tuning frameworks are capable of deliver-
ing high-performance operators that match or even beat ven-
dor kernel libraries, auto-tuning a deep learning model could
take days or even weeks, especially for the model with many
workloads like ResNet-152 or Inception V3. A workload is
defined as an operator (e.g., Conv2D or Dense) or a subgraph
(e.g., Conv2D - BiasAdd - ReLU) with certain values of at-
tributes (e.g., data/weight shapes, strides, padding, and data
type), and tuning one workload requires to construct sched-
ules, tune parameters, and perform on-device measurements.
This process usually takes one or few hours. For example,
according to our experience, using AutoTVM [12] to tune
all workloads in ResNet-50 needs 10 hours on x86 CPUs,
7 days on NVIDIA GPUs, and 10 days on Raspberry Pi 4.
Even worse, as we will evaluate in subsection 5.1, one-for-all
schedules do not exist, meaning that an efficient schedule of
a workload on a hardware platform is usually not efficient
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on another platform. As a result, all workloads have to be
tuned on every target hardware platform.
To maintain the best user experience during deep model

developments and deployments, one key question is: How to
promptly deliver schedules with reasonably good performance
upon user requests? To achieve this goal, we need to tune a
large amount of deep learning workloads from deep learning
model zoos (i.e., MLPerf [36], Gluon CV model zoo [22], Ten-
sorFlow hub [20], and PyTorch torchvision [17]) on many
hardware devices. We then commit the best schedule of each
workload to a database and query them in milliseconds when
needed. However, this is challenging for the following rea-
sons.

Tuning Process Scalability and Stability. Long tuning
time affects not only the time-to-market but the stability.
To the best of our knowledge, none of existing auto-tuning
frameworks is designed for tuning onmultiple machines, and
none of them consider fault tolerance1. The tuning process,
hence, has to be manually started over if it was accidentally
interrupted. This is crucial especially on edge devices, which
are less reliable than cloud instances and may fail frequently
due to overheat or other factors.

Tuning Result Management. Although almost all auto-
tuning frameworks, such as Halide auto-scheduler [2] and
AutoTVM [12], provide mechanisms to serialize tuning re-
sults for future applications, all of them use file-based mech-
anism and have different formats. As a result, engineers have
additional work to orchestrate the data for efficient usage.

Time toDeliver an Efficient Schedule. Even a database
is constructed to serve most user requests, it is still possi-
ble that certain workloads are missing. For example, neural
architecture search (NAS) may generate unseen workloads.
This necessitates the tuning of workloads on-the-fly using
the auto-tuning framework. However, modern auto-tuning
frameworks usually leverage iterative search algorithmswith
on-device measurements, which usually take hours, to find
an efficient schedule for an unseen workload. The unfavor-
ably expensive querying/tuning overhead makes production
deployment impractical.
To address these challenges, we design and implement

Lorien, a unified and extensible open source infrastructure
to orchestrate the tuning of deep learning workloads at scale.
Lorien serves as an abstraction layer between auto-tuning
deep learning frameworks and compute resources, such as
cloud (e.g., Amazon EC2 [3]) and edge (e.g., self-hosted device
farms) platforms, to significantly improve the auto-tuning

1Although AutoTVM serializes tuning results to a local file timely so users
can manually skip tuned tasks when relaunching the tuning process from
failure, it requires a certain level of understanding to AutoTVM.

throughput and efficiency. Lorien abstracts mandatory com-
ponents in auto-tuning frameworks as high-level APIs, there-
fore, state-of-the-art auto-tuning frameworks are allowed to
be easily plugged in as a dialect. Lorien provides a distributed
system to tune a large amount of tuning tasks from vary auto-
tuning frameworks on Amazon EC2 instances [3] or edge
devices, with the consideration of scalability, flexibility, and
reliability. The tuned schedules are committed to a database.
Lorien designs a general data model that can accommodate
tuning results from various auto-tuning frameworks. We
have leveraged Lorien to extract thousands of operator-level
tuning tasks from 29 widely-used models in Gluon CV model
zoo [22], and tune them on x86 CPU, ARM CPU, and NVIDIA
GPU to construct a database for queries. To the best of our
knowledge, this is the largest database of deep learning work-
load schedules.
In addition, in case the user-requested workload has no

tuned schedules in the database, Lorien performs zero-shot
tuning2 to deliver a decent schedule in a reasonable time.
However, most performance cost models adopted by exist-
ing auto-tuning frameworks are not designed for the zero-
shot tuning and usually operate on heavily-engineered low-
level hardware features. Different from these systems, the
performance cost model in Lorien is trained on high-level
scheduling features via automated machine learning (Au-
toML). With extensive experiments, we demonstrated that
our solution, which is built on top of AutoGluon [16] and
is trained on a large-scale scheduling database, is able to
obtain highly accurate cost model that can support zero-shot
tuning. Our evaluation shows that Lorien is guaranteed to
deliver the schedule achieving 80+% performance against the
auto-tuning frameworks in seconds to a few minutes upon
requests.

In summary, this paper makes the following contributions:

• We design and implement an extensible and reliable
distributed infrastructure, Lorien, to tune and orches-
trate more than a thousand deep learning tuning work-
loads with billions of schedule candidates each on
cloud platforms and edge devices, and construct the
largest database of deep learning workload schedules.

• We employ AutoML to train a performance cost model
based on the collected schedules at scale for highly
accurate zero-shot tuning.

• We conduct a number of evaluations on top of Lorien
to show the effectiveness of Lorien to deliver good
schedule on time and reveal a few interesting observa-
tions, such as one-for-all schedules do not exist, and

2Zero-shot tuning means the performance cost model is not fine-tuned
with the measured schedules during the tuning process. It implies no actual
compilation and on-device measurement in tuning.
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zero-shot tuning models are only possible upon a large-
scale dataset.

We open-source Lorien at https://github.com/awslabs/lorien/
to call for collaboration to further expand the database and
share the knowledge with the community.

2 BACKGROUND
Many new deep learning models with novel architectures as
well as operators have been proposed by scientists in recent
years to achieve high accuracy. In order to deploy up-to-date
deep learning models to plenty hardware platforms, includ-
ing CPUs, GPUs, FPGAs, and ASICs, flexible code generation
with performance auto-tuning mechanism becomes a trend
for deep learning compilers [2, 12, 31, 39, 42, 46, 47].
A common programming model adopted by these com-

pilers was originally proposed by Halide [35] for image pro-
cessing workloads. The programming model decouples the
description of an operator to a “computation” and a “sched-
ule”. The former defines the functionality of an operator
in a mathematical representation; while the latter indicates
how this computation should be executed on a hardware
platform. In particular, a schedule is composed of a series of
transformations to rewrite a program while guaranteeing
the mathematical equivalent.
One significant advantage of this programming model

is that a scientist can quickly implement the computation
of a new operator to evaluate the end-to-end model accu-
racy without worrying about the execution performance,
which can be caught up later by a hardware expert or an
auto-tuning framework with proper schedules for the target
hardware platform. We categorize auto-tuning frameworks
to two classes based on their approaches.

Template-based auto-tuning frameworks, such as Au-
toTVM [12] and FlexTensor [47], leverage operator-based
schedule templates written by domain experts. Specifically,
from a deep learning model, template-based frameworks ex-
tract operators and map them to the corresponding schedule
templates as operator-level tuning tasks. A tuning task is
composed of a workload and tuning configurations (e.g., the
hardware platform, tuning time, and so on). Then, they use
the proposed tuning algorithms to sequentially search for
the best schedule parameters of each tuning task.

The advantages of this approach are three-fold. First, even
a workload appears multiple times in a model, there will
be just one tuning task. For example, we observed 40% re-
dundant operators from 29 Gluon CV models [22], meaning
that the total tuning time can be reduced by 40%. Second, all
tuning tasks can be tuned in parallel, which enables more
opportunities to improve the auto-tuning in scale. Third, the
log of a tuning task can be applied to the same operator in
other deep learning models. For instance, after studying the

models from Gluon CV model zoo, PyTorch torchvision [17],
and TensorFlow hub [20], we observed that the operator
overlapping ratio of the same model (e.g., ResNet-50) im-
plemented in different model zoos can range from 52% to
83%.

Auto-scheduling frameworks, such as Tensor Compre-
hensions [42] andHalide auto-scheduler [2], generates sched-
ules from scratch. Given a deep learning model, they directly
analyze the model graph to generate schedule candidates
for tuning. Accordingly, the generated schedules are at the
model level and tightly-coupled with a model, i.e. they can
only be applied to the model it was generated from.
Besides, another state-of-the-art auto-scheduling frame-

work, Ansor [46], partitions the model graph into several sub-
graphs based on certain heuristic rules, and auto-schedules
each subgraph separately. This approach has two major ad-
vantages: First, all subgraphs can be scheduled in parallel.
Second, the generated schedules are at the subgraph level
and can be shared with the identical subgraph in another
deep learning model.
Lorien supports tuning tasks from auto-tuning frame-

works in both categories. We will detail Lorien in the next
section.

3 LORIEN INFRASTRUCTURE
Although state-of-the-art deep learning auto-tuning frame-
works are designed and implemented for a certain deep learn-
ing compiler, they share the same framework architecture
design as shown in Figure 1. Specifically, given a deep learn-
ing model file, the framework first identifies tuning tasks,
which can be in any granularity as described in the previous
section. Then, it tunes the identified tasks using a tuning
algorithm. The algorithm is usually guided by an evalua-
tion metric, which can be an analytical or machine learning
performance cost model, on-devicemeasurement, or the com-
bination of both. All explored schedules will be maintained
in a storage, which can be a text file or a database. Finally,
the deep learning compiler queries the best schedule from
the storage and compiles the deep learning model to be a
deployable binary file. Lorien is designed as an extensible
infrastructure that abstracts the mandatory components in
auto-tuning frameworks as high-level APIs, which allow any
auto-tuning frameworks to be plugged in as dialects. As a
result, Lorien is able to allocate their tuning tasks to the
available computing resources, monitor the tuning process,
and automatically recover the failure tasks.

Figure 2 depicts the overall Lorien infrastructure. First of
all, Lorien employs a command line interface(CLI) to accept a
command line string or a YAML file so that it interacts with
the external requests. With the CLI, a simple string-based
message passing protocol between the tuning master and
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Figure 1: Auto-tuning frameworks.

workers is sufficient to establish a reliable task distribution
mechanism.
Underneath the CLI, Lorien consists of five components.

The tuning task generator generates a set of tuning tasks
from a list of deep learning models to avoid redundant tuning
while ensuring the operator coverage. The distributed tuner
schedules tuning tasks to cloud instances or edge device
farms to achieve high tuning throughput while guaranteeing
the consistent tuning environment and tuning stability. The
best tuning results as well as the complete tuning logs are
maintained in a database and a file system, respectively. The
model builder queries the best tuning results from the data-
base to generate a deployable binary file for user-provided
deep learning models. Optionally, we can use the perfor-
mance cost model trainer with the complete tuning logs as
the training data to train a performance cost model, which
can be used to significantly facilitate future tuning processes.
As we will illustrate in the next section, auto-tuning with the
performance cost model is capable of identifying a high qual-
ity schedule in minutes in case the model builder receives a
non-tuned task. Next, we introduce each component along
with design choices and discussions.

3.1 Tuning Task Generator
The first step of auto-tuning is defining what to tune. This
component aims to help users generate tuning tasks based
on existing deep learning models for performance tuning.
We summarize most possible model sources as follows, and
design the tuning task generator accordingly.

Commonly used deep learning models. For this type
of models, the performance of all workloads are crucial and
should be optimized. Taking 29 commonly used CNN mod-
els from GluonCV model zoo [22] as examples, for auto-
scheduling frameworks, we could construct 29 model-level
tuning tasks. However, for template-based auto-tuning frame-
works, we could additionally extract more than a thousand
operator-level tuning tasks. It is worth noting that as deep
learning continues thriving, the number of popular models
and operators grow exponentially.

Deep learning models with variants. Users may need
some variants based on commonly used deep learningmodels
to fit different purposes, for example, different batch sizes

for training or inference services. Another example is the
convolution operators with different channel numbers or
stride values to create a tuning space for neural architecture
search (NAS) [8]. These variants could easily expand the
number of tuning tasks by several times.

To generate tuning tasks from these sources, we design the
generator in Figure 3. The generator accepts a set of model
files and generates operator-, subgraph- and model-level
tuning tasks. Since the definition of tuning tasks differs from
each auto-tuning frameworks, how to parse deep learning
model files and generate tuning tasks are transparent to
framework specific dialects. Note that since the dialect is also
in charge of generating a unique key for each tuning task,
developers can also customize the logic of schedule sharing.
For instance, the unique key of graph-level tasks can be a
hash key from the serialized graph, so that two graphs with
the same hash key can share the tuned schedules. Meanwhile,
the unique key of operator-level tasks can be composed of
the operator name, input tensor shapes, and attributes.
In addition, the tuning task identification dialect also ac-

cepts user-provided rules to mutate the tuning tasks for other
applications, such as neural architecture search and dynamic
batch training. Developers can customize rules with Python
lambda expression to allow users to mutate specific values
in tuning tasks. For example, the following rule mutates the
batch size and channel number for 2D convolution tasks
in operator-level. By applying this rule, the number of 2D
convolution tasks will be increased by 7 × 3 = 21 times.

1 rules:

2 - task: conv2d_NCHWc.x86

3 desc:

4 batch: "lambda b: [1, 3, 4, 7, 8, 12, 16]"

5 channel: "lambda c: [c, c * 2, c * 4]"

3.2 Distributed Tuner
To tune the tasks generated by the generator at scale, the
Lorien tuner is designed in the master-worker pattern. Fig-
ure 4 presents the Lorien distributed tuner, which schedules
all tasks to the workers and maintains the tuning state. The
tuning master accepts a tuning task file in the YAML format,
as well as the user-provided tuning configurations, such as
the target platform and the number of tuning trials for each
task. Then, the tuning master launches a task manager and
tracks the progress. The task manager is able to schedule
tasks to either cloud or edge workers based on the desired
target device type of each task. Since the size of a tuning
task and its tuning results are just a few KBs, the memory
and network overhead of Lorien is tolerable compared to the
standalone auto-tuning frameworks. Lorien leverages the
corresponding auto-tuning framework dialect to perform
tuning, which includes 1) the best schedule searching, and
2) schedule quality evaluation.
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Figure 3: Tuning task generation.

Upon completion of the tuning, workers directly commit
the best schedules to the database, and upload the complete
tuning log to user-provided remote file system. Consequently,
the tuning master could be lightweight as it does not have
to aggregate the tuning results from workers.
On the other hand, although the failure of a lightweight

master is unlikely, we further make the task manager state-
less by tracing the state change of tasks to a trace file. Specifi-
cally, the master records job state changes, which overhead is
less than a micro-second. In case the tuning master fails, an-
other master can be relaunched with the trace file to recover
all states and continue the tuning process. The recovery takes
up to a few seconds so it will not affect the user experience.
Next, we present the mechanism of scheduling and man-

aging tasks on cloud and edge in details.
Tuning tasks on cloud. Fortunately, modern public cloud
services already have their own batch processing services
that we can directly leverage, such as AWS batch [5], Google
Cloud Dataflow [14], and Microsoft Azure Batch [30]. The
batch processing services are in charge of scalability and
reliability. They automatically launch required instances and
schedule tasks on them. They will also resubmit tasks if the
instance is terminated accidentally. As a result, Lorien sim-
ply submits jobs that use auto-tuning framework dialect to
tune one task to the batch processing services, and regularly

requests and analyzes the running logs from the service to
update the tuning progress.
Tuning tasks on edge. On the other hand, many edge de-
vices are not available on public cloud services and thus hard
to be scaled out systematically. Developers usually need to
build a device farm containing edge devices and several host
machines, and manually construct a cluster system to man-
age these computation resources in terms of task scheduling
and fault tolerance. On the other hand, Lorien task manager
is capable of achieving the above requirements. Developers
only need to launch a Lorien client on each host machine
and let them connect to the tuning master. The client will
register itself to be a worker, and it could start requesting
tasks from the master and tune them on the connected edge
devices. Different from most distributed systems that launch
a server on each worker waiting for task allocations from the
master, we choose to let the worker request tasks actively,
because the device farms are usually behind a firewall while
the tuning master could be a cloud instance or any machine
with higher flexibility. In this case, the task manager allocates
tasks to workers (device hosts) per their requests.
Another advantage of adopting a passive task manager

is to support flexible workers. Users can register new work-
ers or remove existing workers, which is common due to
the unstable nature of the edge devices, without explicitly
updating or even relaunching the tuning master. Since the
connection protocol between the task manager and workers
is RPC, the edge task manager, which is an RPC server, could
keep tracking all connections. In other words, connections
and disconnections will trigger corresponding event call-
backs to update the worker list accordingly. It also ensures
the system reliability, as the task manager is capable of recy-
cling tasks from the disconnected workers immediately and
re-allocating them to another available worker later on.
Note that like tuning on the cloud, how to tune a task

on an edge device in a single machine is transparent to the
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Figure 4: The distributed tuner that supports both cloud and edge platforms.

auto-tuning framework dialect in Lorien. For example, most
deep learning compilers use resource-rich host machine to
perform cross-compilation with the schedule being evalu-
ated, and send the compiled binary to the edge device via
remote procedure call (RPC) or similar protocol to measure
their performance.

3.3 The Data Model
As mentioned in the previous subsection, Lorien distributed
tuner leverages eachworker to commit tuning results directly
to the database to make the master lightweight. Accordingly,
our tuning results and commit queries have the following
characteristics. First, most queries are sent separately from
different workers, so they can barely be batched. Second,
one query will contain tuning results of one task. Third,
tuning results of different tasks may have different attributes,
because the argument list and schedule parameters of each
task may vary. Fourth, tuning results of different tasks are
mostly independent.

Based on the characteristics, we choose a scalable NoSQL
database, Amazon DynamoDB [4], to manage the tuning
results, as NoSQL databases are known to allow each object
in a table to have flexible attributes. A DynamoDB table is
composed of two components – attributes and indices. At-
tributes are the real data we intend to maintain. DynamoDB
attributes can be in a simple type (e.g., Int, String) or a com-
plex type (e.g., List, Map, Item). Consequently, a DynamoDB
table item can also be hierarchical by putting another item
in an attribute.
Indices determine how data will be stored, which signifi-

cantly affect the query efficiency. DynamoDB key schema
allows simple key (only one partition key) and composite
key (one partition key with one sort key) to be table indices.
Partition key determines how items will be physically par-
titioned and stored in hard disks. Sort key determines how
items a in partition will be sorted. Accordingly, the table
indices should be designed based on real use cases.

By summarizing auto-tuning frameworks for deep learn-
ing workloads, we design a unified data model that fits all
frameworks. With the unified data model, developers can
view the database as a black box, and the tuning results from
different frameworks can be maintained together. Table 1
lists the attributes of a table item. In order to fast locate the
table item to a certain tuning task, we need to query for 1)
target platform, 2) tuning task key. As a result, we specify
Target as the partition key, and create an extra attribute,
TaskKey to be the sort key. The value of TaskKey is transpar-
ent to auto-tuning framework dialect when generating tasks.
For example, for AutoTVM [12] or Halide auto-scheduler [2]
that identify an operator or an entire model as a task, the
task key can be composed of the operator or model name
and its shapes and attributes; for Ansor [46] that identifies
a subgraph as a task, the task key can be the serialized sub-
graph.

Besides, each item in the table includes a list of best sched-
ules, as shown in Table 2. Note that since we use the binary
type to store schedules, all forms of schedules (e.g., parameter
values in template-based approaches and graph representa-
tions in auto-scheduling approaches) can be stored with the
same data model. In addition to the schedule and its perfor-
mance result, each best schedule item also includes 1) the
auto-tuning framework configurations, such as the frame-
work version as well as LLVM/CUDA versions, to make sure
the result is reproducible, and 2) the full tuning log path in
the file system.

When committing new tuning results of a task to the Dy-
namoDB, we also check existing schedules (if any) tuned by
the same framework with the same framework configuration
and keep the better one. Meanwhile, the schedules tuned
by different frameworks or configuration will be preserved
for backward compatibility. The schedules with out-of-date
framework configurations can be cleaned by a separate Lo-
rien API, and this operation could be done offline during the
regular maintenance period.
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Table 1: The data model of DynamoDB table items.

Attribute Type Description

TargetKind String The kind of target platform for this task.
e.g., x86 CPU, ARM CPU, NVIDIA GPU

Target String The full target with detail attributes.
e.g., Intel Xeon Platinum 8124M

TaskKey String A unique key of the task. This is defined by
auto-tuning framework dialect when generating tasks.

TaskName String The tuning task name, which could be the name
of an operator or a hash code of a graph.

Args List The task arguments or attributes .
BestSchedules List The best schedules (See Table 2.)

Table 2: The data model of best schedules.

Attribute Type Description
Latency Number Measured latency.
Thrpt Number GFLOP/second.
Config Map Framework build configure.
Schedule Byte Serialized schedule.
LogPath String The full tuning log path.

3.4 Deep Learning Model Builder
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Figure 5: Deep learning model compilation.

With the schedule database committed by Lorien tuning
workers, users can now query for the best schedule when
compiling a deep learning model. The execution flow is
shown in Figure 5. We first follow the same path as the
tuning task generator to parse the input model and extract
its tuning tasks. On the other hand, instead of tuning the
tasks, this time we only use their targets and task keys to
perform batch querying to the database. After that, we will
receive a list of best schedules for each task that has been
tuned in advance.
In order to make sure the queried schedule fits the user

environment (e.g., framework version or dependent toolkit
version), we only select the schedule with exactly the same
Config. However, different framework configurations might
be acceptable sometimes. For example, the schedule based

Table 3: Examples of auto-tuning framework configu-
ration distance computation.

Config Framework
Version

LLVM
Version

CUDA
Version

Bit
Array Distance

Desired 0.6.1 8.0 10.2 000 0
A 0.6 8.0 10.2 100 4
B 0.6.1 9.0 10.1 011 3

on the framework built with LLVM 8.0 may also fit to the
same framework built with LLVM 9.0. To deal with the case
that users may want Lorien to return the schedule from
the similar configurations, we allow users to specify a list
of acceptable configuration fields, and return the desired
schedules with the closest framework configurations. Ta-
ble 3 provides a simple example of computing configuration
distances. The Desired configuration is the one we desired
for, and we want to determine whether configuration A or B
is closer to the target.

We use a bit array to define the distance between configu-
rations. By setting the bit array of the Desired configuration
to zeros, we set a particular bit of a candidate configuration
to 1 if the corresponding value is different from the Desired.
By prioritizing the fields from left to right, we can simply
compare the resulting bit arrays of candidates to get the one
with smallest discrepancy, which is B configuration in this
example.
Intuitively, in case the workload has no schedule in the

database, or all schedules are generated with incompatible
environment configurations, we can “borrow” schedules of
the workload from other platforms (e.g., apply a schedule
from NVIDIA T4 to NVIDIA V100). However, as we will
evaluate in subsection 5.1, one-for-all schedule does not exist,
meaning that the efficient schedule on a platform is usually
not efficient on another. Alternatively, it is promising to
perform zero-shot tuning in minutes with the help from the
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performance cost model trained by the tuning data, which
will be presented in the next section.

4 PERFORMANCE COST MODEL AND
ZERO-SHOT TUNING

As mentioned in subsection 3.4, it is inevitable that some
queried workloads are not covered in the database due to
the diversity of deep learning architectures. For example, the
2D convolution operator has 13 free variables, such as input
tensor shapes, stride, padding, dilation, etc., and the number
of combinations of all variables could be in billions, which
is impractical for a database to fully cover. Consequently,
existing auto-tuning frameworks [2, 12, 46] leverage per-
formance cost models, which predict the performance of
the given schedule, to reduce the time-consuming on-device
measurements. Formally, for features ®𝑥 extracted from a
given schedule, the performance cost model predicts a score
𝑦 based on ®𝑥 , in which a higher number indicates a schedule
with better performance in terms of latency or throughput.

Ideally, when the performance cost model is capable of ac-
curately ranking the quality of schedule candidates, we can
obtain the optimal schedule by purely leveraging the perfor-
mance cost model without any on-device measurement. We
call this approach zero-shot tuning, because the cost model is
fixed and is used as the target for black-box optimization. On
the other hand, there are two challenges for the performance
cost models adopted by existing auto-tuning frameworks to
support zero-shot tuning on various platforms.
Challenge 1: Portability. Performance cost models pro-
posed by existing auto-tuning frameworks leverage hard-
ware features or machine learning models. Although effec-
tive hardware features make their models achieve sufficient
accuracy with a large-scale dataset, the heavily engineered
hardware features cannot be easily ported to another hard-
ware platform.
Challenge 2:Model fine-tuning. Existing auto-tuning frame-
works often fine-tune their cost models continuously along
with newly measured data during the tuning process. In this
way, on-device measurement is still a major bottleneck for a
long tuning time, because on-device measurement involves
schedule compilation, data transfer, and on-device execution.
In fact, to achieve the best performance, existing auto-tuning
frameworks often require at least thousands of on-device
evaluations.
To address the challenges, Lorien shipped with a perfor-

mance cost model trainer, as shown in Figure 6, that lever-
ages an AutoML solution to automatically train a suitable
performance cost model for a certain hardware platform
with tuning history.

Lorien aims to leverage AutoML to find the best model
architecture for the target hardware device, and train the

Performance 
cost modelFull Tuning Logs

Performance Cost Model Trainer

[Dialect] Feature 
Extraction AutoML

Figure 6: Performance cost model trainer. The dialect
is used to extract high-level features from auto-tuning
framework specific schedule representations.

model on high-level features extracted from an auto-tuning
framework specific dialect, which simply parses and formal-
izes measured schedules in framework specific representa-
tion. The generated features can be hardware independent,
such as the schedule parameters like tile size and loop un-
rolling in a template-based approach (e.g., AutoTVM [12]),
or the sequence of scheduling actions in auto-scheduling
approach (e.g., Halide auto-scheduler [2] and Ansor [46]). In
this way, the efforts of feature/model engineering for new
operator and hardware devices can be significantly reduced
(challenge 1).

Although building an accurate and portable performance
cost model from high-level features is considered challeng-
ing because the model has no visibility to the low-level
hardware-specific features and can only figure out these
intrinsic features by looking at the data, our evaluation in
subsection 5.2 shows that this is possible if the performance
tuning dataset used to train the model is at large scale. It
implies that this approach is tightly-coupled with efficiently
tuning massive workloads. This shares the same rationale
as the breakthroughs in computer vision [15] and natural
language processing [34] that are realized by scaling up the
datasets. In addition, with AutoML, the training phase is
transparent to the user and it works well for different types
of hardware and workloads. In fact, we will show that the
model trained by AutoML significantly outperforms the base-
line models, including CatBoost regression and ranking mod-
els [33] and neural network.

For a new workload that is missing in the database, Lorien
will first randomly sample thousands of scheduling candi-
dates and rank them with the cost model, and it only evalu-
ates the top few candidates (e.g., 8 or fewer) on device. The
process does not require fine-tuning and will be significantly
faster than tuning from scratch, which will involve itera-
tive on-device evaluation and cost model update. Since the
AutoML-based model is accurate, this algorithm is capable
of producing a schedule that performs similarly to the opti-
mal schedule stored in the database. As a result, combining
the AutoML-based cost model and zero-shot tuning enables
Lorien to deliver a decent schedule of unseen workloads in
minutes (challenge 2).
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5 EVALUATION AND ANALYSIS
Lorien currently supports two dialects – AutoTVM [12] and
Ansor [46]. We have used Lorien to preform massive tuning
tasks to collect schedules on 29 widely-used models in Gluon
CV model zoo [22] for both dialects. This gives us a list of
representative and computationally intensive deep learning
operators and workloads.

We take the AutoTVM tuning results in this section to first
analyze and discuss the insights in subsection 5.1, followed
by an evaluation of the performance cost model and zero-
shot tuning algorithm in subsection 5.2. We note that the
tuning results of Ansor derive to the same insights, and the
model speedup is not the major contribution of this paper,
so we only focus on AutoTVM results in this section for
concise. From these models, AutoTVM extracted 567, 633,
and 1,148 operator-level tuning tasks for x86 CPU, ARM
CPU, and NVIDIA GPU, respectively. Note that since an
operator (e.g., 2D convolution) may have more than one
implementations (e.g., direct and Winograd algorithm [44]
implementations), the number of extracted tasks for different
hardware platforms could be different.

Table 4: Covered hardware platforms.

Platform Backend Target Device
Amazon EC2 C4 x86 Intel Xeon E5-2666 v3
Amazon EC2 C5 x86 Intel Xeon Platinum 8124M

Amazon EC2 G4dn CUDA NVIDIA T4 Tensor Core
Amazon EC2 P3 CUDA NVIDIA Tesla V100
Amazon EC2 M6g ARM AWS Graviton2
Raspberry Pi 4B ARM Cortex-A72 (ARM v8)

We tuned all above tasks on several hardware platforms,
including cloud and edge devices, as shown in Table 4. Each
tuning task was tuned by AutoTVM for at most 5,000 tri-
als, meaning that each task will have at most 5,000 sched-
ules. With AWS batch for the cloud platforms and a self-
maintained device farm for the edge devices, we spent less
than 2 days to finish all the tuning.

5.1 Tuning Result Analysis
With a large amount of tuning results by Lorien, this subsec-
tion analyzes the tuning results on several platforms. Such
analysis has not been done before due to the lack of a compre-
hensive dataset generated by a scale-out system. Specifically,
we seek to answer the following questions:

• What is the best performance we can achieve, and how
many trials are actually required?

• Can we directly apply the best schedule of one plat-
form to another so that we can tune fewer tasks?

Table 5: Average iteration numbers to find the sched-
ule that achieves 90% of the best achieved perfor-
mance.

Platform Intel
E5

Intel
Platinum

AWS
Graviton 2

Avg. Iter No. 628 591 1253

Platform ARM
Cortex-A72

NVIDIA
T4

NVIDIA
V100

Avg. Iter No. 656 1136 1101

Figure 7 presents the speedup of a number of deep learn-
ing models from Gluon CV model zoo tuned by AutoTVM
with Lorien. Note that the speedup on x86 platforms shown
in the figure considers graph tuning [29], which further im-
proves the end-to-end network performance by minimizing
the data layout transformation overhead between operators.
The baseline is either the hard-coded default schedules in
TVM, or the available schedules on TopHub [38]. As can be
seen in the figure, ResNet-18 achieves moderated speedup
on all platforms (1.2×). This is because ResNet was the most
widely used model, so most auto-tuning frameworks, includ-
ing AutoTVM, guarantee the quality of default schedules
of ResNet covered operators. In contrast, we can observe
significant speedup (8.12×) for a less popular model such
as SqueezeNet. This implies that Lorien is able to play an
important role for new emerging deep learning models.
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Figure 7: Speedups achieved by the best schedules
tuned by AutoTVM and Lorien over the default sched-
ules in TVM and TopHub [38].

In addition, the achieved speedups on GPUs (5.28×) are
higher than on CPUs (1.45×) in average. This attributes to
the fact that GPU schedules have much larger tuning space,
which makes it harder for schedule template designers to
figure out an effective default schedule for all operators.

Meanwhile, with the tuning data of plentiful tuned opera-
tors on multiple platforms, Table 5 summarizes the average
iteration counts that first find the schedule achieving 90%
performance over the best schedule. Note that the latency
of an operator is in the scale of a few 𝜇s, so 90% of the best
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performance is usually sufficient for most use cases. As can
be seen, although we use Lorien to tune each operator for
at most 5,000 trials, which usually covers more than 90% of
the tuning space on CPU and about 0.01% on GPU, much
less trial numbers could be sufficient to serve most use cases.
Consequently, tuning time could be saved for users that are
eager to have a model with decent performance, but Lorien
can still perform several thousands of trials to achieve the
peak performance.

Table 6: Rank shifting analysis when porting the best
32 schedules from one platform to another. “Ratio”
in the last column means the ratio of schedules that
achieve the same or better performance on the ported
platform.

Original Platform Target Platform Ratio
Intel E5 Intel Platinum 5.34%

Intel Platinum Intel E5 5.42%
ARM Cortex-A72 AWS Graviton 2 4.18%
AWS Graviton 2 ARM Cortex-A72 4.22%
NVIDIA T4 NVIDIA V100 19.84%
NVIDIA V100 NVIDIA T4 20.42%

Next, we evaluate the schedule portability. We select the
best 32 schedules of each workload on one platform and
measure their performance on another platform to see if
they remain the best. Table 6 shows the results, where rank
improvement indicates the ratio of schedules achieving the
same or better rank on the target platform. As shown in the
table, the ranks of top schedules on one platform are mostly
worse than on another, and only about 6% and 20% of the top
32 schedules can achieve the same or better rank on another
CPU and GPU platforms, respectively.

Based on the analysis result, we conclude that one-for-all
schedules basically do not exist, and the most practical ap-
proach to achieve a decent performance on a new hardware
platform is tuning desired workloads on the platform directly.
This further motivates the Lorien to provide a scalable and
reliable tuning mechanism as well as schedule management.

5.2 Performance Cost Model Evaluation
In this section, we evaluate the accuracy of the AutoML-
based performance cost model trained for each hardware
platform. As Table 6 illustrated, high quality schedules for a
hardware platform usually perform poor on another, which
implies that it is hard for the performance cost model trained
for one hardware to be transferred to another. However, we
will show that platform-specific performance cost model
is still effective and useful for zero-shot tuning algorithm
proposed in section 4 to rapidly deliver a decent schedule

for unseen workloads on the same platform. Based on the
experiment results, our main findings are

• We can obtain an accurate AutoML-based performance
cost model by training on a large-scale dataset for a
certain device. The dataset scale plays an important
role in the performance.

• The AutoML-based solution significantly outperforms
baselines like CatBoost regression / ranking or neural
network and works well on datasets collected from
different hardware devices.

• Zero-shot tuning with the AutoML model is able to
identify a schedule that is comparable to the best sched-
ule searched from scratch. This reduces the tuning time
of unseen workloads from hours to around one minute.

We implement the AutoML-based solution via AutoGluon
[16]. The default configuration of AutoGluon trains 11 dif-
ferent models that belong to different categories such as
boosting tree, random forest, and neural network, and uses
their weighted ensemble. However, during our experiments,
we observed that the weighted ensemble model will induce a
high inference latency. To improve the inference speed of the
cost model, we applied a simple pruning strategy on top of
AutoGluon (hereinafter referred to as “AutoGluon + Pruning”
below) by keeping a single model with the highest validation
accuracy out of the 11 models. By analyzing the validation
accuracy of 11 models, we observed that neural network
(NN) models generally outperform tree models on GPUs
while tree models outperform NN models in other hardware.
This again proves that a model crafted by humans for a de-
vice may not work well on another, and AutoML could be a
unified solution to free human efforts while covering most
devices.
Our baselines are three representative cost models that

are widely used machine learning models for predicting
the throughput scores [11, 35]: 1) a boosting-tree-based re-
gression model that minimizes the Root-Mean-Square Er-
ror (RMSE) between the predictions and the ground-truth
throughputs, 2) a boosting-tree-based model that minimizes
a list-wise ranking objective [21], and 3) a neural network
(NN) model that minimizes Mean-Squared Error (MSE). We
adopted the regression and ranking models implemented
in CatBoost [33] as the boosting-tree-based models. For the
neural network based model, we stack three MLP layers with
batch normalization, dropout, and leaky ReLU activation. All
models are trained with the data Lorien collected.

Each dataset contains the performance data of one opera-
tor on a particular hardware platform. Each sample in the
dataset is a pair of scheduling features and its corresponding
throughput. In our experiments, we use 15 datasets in total.
Each dataset contains schedules from multiple workloads
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Table 7: Comparison of different performance mod-
els. “NDCG@𝑘” means the NDCG score of the top-𝑘
schedules. The AutoML-based solution performs sig-
nificantly better than the other models. “AutoGluon +
Pruning” means to apply the simple pruning strategy
on top of AutoGluon.

Metric NDCG@2 ↑ NDCG@8 ↑
CatBoost Regression 0.8682 0.8735
CatBoost Ranking 0.7775 0.7899

NN 0.8387 0.8520
AutoGluon 0.9220 0.9324

AutoGluon + Pruning⋆ 0.9216 0.9301

(e.g., the Conv2D CUDA dataset has more than 2M sched-
ules from 543 workloads in terms of input/output shapes,
kernel/padding sizes, data types and layouts). To make sure
the trained model works well with new workloads on the
same platform, we split the training and testing sets based
on workloads and ensure that the workloads in the testing
set do not appear in the training set. We randomly sample
10% of the workloads as the testing set, and the rest are kept
as the training set.

In the zero-shot tuning setting, we will 1) randomly sam-
ple 𝑁 schedules, 2) estimate their performance with the cost
model, and 3) keep the top-𝐾 schedules with the highest
score and evaluate their throughputs on device. Since only
the predicted relative ordering among schedules matters in
this algorithm, we evaluate cost models with the Normal-
ized Discounted Cumulative Gain (NDCG) scores [24] at
different ranks. Assume that there are 𝑁 predicted scores
{𝑦1, · · · , 𝑦𝑁 } and𝑁 throughputs {thrpt1, · · · , thrpt𝑁 }, to cal-
culate NDCG𝑘 , we sort the predicted scores in descend-
ing order and calculate the DCG score defined as DCG𝑘 =∑𝑘

𝑖=1
2thrptpos𝑖 −1
log(1+𝑖) , in which pos𝑖 means the position of the 𝑖-th

largest schedule. NDCG𝑘 is then defined as NDCG𝑘 =
DCG𝑘

IDCG𝑘
,

in which IDCG𝑘 is the ideal and also maximal DCG score
obtained by the perfect ordering. In short, NDCG at rank 𝑘 ,
or NDCG𝑘 , measures the quality of the top-𝑘 predictions of
the cost model. If NDCG𝑘 is 1, it indicates that the top-𝑘 pre-
dicted scores have exactly the same order as the ground-truth.
Since NDCG𝑘 measures the quality of the top-𝑘 predictions,
it is a good proxy of the performance of the top-𝑘 candidates
searched via zero-shot tuning.
The main comparison results are shown in Table 7. We

train each model independently on 15 datasets and report
the average scores. We can find that AutoGluon significantly
outperforms the baseline models In addition, the “AutoGluon
+ Pruning” model has almost the same performance as the
AutoGluon model, but is more than 10 times faster. Thus,
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Figure 8: Speedups achieved by the best schedules
tuned by zero-shot tuning with the performance cost
model over the best schedules in Figure 7.

we choose to use “AutoGluon + Pruning” in the rest of this
evaluation.
We also conducted end-to-end zero-shot tuning exper-

iment with our performance cost model on the GluonCV
models. In this experiment, we make sure the workloads
in the GluonCV model being tuned do not appear in the
training set. For each task, we randomly search for 2, 000
trials and only measure the top-8 schedules on device pre-
dicted by the cost model. We report the end-to-end speedup
of deep learning models compiled with schedules obtained
via zero-shot tuning over the best schedules stored in the
database. The results are shown in Figure 8. In most cases,
zero-shot tuning is able to achieve comparable performance
to the best schedule. In some cases, it even outperforms the
best schedule in the Lorien database, which suggests that
the performance cost model generalizes well and can lead
to even better schedules. In addition, we also evaluated the
average tuning time saved by the zero-shot tuning. On aver-
age, by zero-shot tuning with the performance cost model,
the tuning time for a new workload reduces from 25 minutes
to 53 seconds on x86 platforms (Intel Xeon CPUs); 3.3 hours
to 28 seconds on GPU platforms (NVIDIA V100 and T4); 3.8
hours to 77 seconds on edge platforms (ARM v8 Cortex-A72).
Moreover, to understand the impact of dataset scale on

the NDCG score, we sub-sample the training data to 70%,
50%, and 30% to train the “AutoGluon + Pruning” model. The
NDCG@2 and NDCG@8 scores on the test set are shown
in Figure 9. The result clearly shows that the scale of the
training set is essential to achieve acceptable accuracy. This
experiment shows that the large-scale dataset provided by
Lorien can help buildmore effective performance cost models
to achieve good performance in zero-shot tuning.

Finally, we conducted an ablation study to understand the
impact of two important hyper-parameters of zero-shot tun-
ing: 1) the number of schedule candidates that are measured
on-device, and 2) the number of tuning trials with the cost
model. To understand the impact of the number of on-device
measured schedules, we fix the number of tuning trials to be
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Figure 10: The impact of on-device measured sched-
ules performed at the end of zero-shot tuning. We
report the relative performance with respect to the
schedules stored in the DB.

1,000 and run the end-to-end tuning with different numbers
of schedule candidates that are measured on-device. The
results are shown in Figure 10. We can find that the per-
formance improvement from measuring 8 top schedules to
16 and 32 is not obvious. This means that the cost model is
accurate enough to rank the best schedule.

To understand the impact of tuning trials, we fix the num-
ber of on-device measured schedules to be 8 and run end-
to-end tuning with different numbers of tuning trials. The
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Figure 11: The impact of iterations performed by zero-
shot tuning. We report the relative performance with
respect to the schedules stored in the DB.

results are shown in Figure 11. We observe that better per-
formance can be obtained by increasing the number of tun-
ing trials, which converges at about 2,000 trials. It means
that randomly sampling 2,000 candidates and ranking them
with the cost model in a few seconds is sufficient to deliver
efficient schedules that achieve 80+% performance against
the auto-tuning frameworks, which makes zero-shot tuning
practical.

6 RELATEDWORK
In this section, we discuss state-of-the-art auto-tuning frame-
works for deep learning workloads. Then, we introduce re-
lated performance cost models used in these frameworks
that help facilitate the tuning process.
Deep Learning Tuning Frameworks for Clusters
Some existing deep learning tuning frameworks are designed
for efficiently training deep learning models with hyper-
parameter tuning on cloud. For example, Amazon SageMaker
[28], Google Vizier [19], Auto-Keras [25] are the cloud-based
frameworks for hyper-parameter tuning. On the top of that,
PipeTune [37] also considers system parameters to further
reduce the model training time while achieving the same
accuracy. Their framework designs share a degree of similar-
ity of Lorien; while Lorien focuses on the model inference
performance and faces different challenges.
Deep Learning Kernel Auto-Tuning Frameworks
We categorize auto-tuning frameworks to two categories,
based on their tuning task granularity. The first category [2,
39, 42] schedules an entire deep learning model together
by treating the entire model as a single graph. Halide auto-
scheduling [2, 39] uses loop transformation primitives to con-
struct a tuning space, and leverages tree-based beam search
with heuristic pruning strategies to find the best schedule.
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Tensor Comprehensions (TC) [42] is a framework built on the
polyhedral model and targets GPU. It leverages evolutionary
search to explore the tiling sizes and different strategies of
polyhedral transformation. Since these frameworks schedule
each operator in a deep learning model based on the sched-
uling result of the previous operator, the tuned schedule
is tightly-coupled to the deep learning model. When inte-
grating into Lorien, the tuning task generator dialect simply
generates one task for an entire model with the serialized
model graph as the unique task key.

The second category [12, 46, 47] partitions the deep learn-
ing model graph to several independent subgraphs so that
they can be tuned in parallel. AutoTVM [12] and FlexTen-
sor [47] partition themodel graph by operators (e.g., Conv2D);
while Ansor [46] partitions the model graph by heuristic
rules (e.g., Conv2D-add-ReLU). The tuning task generator
dialect in Lorien of these frameworks could generate several
tuning tasks with task key composited by operator name or
serialized subgraph.

In addition, since almost all frameworks in both categories
have corresponding user interfaces to accept pretrained per-
formance cost model, it is straightforward for Lorien to train
and plug in the cost model for them.
Performance Cost Models
Most auto-tuning frameworks [2, 12, 18, 39, 46] incorporate
machine learning cost models in the performance tuning. To
accurate the performance score, AutoTVM [12], Ansor [46],
and Opevo [18] use a cost model with XGBoost [9]; Halide
auto-scheduling [2, 39] builds regression models with hard-
ware features. In addition, some existing work [6, 26, 40]
attempt to leverage high accurate cost models to reduce the
impact of search algorithm on final performance. [6] pro-
poses a Recurrent and Recursive Neural Network model for
Tiramisu [7] domain specific language used as a polyhedral
compiler for dense and sparse deep learning. [26] adopts
Graph Neural Network (GNN) to predict the program run-
time on Google Tensor Process Units (TPUs). [40] formulates
the tuning process as a deterministic Markov Decision Pro-
cess (MDP), and solves it by learning an approximation of the
value function. Due to the effective hardware dependent fea-
tures crafted with heavy feature engineering, these models
can be well-trained by a dataset with only a few thousands
of schedules. However, hardware-specific features usually
cannot be easily ported to new hardware, so this approach
cannot keep pace with the rapid development of a new hard-
ware.

Apart from ML-based cost models, there is a stream of
works that exploit the analytical models to estimate the per-
formance [27, 41, 42, 47]. Although analytical model does not
require any training data and can further reduce the hard-
ware requirements, analytical models are also restrained to

a certain hardware platform or operator, which makes them
less useful to be deployed in general deep learning compilers.

7 CONCLUSIONS AND FUTUREWORK
This paper presents Lorien, a unified and extensible infras-
tructure for delivering efficient deep learning workloads
upon requests. Lorien allows auto-tuning deep learning frame-
works to be easily plugged in as dialects, and supports large
scale tuning on both cloud and edge platforms. The tuning
results are managed in a NoSQL database with a unified data
model that fits all auto-tuning frameworks. While the best
schedules managed in the database can be used to compile
deep learning models to achieve high performance, the tun-
ing logs managed in a file system can also 1) enable more
comprehensive performance analysis on different platforms,
and 2) help train a performance cost model with an AutoML
solution. The evaluation result shows that the trained per-
formance cost model is accurate enough to avoid fine-tuning
during the workload tuning process, which enables zero-
shot tuning and guarantees to deliver efficient schedules in
seconds or minutes.

Aswe are expecting a continuous effort from both industry
and academia to improve auto-tuning in the future, Lorien
is expected to share the benefits they bring. In addition, we
envision Lorien could also bring the following future work.
Operator-level performance benchmarking.Many deep
learning accelerators have been developed to serve different
scenarios. To know the model performance on certain hard-
ware platforms, MLPerf [36] benchmark suite is proposed.
While MLPerf focuses on end-to-end performance, Lorien
database could also cover the schedule and performance at
operator-level, so that hardware vendors could easily catch
up with the performance on state-of-the-art accelerators to
set up the goal of their devices.
Latency/memory optimization in NAS. The recent trend
of neural architecture search (NAS) [8, 43] is to find architec-
tures that have both good performance and low latency/mem-
ory cost on the downstream hardware. Lorien can help these
hardware-aware NAS algorithms build a more fine-grained
(operator-level) and accurate performance model.
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