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Abstract. Dafny is a verification-ready programming language that is
executed via compilation to C# and other mainstream languages. We
introduce a toolkit for automated testing of Dafny programs, consisting
of DUnit (unit testing framework), DMock (mocking framework), and
DTest (automated test generation). The main component of the toolkit,
DTest, repurposes the Dafny verifier to automatically generate DUnit
test cases that achieve desired coverage. It supports verification-specific
language features, such as pre- and postconditions, and leverages them
for mocking with DMock. We evaluate the new toolkit in two ways.
First, we use two open-source Dafny projects to demonstrate that DTest
can generate unit tests with branch coverage that is comparable to the
expectations developers set for manually written tests. Second, we show
that a greedy approach to test generation often produces a number of
tests close to the theoretical minimum for the given coverage criterion.

1 Introduction

Verification-ready languages and tools, such as Dafny [12,21,22] and Boogie [3],
extend a core programming language with support for formal specifications such
as preconditions, postconditions, and loop invariants. Developers verify programs
against such specifications using built-in verifiers, thereby reducing the risk of
hidden bugs. Verification-ready languages have been successfully used in scenar-
ios ranging from low-level hypervisors [20] to entire program stacks [16].

It is common for a program written in a verification-ready language, such
as Dafny, to first be compiled into a traditional programming language, such as
C#, before being deployed to production. This way one can leverage the exten-
sive compiler optimizations and libraries that have already been developed for
popular programming languages. At the same time, one also needs to guarantee
the correctness of the final deployed program. First, it is necessary to ensure
that the Dafny compilers, such as the Dafny to C# compiler, do not introduce
unexpected behavior [18]. One approach to ensure the correctness of a compiler
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would be to verify it end-to-end. There have been such efforts in the past for
other languages [23]. While successful, these efforts took years of manual human
effort, and Dafny supports compilation to several different languages making
verification of the entire toolchain very difficult. Second, many Dafny programs
use external libraries, which are another potential source of bugs since they are
not written in Dafny and hence are not verified to match their specifications. In-
correct specification of an external library may introduce bugs even if the library
itself and the entire compilation pipeline are verified to be correct.

In this paper, we propose to increase assurance of the correctness of the
compiled Dafny program by leveraging automated testing. More specifically, we
introduce a toolkit for automated testing of Dafny programs, consisting of DUnit
(unit testing framework), DMock (mocking framework), and DTest (automated
test generation). The main purpose of the combined toolkit is to ensure that the
guarantees provided by verified Dafny programs are preserved when those pro-
grams are executed via compilation to a different programming language, such as
C#. The main component of the toolkit is DTest, a tool for automated genera-
tion of tests that achieve high coverage of Dafny programs. The tests themselves
are written in Dafny and compiled to use testing frameworks in selected target
languages, including C#. The tests assert that method postconditions verified
in Dafny hold at runtime. Thus, we can use DTest to (i) generate tests to en-
sure a compiled program preserves the behavior verified in Dafny; (ii) increase
confidence in specifications of external libraries that cannot be verified; and (iii)
increase assurance that a Dafny program is functionally equivalent to an existing
implementation that may be written in another language.

To compile tests to the target programming language, we introduce DUnit
and DMock, unit testing and mocking frameworks for Dafny. DUnit extends
Dafny with a method attribute :test, which signals the compiler to mark the cor-
responding method as a unit test in the testing framework of the target language.
To support DUnit, DMock facilitates generation of complex heap structures as
test inputs by adding mocking capabilities to Dafny. We introduce a new Dafny
attribute (:synthesize) for tagging of mock methods, which have no body in Dafny
but instead describe their return values with postconditions. Tests produced by
DTest rely on mock methods to bypass the need to infer how to use existing
constructors to create objects with specific field values. Instead, DMock au-
tomatically compiles mock methods to code (using the popular Moq mocking
framework for C#) that returns objects that comply with the corresponding
postconditions. Currently, DMock can produce mock implementations for a spe-
cific but broadly useful set of postconditions: one can supply concrete values for
constant instance fields or redefine the behavior of instance functions.

Fig. 1 shows the typical toolflow of the Dafny testing toolkit. DTest is im-
plemented as an extension to Dafny and uses the existing Dafny verifier, which
works by translating the Dafny program to the Boogie intermediate verification
language [3, 7]. Boogie, in turn, proves each assertion with Z3 [29, 33]. DTest
starts test generation by translating Dafny to Boogie (step 1 in the figure), in-
cluding several changes to the existing translation pipeline (see Sec. 4.1). Next,
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Fig. 1: Toolflow of the Dafny testing toolkit.

DTest enters a loop where it systematically injects trivially failing trap asser-
tions (meaning assert false) into the Boogie code and uses the Boogie verifier and
counterexample extractor [8] to generate counterexamples that reach the asser-
tions (steps 2–4). Then, DTest translates counterexamples into Dafny tests (step
5) using unit testing and mocking attributes understood by DUnit and DMock,
and converts method postconditions into runtime oracles (see Sec. 4.3). We then
compile the Dafny program and the generated tests to C# using the Dafny
compiler augmented with the functionality that DUnit and DMock provide.

We evaluated our toolkit across two dimensions. First, we used DTest to
generate unit tests for the Dafny utilities library (DUTIL) [24] and the portion
of the AWS Encryption SDK (ESDK) that is implemented in Dafny [13]. We
then compiled each library and its tests to C# and measured the coverage of the
tests on the C# code: the tests produced by DTest achieved 79% (resp. 62%)
statement and 84% (resp. 58%) branch coverage on DUTIL (resp. ESDK). This
is promising since the ESDK developers target 80% statement and 35% branch
coverage for their manually written unit tests as part of their wider testing
strategy. Second, we compared the number of tests DTest generates to achieve
full coverage to the number of tests generated by a brute-force algorithm that can
optimally minimize the number of tests. We found that DTest often generates
close-to-the-minimal number of tests, with the worst observed case (for some of
the methods with the most complex control flow) being three times the optimal.

In summary, the main contributions of this work are as follows:

– We introduce DTest, a tool that uses the Dafny verifier to automatically
generate unit tests for preexisting Dafny programs.

– We develop DUnit and DMock, unit testing and mocking frameworks for
Dafny that support automated compilation of tests and construction of ob-
jects based on a formal description of their behavior.

– We evaluate the toolkit on a set of real-world Dafny programs and show that
the generated tests achieve coverage expected by the developers.

– We released our toolkit with Dafny [12] and made the persistent artifact for
the paper available at https://doi.org/10.5281/zenodo.7310719.

Overall, our results show that DUnit, DMock, and DTest are a promising toolkit
for automatically generating high coverage tests for Dafny. More broadly, our
work should be useful to researchers and practitioners working in verification-
ready ecosystems other than Dafny, as we provide solutions for critical pain

https://doi.org/10.5281/zenodo.7310719
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points in test generation, including dealing with pre- and postconditions, mock-
ing in their presence, and leveraging the verifier for automatic test generation.

2 Toolkit Overview

Fig. 2a gives the example Dafny method LexLeq (LexicographicByteSeqBelowAux

originally) we extracted from the ESDK to illustrate how DUnit and DTest work.
It takes byte sequences x and y and an index n as input, and returns a Boolean
indicating whether x is equal to or precedes y in lexicographic order starting at
position n. The core logic of the method (lines 5–7) is a disjunction of conditions
that would make this true: either we have reached the end of x, or the byte
at position n in x comes before y, or the two bytes are equal and x is before y

lexicographically at position n+1. Otherwise, x is greater than y at n. Because
the method is recursive, it is accompanied by a decreases clause (line 4), which
allows Dafny to prove termination by stating that at each recursive call the value
of |x| − n decreases. The method also has a precondition (line 2) requiring that
n is within a valid range for x and y, and a postcondition (line 3) ensuring that if
the result is true then either we have reached the end of x or we have not reached
the end of y. Note that the postcondition was not present in the original code,
but we added it to more fully illustrate the features of DTest.

Dafny verifies programs by translating them to the Boogie intermediate ver-
ification language [3, 7] and then verifying the Boogie code. For our example,
DTest translates the Dafny code in Fig. 2a to the Boogie implementation in
Fig. 2b. Note that this translation differs from one the regular Dafny to Boogie
translator would produce—we discuss the differences in Sec. 4.1. The code in
Fig. 2b takes three input parameters that directly map to the parameters in the
Dafny code. The parameters x and y have type Seq Box, which is the type that the
Dafny translator uses to encode sequences in Boogie. For clarity, we use Dafny
notation in place of Boogie function calls for element access, a[i], and sequence
length, |x|. On entry to the implementation, the Boogie program proceeds to
either block A or B, each corresponding to one of the two possible values of the
Boolean expression on line 5. Note that in Boogie, control flow is captured by
non-deterministic branches to blocks guarded by assume statements. For exam-
ple, here, block A is guarded by an assumption n 6= |x| falsifying the condition on
line 5 in Fig. 2a. Thus, the Boogie code has a block for each term of the Boolean
expression in the original Dafny. Therefore, block coverage of the Boogie code
essentially corresponds to branch coverage of the original Dafny code.

Recall that DTest finds inputs that reach target branches by iteratively in-
serting assert false in each block and then extracting a counterexample from the
verifier. We call such assertions trap assertions because we do not expect the
prover to successfully verify them. Here, DTest has added a trap assertion on
line 19 in the Boogie code, with the goal of covering block L.

When we ask Boogie to verify the code in Fig. 2b, the verifier produces a coun-
terexample. The counterexample itself is not human readable, but recent work [8]
allows us to infer counterexample arguments x=[0, 133, 188], y=[0, 133, 187], and
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1 function LexLeq (x: seq〈uint8〉, y: seq〈uint8〉, n: nat): (result: bool)
2 requires n ≤ |x| ∧ n ≤ |y|
3 ensures result ⇒ n ≡ |x| ∨ n 6= |y|
4 decreases |x| − n {
5 n ≡ |x|
6 ∨ (n 6= |y| ∧ x[n] < y[n])
7 ∨ (n 6= |y| ∧ x[n] ≡ y[n] ∧ LexLeq(x, y, n + 1))}

(a) An example Dafny method from the ESDK.

8 implementation LexLeq (x: Seq Box, y: Seq Box, n: int)
9 returns (result: bool) {

10 var tmp: bool;
11 Entry: goto A, B;
12 A: assume n 6= |x|;
13 goto C, D;
14 B: assume n ≡ |x|;
15 goto E;
16 // blocks C to K go here...
17 L: assume n 6= |y| ∧ x[n] ≡ y[n];
18 call tmp := LexLeq(x, y, n + 1);
19 assert false; // Added by DTest
20 goto Return;
21 Return:
22 result := n ≡ |x| ∨ (n 6= |y| ∧ x[n] < y[n])
23 ∨ (n 6= |y| ∧ x[n] ≡ y[n] ∧ tmp);
24 return;}

(b) (Simplified) Boogie translation with a trap assertion.

25 method {:test} test() {
26 var d0: seq〈int〉 := [0, 133, 188];
27 var d1: seq〈int〉 := [0, 133, 187];
28 var r0 := LexLeq(d0, d1, 1);
29 expect r0 ⇒ 1 ≡ |d0| ∨ 1 6= |d1|;}

(c) Generated Dafny unit test.

30 [Xunit.Fact]
31 public static void test() {
32 var d0 = Sequence〈int〉
33 .From(0, 133, 188);
34 var d1 = Sequence〈int〉
35 .From(0, 133, 187);
36 bool r0 = LexLeq(d0, d1, 1);
37 if (r0 ∧
38 d0.Count 6= 1 ∧
39 d1.Count ≡ 1)
40 throw new Dafny.Exception();}

(d) (Simplified) generated C# unit test.

Fig. 2: Unit test generation example.



6 Fedchin et al.

n=1. DTest then uses these arguments to produce the unit test in Fig. 2c. Here
the :test annotation signals to the compiler that this method should be compiled
as a unit test in the target language of choice. The body of the test begins by
constructing sequences d1 and d2 which, along with the literal 1, are the coun-
terexample arguments. Next, the test case calls LexLeq with these arguments.
The expect statement on line 29 is a runtime assertion. Here we check that the
result satisfies the postcondition. Thus, the test not only covers block L, but also
adds a level of assurance to the emitted code by introducing runtime checks.

Finally, Fig. 2d shows the C# unit test DUnit generates for the example
Dafny unit test. Lines 32–35 correspond to lines 26–27 in Dafny and construct
the counterexample arguments later used in the method call on line 36. The
conditional on lines 37–40 throws an exception in case of a postcondition viola-
tion. Note that DUnit converts the :test annotation in Dafny to XUnit.Fact, which
allows us to run the resulting test using .NET’s XUnit framework [32].

3 Unit Testing and Mocking Frameworks

To support DTest, over the span of several years we developed DUnit and
DMock, unit testing and mocking frameworks for Dafny. In this section, we de-
scribe the new unit testing and mocking constructs we introduced to the Dafny
language as well as how we compile them into C#, the target compilation lan-
guage used by most open-source Dafny projects.

As we discuss in Sec. 2 (see Fig. 2c), DUnit introduces the :test attribute
for annotating unit tests. Within a unit test, we introduce expect statements to
specify runtime assertion checks. In contrast to standard Dafny assert statements,
the Dafny verifier does not prove expect statements but instead assumes they
hold. Dafny compiles expect statements into runtime assertions in the target
language, whereas assert statements are removed from compilation.

In addition to this basic unit testing support, we also introduce support for
runtime mocking, which allows seamless creation of objects based on a descrip-
tion of their behavior. When compiling to C#, we translate Dafny mocks into
code that uses the popular Moq library [28]. (Note that DMock also supports
compilation to Java using the Mockito library [27], but we focus on C#.)

The key reason we developed DMock is to support the creation of heap-based
structures (i.e., objects), which DTest heavily relies on. In particular, mocking
solves the problem of having to synthesize a sequence of calls to constructors and
other API methods to put a given object into the required state. In DMock, we
introduce the :synthesize attribute for annotating mock methods, which is accom-
panied by postconditions describing the method’s return value. We can use such
postconditions to specify mocking behavior of constant instance fields and func-
tions. DTest can infer from counterexamples the arguments with which to call
mock methods, and we do not allow mocking of side-affecting properties, which
ensures that the objects are consistent with preconditions and type invariants.

Fig. 3a gives an example mock method that generates a new AwsKmsKeyring

object and sets its instance fields to values given to the method call as arguments.
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1 method {:synthesize} getKeyring
2 (client: ManagementServiceClient, key: String, arn: Identifier, tok: TokenList)
3 returns (o: AwsKmsKeyring)
4 ensures fresh(o)
5 ensures o.client≡client ∧ o.Key≡key ∧ o.Arn≡arn ∧ o.Tokens≡tok

(a) Dafny.

6 public static AwsKmsKeyring getKeyring
7 (ManagementServiceClient client, String key, Identifier arn, TokenList tok) {
8 var mock = new Mock〈AwsKmsKeyring〉();
9 mock.CallBase = true;

10 mock.SetupGet(x ⇒ x.client).Returns(client);
11 mock.SetupGet(x ⇒ x.Key).Returns(key);
12 mock.SetupGet(x ⇒ x.Arn).Returns(arn);
13 mock.SetupGet(x ⇒ x.Tokens).Returns(tok);
14 return mock.Object;}

(b) C#.

Fig. 3: An example use of the :synthesize attribute for mocking (simplified).

DTest automatically produced this method (simplified) and relevant arguments
to call it with while generating tests for the ESDK. First, line 4 uses Dafny’s
fresh keyword to ensure the returned object is new and not aliased by an existing
variable. The subsequent postconditions specify the values of each of the object’s
constant fields. DMock compiles this method into the code in Fig. 3b. On line 8,
we use Moq to create a new class that extends AwsKmsKeyring. On the next line,
we ensure that by default the mocked class behaves exactly as the original class it
extends. Then, we override the field getter methods to return the values provided
as arguments. Finally, we return a new instance of the mocked class that, by
construction, behaves exactly as specified by the postconditions in Fig. 3a.

DMock also supports mocking of instance functions by redefining their behav-
ior with arbitrary expressions. For example, we can add the following postcondi-
tion to the mock method in Fig. 3a to ensure that a call to the Identity instance
function simply returns its argument: ensures forall arg:int :: o.Identity(arg) ≡ arg.
DMock compiles this postcondition into the C# statement below (which would
be added to Fig. 3b) to override the behavior of the Identity function:1

mock.Setup(x ⇒ x.Identity(It.IsAny〈BigInteger〉())).Returns((BigInteger arg) ⇒ arg);

This functionality is particularly useful for instantiating traits, which are Dafny
types similar to interfaces in Java that also cannot be instantiated directly. A
method annotated with :synthesize can both return an object extending a given
trait and ensure the instance functions of that object behave as the postcon-
ditions dictate. Note that we can only mock instance functions, not methods,

1 Dafny’s int is compiled to C#’s BigInteger because in Dafny integers are unbounded.
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since method calls cannot appear inside postconditions, which are expressions.
However, Dafny programs are typically written in a functional style, and hence
DTest can still handle most real-world uses of traits.

4 Automated Test Generation

In this section, we describe DTest’s test generation approach (steps 1-5 in Fig. 1).

4.1 Custom Dafny to Boogie Translation

DTest customizes (step 1 in Fig. 1) Dafny’s standard translation to Boogie with
two key modifications to support automated test case generation.

Preprocessing to Support Inserting Trap Assertions. The Dafny code we have
analyzed makes extensive use of functions. Function bodies are syntactically
expressions and are translated as such into Boogie. However, an assertion is a
statement, and cannot be inserted into the body of a Boogie function. To address
this issue, DTest preprocesses the Dafny code to turn functions into function-by-
methods, which are functions with an equivalent imperative definition provided
as a method. In our case, we wrap the original expression in a return statement,
which then prompts the translator to create an imperative Boogie implementa-
tion. Hence, for each input function-by-method, Dafny emits both a standard
Boogie function—used for verification—and an imperative implementation, as
in Fig. 2b. DTest can then insert trap assertions into implementations’ bodies.

Inlining. If we are using DTest to generate unit tests of individual methods,
no further translation steps are needed. However, an issue arises if we wish to
generate system-level tests via calls to a main method entry point or similar.
The challenge is that Boogie verifies methods one at a time, and any callee
methods are represented by their specifications. Any trap assertions aside from
those in a main method will essentially be “hidden” behind the specifications of
the methods they are inside of.

Our solution to this problem is inlining: DTest can optionally inline the pro-
gram into a user-specified main method before proceeding with test generation.
Recursive methods can also be inlined (unrolled) up to a manually chosen bound.
This way, DTest can provide coverage of the entire Dafny program. Boogie sup-
ports inlining, but to take advantage of this support, we have made several
changes to the Boogie code emitted by Dafny. These changes allow translating
functional-style code, such as conditional expressions, to their imperative equiv-
alents, such as conditional statements, which makes the code more amenable to
trap-assertion injection and inlining.

4.2 Trap Assertion Injection

DTest generates tests while iterating over the basic blocks of the Boogie rep-
resentation. Iteration happens in reverse topological order of the control-flow
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graph in order to greedily reduce the number of tests by generating tests that
are likely to cover multiple blocks at a time. For each block that has not yet been
covered, DTest inserts a trap assertion (step 2 in Fig. 1) and queries the Boogie
verifier for a counterexample (step 3). Alongside the counterexample, the veri-
fier also reports the error trace, i.e., blocks leading up to the trap assertion that
the counterexample also covers. We use the error trace to prune away already
covered blocks. DTest then uses previous work [8] to extract the counterexample
to a Dafny-like format and then concretizes the result (step 4 in Fig. 1).

One can construct more complex trap assertions that fail when a program
takes a specific path through the control flow graph. We can, therefore, use DTest
to generate test suites with path-coverage guarantees, although we do not fully
explore this use case here and only apply this version of DTest to study the sizes
of potential test suites (see Sec. 5.2.)

Note that a successfully verified trap assertion serves as proof that no input
can cause a given block to be visited, i.e. it signifies the presence of dead code.
This also allows us to uncover dead code using DTest, which is an option we
implemented but have not experimented with extensively.

4.3 Unit Test Generation

The key challenge DTest faces when generating unit tests (step 5 in Fig. 1)
involves selecting concrete values that are not constrained by the counterexample
because they are irrelevant to a particular assertion failure. For example, consider
the method in Fig. 2a. A counterexample returned by the solver may suggest
that calling the method with n = 1 and x being a one-element sequence covers
block B. To generate a unit test, DTest also has to emit a value for x’s single
element. DTest is free to choose any value assuming it satisfies the corresponding
type constraint if any such constraint is present.

To generate such values, DTest relies on witnesses—user-supplied (using the
witness keyword in Dafny) or sometimes automatically inferred values that Dafny
uses to prove a given type is nonempty. We define such values for all primitive
types and collections (e.g., 0 for integers), and user-defined witnesses are typi-
cally available for subset types, i.e., types that are constrained with arbitrary
predicates. In the rare case that a user does not suggest a witness for a given sub-
set type, DTest will emit a default value for the corresponding supertype, which
may lead to a test that violates a type constraint. We call any such test that
violates the specification of the target method or a type constraint unreliable
and discuss all cases in which DTest might generate such tests in Sec. 4.4.

One way to exclude unreliable tests would be to verify them in Dafny. How-
ever, DTest might generate a correct test while at the same time failing to find
the right value for a ghost variable — irrelevant at execution — to make the
test verify. Moreover, some tests may be unreliable yet still explore the targeted
branch when compiled to C#. Therefore, to allow more flexibility, we aim to
filter unreliable tests at runtime with checks that preemptively terminate exe-
cution if a test violates a method precondition over non-ghost fields, violates a
type constraint, or calls a trait instance method that is not explicitly mocked
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by DTest. For example, in Fig. 2c we add such a check after the last local vari-
able initialization on line 27 as the runtime assertion expect 1 ≤ |d0| ∧ 1 ≤ |d1|,
”Unmet precondition”. In our evaluation, such runtime checks terminate 94% of all
unreliable tests that would otherwise have led to difficult-to-interpret failures.

To strengthen the assurance provided by the tests, DTest converts postcondi-
tions of methods under test into runtime assertions such as the one on line 29 in
Fig. 2c. We support all specification constructs allowed by Dafny, provided they
are not ghost. We leave compilation of ghost constructs such as unbounded quan-
tifiers as future work. Whenever DTest encounters ghost specifications, which are
infrequent in our evaluation, it does not create a corresponding runtime check;
this, of course, does not affect coverage.

4.4 Limitations

DTest has several limitations that can either prevent it from being able to gen-
erate a test for every block in the Boogie representation of a given procedure or
might cause DTest to occasionally produce unreliable tests (Sec. 4.3).

– Solver Timeouts. As is the case with any tool that relies on an SMT solver,
timeouts may occur, in which case DTest might not cover some blocks. We
currently set the timeout to 5 seconds, and our empirical evaluation shows
that increasing the timeout does not make a significant difference.

– Spurious Counterexamples. Dafny might generate a spurious counterex-
ample (i.e., one that does not in fact lead to a trap assertion violation) due to
several reasons. First, specifications, such as post-conditions or loop invari-
ants, might be over-approximations that under-constrain the program state.
Second, the Dafny translation into Boogie might not provide a complete ax-
iomatization of some features, such as set cardinality. Third, the backend
SMT solver itself is incomplete in the presence of quantified formulas, which
Dafny always generates. This can lead to a counterexample that does not
expose a trap assertion or may even violate method preconditions.

– Information Elided in the Counterexample. If the user does not pro-
vide a witness for a certain subset type (Sec. 4.3), DTest may not be able to
generate a value that satisfies the corresponding type constraint.

– Ghost Specifications. DTest cannot compile ghost specifications into run-
time checks, so there could be unreliable tests we fail to identify.

– Unsupported Language Features. DTest does not support tuples, ar-
rays, infinite maps, infinite sets, or multisets. These Dafny types and col-
lections are rarely used in practice (sequences are used instead of arrays;
finite maps and sets are preferred to their infinite counterparts) and only
appear in a handful of methods in our benchmarks. Moreover, DTest does
not fully support traits and function types. For any argument of a function
type, DTest synthesizes a lambda expression with a matching type signa-
ture. For example, for a function that maps an integer to an integer, DTest
synthesizes a lambda expression that always returns 0. Given that function
types are rarely constrained, this approach works in the majority of cases.
For a discussion of traits, see Sec. 3.
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5 Empirical Evaluation

We perform two experiments to evaluate the testing toolkit. First, we evaluate
DTest’s running time and coverage achieved on two preexisting Dafny projects.
Second, we compare the number of tests DTest generates to the minimal number
of tests required for full coverage.

The subject programs for our evaluation are two real-world projects: the
Dafny utilities library (DUTIL) [24] and the AWS Encryption SDK (ESDK) [13].
DUTIL spans 1382 lines of code and presents a collection of useful methods
for non-linear arithmetic; manipulating Dafny maps, sequences, and sets; and
performing miscellaneous operations. The ESDK comprises 4596 lines of code
and implements a Dafny-verified encryption library, which provides an interface
between encryption backends and consumer applications. The two projects are,
to the best of our knowledge, the largest open-source Dafny programs, with the
exception of Ironclad [16] which, despite manually updating it to the latest Dafny
syntax, we were unable to get to verify (and hence use in our experiments). While
our benchmarks are small by industry standards, they are representative of how
Dafny is used in practice and showcase most of Dafny’s features.

5.1 Unit Testing and Coverage

In our first experiment, we measure the statement and branch coverage on
the binary obtained by compiling DUTIL and the ESDK to C#. To maximize
DTest’s performance, we augmented the ESDK with about two dozen witnesses
(Sec. 4.3). Doing so took us less than an hour of manual work. We find that DTest
can quickly generate tests that provide sufficient coverage to identify unexpected
behavior in an external library.

Fig. 4: Runtime of DTest on methods from
ESDK and DUTIL.

Performance. DTest took 158
minutes to generate 918 tests
for the 436 methods in the
two benchmarks. This does
not include methods that
exist only to aid verifica-
tion and are not compiled,
methods that have no body
in Dafny (external meth-
ods), and methods introduced
by the Dafny compiler (e.g.,
ToString). Fig. 4 shows that
the runtime it takes DTest to
process one method is close to
linear in the number of blocks
in the Boogie representation
of that method (Pearson’s co-
efficient ≈ 0.86, p < 0.0005). The outliers are methods for which DTest can
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Table 1: Overview of achieved coverage.

Source Folder LOC Methods # Tests
Boogie C#
Block Statement Branch

D
U

T
IL

Maps 55 7 13 100% 98% 88%
Sequences 1114 131 169 67% 76% 84%

Sets 42 4 8 100% 83% 69%
Nonlinear Arithmetic 78 7 11 72% 91% 88%

Misc. 93 16 22 90% 98% 88%

Total 1382 165 223 72% 79% 84%

E
S
D

K

Crypto Material Providers 1871 67 270 87% 62% 50%
Crypto 153 13 25 90% 82% 70%

Generated 61 4 8 83% 100% 100%
SDK 1878 116 205 58% 51% 45%

Standard Library 414 45 121 90% 93% 93%
Util 219 26 66 74% 75% 91%

Total 4596 271 695 77% 62% 58%

cover multiple blocks with one test, such as the methods we analyze in Sec. 5.2.
Methods that cause solver timeouts are also a source of outliers.

Coverage. Table 1 shows the coverage that the tests achieve on the compiled C#
code, as measured with the Coverlet framework [11]. We give the results for each
source folder in DUTIL and ESDK, including the lines of code (LOC) count, tar-
get method count, and the number of generated tests for each entry. Each folder
consolidates files with similar functionality. The table includes a Block column
showing the fraction of Boogie basic blocks for which DTest reports that it suc-
cessfully generated tests. We report the actual statement and branch coverage
in the last two columns, with unreliable tests (Sec. 4.4) not contributing to the
result. We took all methods compiled from Dafny to C#, even those for which
DTest fails to generate tests, into account when measuring coverage. We achieve
62% statement and 58% branch coverage on the ESDK. The lower coverage of
the SDK folder is due to extensive use of traits, which DTest only partially sup-
ports (Sec. 4.4). These results are comparable to the thresholds that the ESDK
developers set as a minimum bar for manual tests as part of their overall testing
and verification strategy, with DTest scoring above the 35% threshold for branch
coverage but below the 80% threshold for statement coverage.

We observe in the table that the Boogie basic block coverage does not match
the C# statement coverage, but is either an over- or under-approximation. The
difference is due to two key factors. First, a C# test generated for one method
might cover code in a method invoked by it, which at the Boogie level we cannot
observe since we are doing intraprocedural test generation in the experiments (no
inlining). This leads to the Boogie coverage being an under-approximation of the
C# coverage. Second, some tests may be identified as unreliable at runtime, and
so they contribute to the Boogie coverage but not to the C# coverage, leading
to the former being an over-approximation of the latter.
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Overview of Tests. Of the 918 tests DTest generated for DUTIL and ESDK,
85 are unreliable. Of these, our runtime checks preemptively terminated 80 (see
Secs. 4.3 and 4.4): 11 violate preconditions, 40 violate type constraints, and
29 call methods on traits that are not mocked. Five more tests fail because
DTest does not fully support function types. As we describe above (Sec. 4.4),
arguments of function types are generated from type signatures rather than
counterexamples. Overall, half of the generated tests have no return value check
due to absence of postconditions. However, even such tests check for runtime
errors, which is valuable as shown by the success of black-box fuzzers (that
do not check return values either) [26]. In our experiments, the outcomes of two
tests are worth noting: one test causes an external method to throw an exception,
which, however, is allowed by that method’s signature. Another test causes the
execution to continue for an indefinite amount of time (we killed the process after
two hours). The developers identified this case to be from a particular internal
test method (not part of code exposed to the user) for an external .NET RSA
library. Thus, our test uncovered an external library behaving differently from
the developers’ expectations, and they fixed the test method accordingly.

5.2 Test Suite Size

In our second experiment, we evaluate the size of the test suite DTest generates
by comparing it to a minimal number of tests required to achieve full coverage.
Test suite size is an important factor for software development and has prompted
significant research effort in recent years [15,17].

For the purpose of this comparison, we designed an algorithm to enumerate
sets of control flow paths of a Boogie procedure in order of increasing set car-
dinality, terminating when we find a set of paths that guarantee full coverage,
are all feasible, and that we can generate tests for. We determine the feasibility
of a path via a query to the SMT solver, in which a trap assertion is added
that fails only if all the blocks along the path are visited. We then generate a
test for each path in the same way that DTest would generate a test for a given
block. This approach is exponential in the number of SMT queries (running on
all benchmarks as in Table 1 would take weeks), but we do allow the users of
DTest to optionally use this costly method since reducing the number of tests is
sometimes of utmost importance (e.g., if tests are being executed over and over
again as a part of continuous integration).

To compare the default (greedy) and optimal approaches, we selected nine
methods from DUTIL and ESDK with the most complex control flow as de-
termined by the number of basic blocks in their Boogie representation. Such
methods present high potential for test minimization, since one carefully chosen
test could cover many blocks; we expect differences between the two approaches
to be less pronounced when viewed in a broader context. We omit any methods
for which DTest could not reach all blocks, or for which it generated unreliable
tests.

Table 2 summarizes the results of this comparison. We give the number of
basic blocks in the Boogie representation of each method in a separate column.
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Table 2: Comparison of minimization strategies.

Method # blocks
Running time (s) # Tests
Default Optimal Default Optimal

UTF8.Uses3Bytes 53 18 1860 13 12
UTF8.Uses4Bytes 53 19 422 13 12

UTF8.ValidUTF8Range 21 12 36 9 6
Base64.IsBase64Char 19 16 112 8 3

AwsKmsArnParsing.AwsArn.Valid 16 17 30 6 2
Base64.IndexToChar 16 14 19 5 5

Base64.Is1Padding 16 13 24 6 2
Base64.Is2Padding 16 14 25 6 2

Sorting.LexicographicByteSeqBelowAux 14 8 8 5 3

For each Dafny method and minimization technique, we report the time that
the test generation process takes (mean of three runs), and the number of tests
in the resulting suite. The default (greedy) algorithm appears to generate more
tests whenever there are independent branching points in the control flow of the
method, i.e., when the choice of the path at one branching point does not dictate
the choice at the next one. Even so, the greedy algorithm is within two tests of
minimal for four of the methods, and it never generates more than three times
the minimal number of tests. It is also several times faster than the alternative.

6 Related Work

Testing of Verification-Ready Languages. Test generation has been explored in
the context of Dafny by Delfy [9, 31], a concolic test generation tool. Delfy has
not been updated for nearly ten years and only supports a limited subset of
Dafny, and hence a direct comparison was not possible. In contrast to Delfy,
DTest fully supports the features commonly used by Dafny programmers, such
as algebraic datatypes, sequences, sets, and maps. Unlike Delfy, which relies
heavily on compilation to C# for both concrete and symbolic execution, DTest
is independent of the target language since it generates tests (in Dafny) from
counterexamples provided by the Dafny verifier itself.

Another tool for automated testing of Dafny is XDSmith [18], which ran-
domly generates Dafny programs with known verification outcomes and uses
these programs to test the Dafny verifier and compilers. XDSmith is comple-
mentary to DTest—the former focuses on testing the Dafny toolchain itself in
isolation, while the latter helps to increase assurance that the compiled target
programs are correct, particularly in their interaction with external libraries.

Concrete execution of verifier-produced counterexamples has been explored
in the Why3 verification environment [4,14]. The goal of this work is to ascertain
the validity of a counterexample by observing the runtime behavior it triggers
under various assumptions. DTest, by contrast, relies on the correctness of coun-
terexamples to generate tests. This technique and, more broadly, the use of a
verifier to generate tests has been explored in the context of other languages,
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such as C [5] and B [1], but Dafny presents a particular challenge due to its
verification-related features (e.g., rich type system, specifications).

To the best of our knowledge, neither Boogaloo [30], a nondeterministic in-
terpreter for Boogie, nor Symbooglix [25], a symbolic execution engine, have
been used to generate test suites for Boogie or Dafny programs although both
tools can be used to explain a failing assertion. Symbolic-execution-based pro-
gram exploration algorithms and the verifier have different trade-offs, especially
in the presence of loops. We plan to develop, as future work, a portfolio-based
approach, similar to CoVeriTest [6], with several backend reachability analyses.
Automated Software Testing. There is a large body of work on automated soft-
ware testing, involving techniques such as fuzzing (see [26] for a survey), symbolic
execution [2], and others. We might augment DTest with some of these tech-
niques in the future since, for example, the approach used by QuickCheck [10]
and the related family of fuzzers for generating values of function types offers
more flexibility than DTest’s current implementation. One of the challenges of-
ten accompanying automated testing is object initialization. Our approach to
this problem is close to lazy symbolic initialization [19], a process whereby an
object is initialized on an “as-needed” basis—we similarly override the value of
an object’s field only if it is constrained by the counterexample or a precondition.
Mocking. A number of mocking frameworks exist for various languages, of which
Mockito [27] and Moq [28] are some of the most popular options for Java and
C#, respectively. For our purposes, it is crucial that a mocked object behaves
exactly like an instance of the corresponding type unless an instance field or
function is specifically redefined by the user. DMock relies on both Mockito and
Moq to support this functionality, which is sometimes also referred to as spying.

7 Conclusions

In this paper, we presented a toolkit for automated testing of Dafny programs:
DUnit (unit testing framework), DMock (mocking framework), and DTest (au-
tomated test generation). The main component of the toolkit, DTest, works
with the Boogie representation of a Dafny program to generate tests that (i)
target branch coverage of the compiled code and (ii) contain runtime assertions
extracted from method specifications in the Dafny code. We evaluated the cov-
erage DTest achieves on several preexisting Dafny programs, showed that it can
help identify unexpected behavior in external libraries, and compared it to an
alternative more costly solution that optimally minimizes the number of tests.
Overall, our results show that DUnit, DMock, and DTest are a promising toolkit
for automatically generating high coverage tests for Dafny.
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a Tool for Testing B Translators and Coverage of B Models. In: Tests and Proofs.
pp. 83–92 (2019). https://doi.org/10.1007/978-3-030-31157-5_6

2. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A Survey of
Symbolic Execution Techniques. ACM Computing Surveys 51(3) (2018). https:
//doi.org/10.1145/3182657

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: International Sym-
posium on Formal Methods for Components and Objects. pp. 364–387 (2005).
https://doi.org/10.1007/11804192_17

4. Becker, B.F.H., Lourenço, C.B., Marché, C.: Explaining Counterexamples with
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8. Chakarov, A., Fedchin, A., Rakamarić, Z., Rungta, N.: Better Counterexamples
for Dafny. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 404–411 (2022). https://doi.org/10.1007/

978-3-030-99524-9_23

9. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated Environment
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